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ABSTRACT

Abstract

Intelligent Transportation System (ITS) refers to a system that integrates advanced

communications, computing and electronics technologies into transportation in-

frastructure and vehicles, to improve safety and efficiency and to reduce traveling

time and fuel consumption. The conventional surveillance methods used in ITS

to detect real-time traffic data, e.g. video image processing and inductive loops

detection, have several shortcomings, such as limited coverage and high costs of

implementation and maintenance. Wireless sensor networks (WSNs) offer the po-

tential of providng real-time traffic data without these drawbacks. Hence, in the

past decade, WSNs have been applied to ITS to improve the performance of ITS.

Controlling traffic lights plays a key role in ITS. An optimal traffic light con-

trol approach can increase traffic throughput and reduce waiting time. In this

thesis, we investigate how to design methods and algorithms for adaptive traf-

fic light control in a WSN-based ITS. We review the related work on collecting

real-time traffic data and on controlling traffic lights, including fixed-time control,

actuated control, and adaptive control. We propose models and schemes for adap-

tive traffic light control for both isolated intersections and multiple intersections.

The proposed approaches take advantage of real-time traffic information collected

by WSNs to achieve high system throughput, low waiting time and few stops for

the vehicles.

First, we describe an adaptive traffic light control scheme proposed for an
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isolated intersection. This scheme can adjust both the sequence and length of

traffic lights in accordance with real-time traffic loads. It takes into consideration a

number of factors such as traffic volume, waiting time, vehicle density, and others,

to determine the sequence and the optimal length of green lights. Simulation

results demonstrate that our approach results in much higher throughput and lower

average waiting time as compared with the optimal fixed-time control approach

and an actuated control approach.

We then propose an adaptive traffic light control scheme for multiple intersec-

tions. In this case, we need to also consider controlling the traffic lights for mul-

tiple adjacent intersections in a distributed way. Our proposed scheme can collect

real-time traffic data, and adjust both the sequences and lengths of the green lights

of intersections cooperatively. Real-time traffic data, e.g. traffic volumes, waiting

time, number of stops, vehicle densities, are taken into account to determine the

sequence of green lights in each intersection. The optimal lengths of the green

lights can be calculated based on the information about local traffic volumes and

the remaining green light durations of neighboring intersections. Simulation re-

sults likewise show that our scheme produces much higher throughput, lower av-

erage waiting time and fewer average stops, compared with the optimal fixed-time

control approach, an actuated control approach, and an adaptive control approach.

We have implemented the proposed schemes on our testbed for Intelligent

Services with Wireless Sensor Networks, iSensNet to evaluate and demonstrate
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the performance. Our experimental results show that our approaches can deal

with different traffic conditions in an effective manner.

Keywords: wireless sensor network, intelligent transportation system, adap-

tive traffic light control, real-time traffic data.
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Chapter 1

Introduction

Traffic congestion is a huge problem nowadays, due to the rapid increase in the

demand for transportation and limited resources provided by traffic infrastructures

[66] [86]. This results in longer vehicle travel time, increased energy consump-

tion, growing environmental pollution, reduced traffic safety, and a decrease in the

efficiency of the transportation infrastructure [66] [85]. Hence, controlling traffic

has become a very important issue under a growing pressure to relieve traffic con-

gestion. Traffic control is an important component of Intelligent Transportation

System (ITS). ITS refers to a system that integrates advanced communications, in-

formation, and electronic technologies into transportation infrastructure and vehi-

cles, to relieve traffic congestion, improve safety, and reduce transportation times

and fuel consumption.

Controlling traffic lights plays a key role in increasing traffic throughput and

reducing delay. When scheduling traffic lights, current traffic conditions should

be considered as they can significantly affect the control scheme. Hence, col-
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lecting real-time traffic data is a very important issue. Conventional methods of

controlling traffic lights have limitations. These include limited coverage due to

sensors’ fixed-location installations and the cable-based communication methods

used to transmit the detected traffic information, which increases the cost of imple-

mentation and maintenance [22] [8]. Based on these drawbacks, it is necessary to

search for another way to monitor traffic conditions. With the continuing develop-

ment of Wireless Sensor Networks (WSNs), which use wireless sensor nodes for

surveillance and communication, the possibility of overcoming these drawbacks

is increasing. ITS can detect traffic information dynamically and then transfer

traffic data through wireless technologies at a low cost. Thus, we choose to in-

tegrate WSN to ITS to obtain the real-time traffic data to design an algorithm to

control traffic lights.

In this chapter, we first give an introduction to the intelligent transportation

system, including different types of subsystems, the applications, and the tech-

nologies used. We then describe wireless sensor network technology, including

the definitions, sensor nodes and applications. After this, we discuss the traffic

light control, including the basic concepts, different types of control strategies,

their objectives, and their shortcomings. We then point out the most challenging

issues in the design of adaptive traffic light control approaches for a WSN-based

ITS. At the end of this chapter, we summarize our contributions in this study and

describe the organization of the thesis.

2
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1.1 Intelligent Transportation System

As mentioned above, ITS applies advanced technologies on sensing, detecting,

communication, and control into transportation systems for the purposes of im-

proving transportation safety, decreasing transportation time, and reducing power

consumption.

Generally, ITS can be classified into several subsystems according to their

functions: Travel Management and Traveler Information Systems (TMTIS), Ad-

vanced Vehicle Control and Safety System (AVCSS), Commercial Vehicle Oper-

ation (CVO).

TMTIS is responsible for providing real-time traffic information, and for man-

aging and controlling traffic conditions and traffic lights. It includes four subsys-

tems: Advanced Traffic Management Systems (ATMS), Advanced Traveler Infor-

mation Systems (ATIS), Advanced Public Transportation Systems (APTS), and

Advanced Rural Transportation Systems (ARTS).

ATMS is responsible for detecting current traffic conditions, transmitting such

traffic data to a control center by advanced communication technologies, and then

designing traffic control schemes based on this information. ATMS already has

some applications, such as traffic light control, incident management, electronic

tolls, high occupancy vehicle control, and so forth [1]. ATIS is responsible for

providing real-time traffic data to road users everywhere by advanced communica-

3
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tion technologies, so that the users can make decisions about trips or routes based

on this information. In addition, ATIS already has some applications, such as

GPS, internet connections, message signs, and so on [6]. APTS is responsible for

improving the service quality of public transportation. It applies the technology of

ATMS and ATIS to public transportation to increase system efficiency. The appli-

cations include automatic vehicle monitoring, E-tickets, and so on [6]. ARTS is

responsible for providing useful information to drivers by applying the technology

of ATMS and ATIS in rural transportation, with the purpose of improving service

quality and increasing efficiency.

AVCSS is responsible for providing useful information to road users to help

them reduce the possibility of accidents and improve traffic safety through us-

ing advanced technologies. Applications of AVCSS include collision avoidance

systems, automatic highway systems, driving assistance, and so forth [6].

CVO is responsible for applying the technologies of ATMS, ATIS and AVCSS

to commercial vehicles such as trucks and taxes to improve their efficiency and

traffic safety. Examples of applications are the automatic monitoring of vehicles

and electronic payment [6].

Within the above systems, ATMS is the most important one for relieving traf-

fic congestion. It applies advanced technologies for surveillance, real-time col-

lection and then transmission of the traffic data to a management center by some

advanced communication technologies. To alleviate congestion, the management

4
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center then designs traffic light control approaches based on all of the detected

information.

Currently, there are some conventional surveillance methods to collect real-

time traffic data, such as video image processing and inductive loops detection.

Using these methods, traffic volumes, vehicle speeds, vehicle classifications, oc-

cupancies, and presence can be detected. However, these collection methods have

some shortcomings, such as their limited coverage and high cost of implemen-

tation and maintenance [8]. Meanwhile, wireless sensor networks can offer the

potential to provide real-time traffic data overcoming these drawbacks. Hence, we

study how to apply WSNs to ITS to improve its performance in relieving traffic

congestion.

1.2 Wireless Sensor Networks

With the development of technologies in wireless communication, digital elec-

tronics, and low power sensing, WSNs have emerged in the past decade as a

promising technology for surveillance and data collection. WSNs are composed

of spatially distributed small sensor nodes that use wireless communication to

communicate among them when sensing the physical world. [12] [13] [20] [25] [68].

A sensor node consists of four components: sensors, a processor, a radio, and

an energy source, so that it is able to sense the surrounding environment, perform

some processing, and communicate with other connected nodes [2] [25]. Sensor

5



CHAPTER 1.

nodes can detect conditions such as temperature, sound, pressure, motion, and

so forth. The cost of sensor nodes is variable, ranging from hundreds of dollars

to a few pennies, depending on the size of the network and the requirements of

individual sensor nodes [48].

Because of the flexibility in deployment and various functions, WSN has nu-

merous potential applications. These typically include environmental monitor-

ing, industrial monitoring, machine health monitoring, and tracking or controlling

[3] [72] [48] [80].

Under the guarantee that all of the traffic data in the whole network range

can be measured, using sensor nodes can overcome the shortcomings mentioned

above [22]. Therefore, we apply WSNs in ITS to collect real-time traffic data and

enhance traffic safety.

In a WSN-based ITS, there are several types of communications, such as

vehicle-to-vehicle, vehicle-to-infrastructure, or infrastructure-to-vehicle. Traffic

conditions can be detected and the information transmitted to vehicles through

vehicle-to-vehicle or infrastructure-to-vehicle communications [47].

1.3 Traffic Light Control

The term traffic light control, also called traffic signal control, refers to a strat-

egy to schedule the traffic lights to ensure that traffic can move as smoothly and

safely as possible. Different control strategies have different performances. The

6
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performance criteria include vehicle throughput, waiting time, and the number of

vehicle stops.

An optimal control strategy can increase the utilization of infrastructure, im-

prove traffic safety, and reduce energy consumption. In contrast, a suboptimal

control strategy would result in considerable delay due to frequent changes of

traffic lights and inaccuracies of scheduling. When designing the strategy to con-

trol traffic lights, a number of apparent difficulties should be considered [66].

They include the increasing size of the problem for a large traffic network, the

limited coverage of traffic detection, and many unpredictable disturbances which

are difficult to measure, such as traffic incidents and illegal parking.

The combination of these difficulties makes it harder to design a effective traf-

fic light control strategy to achieve an optimal real-time schedule. This is espe-

cially the case in multiple intersections scenarios, since the coordination between

adjacent intersections also should be taken into account. Traffic conditions from

neighboring intersections would have a dynamic impact on the scheduling of local

traffic lights since these traffic flows should become part of the local traffic flow

after a certain period.

When designing a traffic light control strategy, there are several factors that

should be kept in mind, cycle time, split, phase sequence and offset, as these

factors may affect current traffic conditions.

Cycle time is the total duration of all the series of traffic light combinations at
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an intersection. A longer cycle time would increase the capacity of the intersection

due to the decrement of the fraction of the constant lost time. On the other hand,

a longer cycle time would increase vehicle delay in under-saturated intersections

because the waiting time during the red phase would grow accordingly [66]. A

phase, also called a stage, is part of a whole cycle of traffic light combinations,

during which one set of traffic flows has the right of way [66]. Constant lost time

means the necessary time between the phases to avoid interference between the

antagonistic traffic flows of two conflicting phases.

Split is the proportion of the cycle time that is assigned as the green phase for

a set of traffic movements. It is a common element to be optimized according to

current traffic conditions.

Phase sequence means to select which phase as the following phase to switch

into; it is also a common element to be optimized in the traffic light optimization

problem.

Offset is the time difference between the green phases of adjacent intersections

for a smooth flow of traffic at multiple intersections, which is also defined as a

green wave. Definitely, the offset adjustment should take the possible existence of

vehicle queues into account.

The above four factors are common optimization criteria in the traffic light

control problem. Taking these issues of optimization into consideration, there are

currently many traffic light control strategies that vary in complexity. We can

8
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categorize them in two aspects [75] [11], as shown in Table 1.1.

Table 1.1: Type of Traffic Light Control Strategy

Control Scope

Control Logic Isolated Arterial Network

Intersection Coordination Control

Fixed-time X X X

Actuated X X X

Adaptive X X X

From the different structures of traffic scenarios, the control strategies can

be classified into isolated intersection control, arterial coordination control, and

network control.

Isolated intersection control means to control the traffic lights at a single inter-

section, taking into consideration local traffic conditions, such as the traffic vol-

ume, waiting time, occupancy, vehicle speed, and so on. An intersection consists

of a number of directions, and each direction has one or more lanes for vehicles

to move in. The common available movements include going forward, turning

right, and turning left, although some of them are not considered in some con-

trol strategies. Based on all of the permitted movements, the number of phases

can be determined, which constitutes all possible optimization elements together

with cycle time and split. The offset is not taken into account in the control of a

single intersection. The common performance measurement includes maximum

intersection throughput and the minimum average delay for vehicles.

9
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Arterial coordination control means that this control strategy is implemented

in multiple adjacent intersections in the same direction on the road. The possible

available movements and number of phases are similar to traffic light control in

an isolated intersection. Since this type of control considers coordination between

two adjacent intersections, the offset adjustment cannot usually be ignored. The

common measurement of performance includes maximum intersection through-

put, minimum average delay for vehicles, and minimum number of vehicle stops.

Here, the optimization on the number of stops is aimed at trying to increase the

possibility of forming a green wave for traffic flow.

Network control means that this control strategy is used in a traffic network

consisting of multiple intercrossing roads. It is an extension of arterial coordina-

tion control because of the intercrossing lanes. The possible available movements,

number of phases, optimization elements, and performance measurement are sim-

ilar to traffic light control in arterial coordination control.

On the other hand, from different control logic, traffic light control strategies

can be grouped into three categories: fixed-time control, actuated control, and

adaptive control.

Fixed-time control is currently the most commonly implemented control strat-

egy in the real world. A large amount of historical traffic data needs to be collected

and recorded, and then used to derive some traffic patterns based on different ge-

ographic locations of intersections, different time periods (e.g., peak hours), and

10
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different weather conditions (e.g., rain). Based on these traffic patterns, fixed val-

ues of cycle time, and split and phase sequences can be determined using some

optimization methods.

Hence, fixed-time control cannot deal well with a situation in which there are

fluctuations in traffic flow, whereby the volume of traffic may change significantly

and dynamically from time to time throughout the day. It is only applicable in sta-

ble traffic conditions. Under such conditions, it can achieve a better performance

than the other two types of control methods due to the small computation time.

Actuated control is a traffic response control that can handle real-time traffic

conditions. It uses advanced surveillance technologies to collect real-time traffic

data, and then uses the information to design a control strategy to schedule the

traffic lights.

The most common optimization factors are cycle time, split, and offset, es-

pecially the split adjustment. Usually, actuated control makes control decisions

about the duration of green lights under the constraint of a minimum green dura-

tion and a maximum green duration. Actuated control can in fact be treated as an

intermediate solution between fixed-time control and adaptive control [9].

Obviously, actuated control methods perform much better than fixed-time con-

trol, especially in fluctuating traffic conditions. However, actuated control does

not optimize the phase sequence, which is also a key factor in solving some cases.

Take, for instance, one certain case in which some phases are rather busy with
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traffic and some phases have fewer or even no vehicles. In actuated control, each

phase has a minimum length for green lights such that a number of green lights

will be wasted. Furthermore, actuated control does not take traffic conditions

in other lanes into account. This leads to less effective performance, especially in

heavy traffic conditions. In addition, unsolved problems, such as the-early-return-

to-green [88], may result in unnecessary stops for vehicles.

Adaptive control, similar to actuated control, is also a strategy for responding

to demands from traffic in real time. It is an improvement to actuated control, since

it can not only deal with the cycle time, split, offset (optional and only applicable

in multiple intersections control) optimization, but also handle the phase sequence

problem, thereby totally avoiding the certain cases which would occur in actuated

control. However, it is very difficult to achieve a truly adaptive traffic light control

because of the dynamic, discrete, and unpredictable characteristics of a traffic

network.

1.4 Contributions of the Thesis

We study how to design adaptive traffic light control approaches in a WSN-based

ITS to relieve traffic congestion, meanwhile achieving high performance in terms

of throughput, average delay, and average number of stops. In this section, we

first briefly discuss the limitations of previous works on traffic light control. We

then describe the adaptive traffic light control approaches proposed by us for iso-
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lated intersections and multiple intersections, respectively. These approaches can

overcome the limitations of previous solutions and achieve higher performance.

Although a large number of traffic light control approaches have been pro-

posed for isolated intersections, most of them [67], [17], [14], [81], [63],

[64] do not deal with the light sequence adjustment when scheduling traffic lights.

Light sequence adjustment can reduce average delay and improve throughput, es-

pecially in traffic fluctuation conditions. Most traffic light control approaches use

fixed sequences of traffic lights with optimization on the lengths of the lights.

Furthermore, they usually take minimum average waiting time and the number of

stopped vehicles as objectives, while failing to consider throughput. In addition,

many of the approaches [77], [79], [10], [23], [14], [83], [84] employ artificial

intelligence techniques, such as neural network, learning and genetic algorithm,

to optimize the decision making of the traffic light control. Due to the number of

iterations, more computation time is incurred. In addition, many existing works

pay little attention to the characteristics of traffic flow, especially when dealing

with the discontinuous traffic flow. They do not consider solutions for special

traffic circumstances, such as ambulances, fire engines, or traffic accidents.

The existing adaptive traffic light control approaches proposed for multiple

intersections are yet not truly adaptive due to the difficulties with coordination

control between adjacent intersections, combined with shortcomings in existing

work on isolated intersections. In the past decade, a number of well known online
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traffic light control optimization systems have been developed, such as SCOOT

[45] [71], [31], SCAT [55], [73], DYPIC [70], OPAC [38], RHODES [58],

UTOPIA [32], [33], and PRODYN [44]. Of these, SCOOT and SCAT are the two

that are most often implemented in the real world to improve traffic scheduling

efficiency and alleviate traffic congestion. However, SCOOT is limited to fixed

green light sequences of each intersection, rather than dynamically adjusting the

green lights sequences. SCAT provides a number of pre-defined control plans

covering various traffic conditions, but it is not able to optimize the traffic opti-

mization parameters values online.

Taking advantage of real-time traffic data that is detected and transmitted using

WSNs, the proposed approaches can dynamically control traffic lights so that the

green lights sequences and durations can be adapted to a dynamically changing

traffic environment. At the same time, they can achieve more attractive perfor-

mance in terms of network throughput, average waiting time, and average number

of stops compared with previous works. This thesis makes the following specific

contributions.

We propose an adaptive traffic light control scheme applied to an isolated in-

tersection, with a wireless sensor network to detect and transmit real-time traffic

data, so that the proposed approach outperforms the previous solutions in terms of

throughput and average delay. Our approach has the following advantages. First,

we define twelve green light configurations in Fig. 3.2, named as case, under the
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constraints of a given intersection model and subject to traffic safety rules. Sec-

ond, hunger level is defined to guarantee a fairness for each case, which refers

to a ranking expressed as a number that represents how many times a green light

has governed in the twelve cases. Third, using the real-time traffic data collected,

we can identify discontinuous traffic flow. In this circumstance, a blank, which

means a subinterval that is not occupied by any vehicle, is taken into account for

decision making. Fourth, the special circumstances can also be detected through

the different types of vehicles, such as ambulances, fire engines, or some vehicles

with special priority. We also take them into consideration when making control

decisions. We conduct simulations to evaluate the performance compared with

previous solutions. Our extensive simulation results demonstrate that our scheme

produces much higher throughput and lower average waiting time for vehicles,

compared with the optimal fixed-time traffic light control approach and an actu-

ated traffic light control approach [81].

We propose an adaptive traffic light control scheme applied to a traffic net-

work consisting of multiple intercrossing intersections, with a wireless sensor

network that detects and provides real-time traffic data, such as traffic volume,

waiting time, number of stops, and characteristics of traffic flow. This work is

extended from the adaptive traffic light control for a single intersection. The pro-

posed scheme can outperform the previous approaches in terms of throughput,

average delay, and average number of stops because it has the following advan-
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tages. Similar to the single intersection control, we use 12 cases as the candidate

to compete for the green lights under the constraint of maximum waiting time and

the upper bound of the hunger level. The blank circumstance and special circum-

stances have also been considered. In each intersection, the case with the greatest

value would obtain green lights. Subsequently, the optimal green light length

can be calculated from the local traffic data and traffic conditions of neighboring

intersections. We conduct simulations to evaluate our scheme’s performance com-

pared with previous solutions. Our extensive simulation results demonstrate that

our scheme produces much higher throughput, lower average waiting time for ve-

hicles, and fewer average number of stops, compared with the optimal fixed-time

control approach, an actuated control approach, and an adaptive fuzzy control

approach [52].

Last, but not least, we apply the proposed approaches into our WSN-based

ITS platform iSensNet, and define several traffic scenarios to evaluate the perfor-

mance. A demonstration [5] with different types of traffic conditions shows that

our approach is effective and can be practical in our platform.

1.5 Outline of the Thesis

The remainder of this report is organized as follows. In Chapter 2, we briefly dis-

cuss the previous works on traffic light control. In Chapter 3, we present an adap-

tive traffic light control scheme applied to an isolated intersection. An adaptive
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traffic light control scheme applied to multiple intersections is described in Chap-

ter 4. We implement our proposed approaches to our WSN-based ITS project

iSensNet in Chapter 5. In Chapter 6, we present our conclusions and discuss

future works.
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Chapter 2

Background and Literature Review

In the past decade, the optimization of traffic light controls in intelligent trans-

portation system environments has attracted a great deal of attention. In this chap-

ter, we review existing works according to the problems addressed. Since our

research is focused on adaptive traffic light control, which needs to use traffic data

when making scheduling decisions, we first briefly describe works on obtaining

traffic data in Section 2.1. Then, in Section 2.2, we provide a detailed survey of

existing approaches to controlling traffic lights in both an isolated intersection and

multiple intersections.

Section 2.2.1 introduces the existing approaches for an isolated intersection,

and Section 2.2.2 discusses the previous approaches for multiple intersections.
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2.1 Collecting Real-time Traffic Data

The term traffic data, also called traffic flow data, means relative data on the flow

of vehicles moving on a road. It includes speed, density, traffic volume, and so

forth. In the problem of controlling traffic lights, the traffic lights controller sched-

ules the lights so that, by outputting different signals, the traffic flow in different

roads alternates in crossing the intersection. To achieve effective scheduling, the

scheduling should be based on current traffic information. If the traffic light con-

troller does not have current traffic data, it would not realize the traffic conditions

and the demand for green lights, and therefore be unable to schedule the lights

properly. Hence, traffic data is a vital issue in the problem of controlling traffic

lights.

With the growing development of ITS, real-time traffic data is increasingly

required. In the past, manual counts were the most popular method. Several

observers use some equipment, such as a mechanical counting board and elec-

tronic counting board, to count the number of passing vehicles, their correspond-

ing types, and even the number of pedestrians. In addition, real-time traffic data

estimation methods have also come into wide use in the past decade. In such

methods, a large amount of historical traffic data is collected and used to estimate

current traffic conditions [8] [51], such as in the Average Annual Daily Traf-

fic method (AADT) and the Vehicle Miles Traveled method (VMT). Using these
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methods, it is possible to obtain an approximate idea of current traffic conditions

to alleviate traffic congestion.

In the past decade, with the rapid development of technologies, a number of

collection methods have been developed to obtain the real-time traffic information

[1], [69] [8], [51], [49], [50], [4], such as inductive loops detection, video

recognition detection, microwave radar, ultrasonic, and so forth.

Some of these collection methods locate sensors in the road or along the side

of the road to detect traffic conditions and calculate real-time traffic information,

and then transmit such data to a control center through cables. We call them wire-

based collection methods, which include inductive loops detection, video recog-

nition detection, and so forth. Others use wireless technologies to detect traffic

information. These are called wireless-based collection methods, and include pas-

sive infrared, active infrared, microwave radar, ultrasonic, passive acoustics, and

so forth.

Hence, we divide the real-time traffic data collection methods into two cate-

gories and give a briefly description of these two types of collection methods in

section 2.1.1 and section 2.1.2, respectively.

2.1.1 Wire-based Methods

Wire-based methods represent those collection methods that transmit the detected

traffic data through wired technologies, including inductive loops detection, video
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recognition detection, microwave radar. A brief description of these typical wire-

based collection methods is given below.

Inductive loops detection is the most conventional method used in ITS. The

loops can be placed in the roadbed [1] or in roadways [51] to create a magnetic

field for detecting. When the vehicles pass these loops, the magnetic field is mea-

sured to calculate real-time traffic information, such as the number of vehicles,

vehicle speed, vehicle length, vehicle weight, even the distance between two adja-

cent vehicles. This detection method is insensitive to bad weather conditions, such

as rain, fog, snow, and so forth. It also can provide better accuracy in counting

data compared with other techniques [8]. However, there exist some drawbacks

to this detection method. The sensing coverage is limited because of the fixed-

location installation. In addition, a pavement equipped with loops is much more

easily damaged than a common pavement. Furthermore, it is expensive to imple-

ment and maintain these loops, as they are weak and cannot sustain heavy vehicles

[8], [51]. Moreover, the accuracy of detection is reduced when a large variety of

vehicles is involved.

Video recognition detection also is a popular method used worldwide. Rather

than installing sensors directly in the roadbed, video cameras are usually installed

on poles to keep watch on road traffic conditions [1]. Initially, the in-built pro-

cessor should input the location of these cameras so that it can process the images

that are recorded. When the vehicles pass by these cameras, the video that is
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recorded is processed to analyze whether there have been any changes to the im-

age. The number of vehicles, vehicle types, vehicle speeds, lane occupancies, and

so forth, are then calculated. This detection method can monitor multiple lanes

simultaneously. In addition, it is easy to extend the areas of detection by adding

video cameras. However, there are some drawbacks to this method. It is sensitive

to different weather conditions, especially rain and fog [51]; and it is also easily

affected by the day/night transition. In addition, street lights are required when

detecting traffic data in the evening.

Microwave radar detection uses radar-sensing technologies to detect traffic

conditions using the sensors installed over the roadway. These microwave radar

sensors transmit energy to the area of detection through an antenna. When ve-

hicles pass by, the transmitted energy is reflected back to determine such traffic

data as the number of vehicles, vehicle speeds, and vehicle classifications. This

method of detection is insensitive to different weather conditions. Furthermore,

multiple lanes can be detected simultaneously without any interference. However,

there are also drawbacks to this detection method. For example, the continuous

wave Doppler radar, which is one of the most popular sensors used in this method,

cannot detect stopped vehicles.
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2.1.2 Wireless-based Methods

Wireless-based methods represent methods of collection that use some sensor

nodes to detect real-time traffic data, which is then transmitted through wireless

technologies. They include passive infrared detection, active infrared detection,

ultrasonic detection, passive acoustic detection. Below, we briefly introduce these

typical methods of collection.

Passive infrared detection uses a passive infrared sensor (PIR sensor) to detect

traffic conditions by measuring the infrared (IR) energy radiating from the area of

detection. The PIR sensors are usually installed over or adjacent to the roadway.

The number of vehicles, the presence of vehicles, vehicle speeds, vehicle types,

and occupancies can be detected through this method. However, there are some

drawbacks to this detection method. The sensing coverage is limited because of

the fixed-location installation. Furthermore, to the sensors have difficulty detect-

ing vehicles during poor weather conditions, such as rain, fog, and snow.

Active infrared detection, which uses a laser radar, illuminates the areas of

detection, transmits two beams [8], and then determines the real-time traffic data

based on the IR energy that is received. These sensors are usually installed over

the roadway. The number of vehicles, presence of vehicles, vehicle speeds, vehi-

cle lengths, and queue lengths can be detected through this method. This detection

method can detect multiple lanes simultaneously without any interference. How-
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ever, this detection method has some drawbacks. It has difficulty detecting vehi-

cles under conditions of low visibility, such as fog. Furthermore, it is expensive

to install and maintain.

In ultrasonic detection, sound waves are transmitted to detect real-time traffic

data by measuring the time it takes for the signs to return. Ultrasonic sensors

are installed over the roadway. Traffic volumes, the presence of vehicles, and

occupancy data can be calculated by this method. This method of detection can

monitor multiple lanes simultaneously. In addition, some vehicles that exceed

height limits can be detected. However, there are some drawbacks to this detection

method. When detecting vehicles, it is easily affected by extreme temperatures or

bad weather conditions, such as rain, fog, and snow.

Similar to the ultrasonic detection method, passive acoustic detection also in-

volves the emitting of sound waves to detect real-time traffic data by means of

measuring the time delay of returning signals. These acoustic sensors are installed

along the roadside. Traffic volumes, the presence of vehicles, vehicle speeds, ve-

hicle classifications, and occupancy data can be calculated by this method. This

method of detection can monitor multiple lanes simultaneously. In addition, it

is insensitive to some weather conditions, such as the rain. However, this detec-

tion method has some drawbacks. It is sensitive to extreme temperatures or bad

weather conditions when detecting vehicles, such as low temperatures and snow.

Table 2.1 shows the type of traffic data detected by the different collection
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Table 2.1: Types of Traffic Data by Detection Method

Sensor Type

Traffic Data Comm.

Traffic Speed Presence Occu- Classi- Tech.

Volume pancy fication

Inductive Loops Y Y Y Y Y W

Video Image Y Y Y Y Y W

Microwave Radar Y Y Y Y Y W

Passive Infrared Y Y Y Y Y WL

Active Infrared Y Y N N Y WL

Ultrasonic Y N Y N N WL

Passive Acoustic Y Y Y Y Y WL

methods [69], [8], [51], [49], [50]. Y means available, N means not available.

Some data can be available when some specified requirements are met, especially

speed detection and classification detection data.

Table 2.2 presents a summary of environmental factors that affect the perfor-

mance of different detection methods [25]. Y means can be affected; N means

cannot be affected. In both tables, W means wire, while WL means wireless.

2.2 Intelligent Traffic Light Control

As mentioned before, actuated coordination control and adaptive control are both

traffic-responsive strategies that design an optimization algorithm as a response

to current traffic demands in order to improve operational efficiency and enhance

traffic safety. Regarding adaptive traffic light control, it is also worth referring
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Table 2.2: Environmental Factors that Affect the Performance of Detection Meth-

ods

Sensor Type

Environmental Factors Comm.

Rain Fog Snow Tempe- Wind Light- High tra- Tech.

rature ing ffic flow

Inductive Loops N N N Y N N N W

Video Image Y Y Y Y Y Y N W

Microwave Radar N N N N N N Y W

Passive Infrared Y Y Y N N N N WL

Active Infrared Y Y Y N N N N WL

Ultrasonic Y Y Y N N N N WL

Passive Acoustic N N N Y N N Y WL

to some actuated coordination approaches because of the issue of optimization:

the length of the green lights. Furthermore, a number of existing works have not

identified these two types of control; rather, they use the term adaptive control to

represent both actuated coordination and adaptive control. Not much work has

been done on true adaptive traffic light control. Hence, we review the existing

studies on actuated coordination and adaptive traffic light control together, under

a common term: intelligent traffic light control.

2.2.1 Intelligent Traffic Light Control in an Isolated Intersec-

tion

Intelligent traffic light control in a single intersection refers to the application of

an actuated or adaptive traffic light control method in one intersection to control
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the local traffic flow in a dynamic traffic environment. The common objectives

include maximum intersection throughput, minimum average delay, and a mini-

mum number of stopped vehicles. A number of studies have focused on this topic

with the aim of optimizing the sequence of green lights (phase sequence), or the

length of the green lights (phase length), or both. Many researchers have tried

to determine whether several techniques can be applied in this kind of problem,

and have produced studies on how to apply them, such as Fuzzy Logic Control,

Rules, Neural Network, Learning, Genetic Algorithm, and so forth. We catego-

rize these techniques based on their logic. For example, fuzzy logic control can be

grouped together with rules, and neural network can accompany learning meth-

ods. We then review existing approaches to intelligent traffic light control in a

single intersection.

(1). Intelligent Traffic Light Control in an isolated intersection Using Fuzzy

Logic and Rules

In the past decade, there have been several studies applying fuzzy logic to traffic

light control to optimize traffic conditions in an isolated intersection [91], [63],

[81], [67], [60]. A common method of implementation is to first use some fuzzy

membership functions to fuzzify the traffic input, such as the vehicle arrivals in

each lane and the length of the queue in each lane, to cater to the fuzzy rules

format. After that, reasonable and corresponding fuzzy rules are designed to de-

termine the fuzzy output results, based on the researchers’ own knowledge and
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experience. The fuzzy output is then defuzzified to crisp values as the output

decisions.

In this procedure, membership function should be a significant factor in the

performance of applications of fuzzy logic. Different fuzzy membership functions

have different performances. The most widely used membership is Mamdani’s

MaxMin inference method. In the following section, unless otherwise specified,

the membership function used in existing work refers to this Maxmin method.

Fuzzy logic was first introduced by Zadeh [89] [90], and Pappis and Mam-

dani [67] were the pioneers in applying it to traffic control. They considered

an unsaturated isolated intersection with a simple one-way traffic control with-

out permission to turn. The inputted traffic data were random vehicle arrivals in

each lane. Their paper only focused on optimizing the current length of the exten-

sion of green light in response to current traffic conditions, which can be regarded

as actuated control. Degree of confidence was defined to measure the respective

suitability of several possible durations of extension for the current green light,

and the duration of the extension with the highest degree of confidence would be

selected.

Another example of an application, proposed by Bisset and Kelsey [17] [14]

simulated a two-phase intersection with going through, right turn, and left turn

movements. The objective was to minimize the average waiting time of vehicles.

In these two papers, the length of the current cycle time, the traffic volume in
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both lanes with a green light and lanes with a red light are treated as traffic input.

Appropriate fuzzy rules were then designed to produce the output. The approaches

proposed in these two papers perform much better than conventional approaches,

especially in heavy traffic.

A two-stage fuzzy logic algorithm is presented in [81]. A fuzzy logic con-

troller was designed for a four-direction isolated intersection with going through

and left turn movements. The inputted traffic data, detected by intrusive sensors

placed upstream in each direction, are traffic volumes and the queue lengths of

each lane. These data are used to determine whether to extend or terminate the

current green light. In the first stage, the detected traffic data are used to estimate

the relative traffic intensities in the conflict lanes. In the second stage, these in-

tensities can be used to produce the decision on whether the current green light

should be extended or terminated. The performance metrics contain average ve-

hicle delay and the percentage of stopped vehicles, and are compared with an

actuated algorithm. The simulation results show that the proposed algorithm can

achieve a lower average delay time for vehicles, while the percentage of stopped

vehicles remains unchanged.

Using fuzzy logic control to control the traffic lights in an isolated intersection

has many advantages. One obvious benefit is that minimal computation resources

are needed compared with other approaches to adaptive traffic light control [88],

so that the computation time requirements are likewise minimal. Moreover, the
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current state of the system can be better represented since one fuzzy input can be

fuzzified by membership functions to a different fuzzy set with a corresponding

degree of fuzziness. However, similar to rule-based and knowledge-based ap-

proaches, the design of the fuzzy rules relies on expert knowledge, so that it is

difficult to obtain the optimal rules.

(2). Intelligent Traffic Light Control in an isolated intersection Using a Neu-

ral Network and Learning

Both the applications of neural network and reinforcement learning use some

learning methods to train input data to obtain optimal output. However, many

differences between them still exist. A neural network can be treated as some

kind of supervised learning method, which must have a set of training data and

expected output values. The weight of the neural network should be optimized to

reduce the difference between the output value and the expected value as much as

possible. On the other hand, reinforcement learning can be treated as some kind

of machine learning [59]. In reinforcement learning, different actions of an agent

will have a different influence on the surrounding environment. An action with a

positive impact on the environment will be awarded with a positive reward, while

an action resulting in a negative impact will be awarded with a negative reward

[88].

Some existing works have applied reinforcement learning and neural networks

to control the traffic lights in an isolated intersection, such as SARSA (State Ac-
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tion Reward State Action) [77] [79], and Q-Learning [10].

The first known attempt to apply reinforcement learning to traffic light control

problems was that by Thorpe [77] [79]. A single intersection with 4 × 4 traffic

lights was considered. There are two phases, a north-south permission and an east-

west permission. Thorpe used a neural network to predict the Q-values for each

possible decision, based on the total waiting time of all vehicles and the time since

the lights last changed. This method is capable of dealing with a huge number of

states, where the learning time may be quite large. Compared with a fixed control

and a rule-based control in realistic simulations with varying speeds, this method

presents near optimal performance.

Abdulhai et al. proposed a truly adaptive traffic light control strategy using

Q-Learning to a four-direction and two-lane intersection in [10]. Only the going

forward movement was permitted to vehicles. The traffic data, vehicle arrivals,

are defined as individual poison processes and the average arrival rates are pre-

defined. The objective is to minimize the average delay for vehicles. Based on

the only existing two phases, they considered a fixed cycle time, so that they only

needed to decide whether to switch the green light at each time. The only opti-

mization is the duration of the green light. The queue lengths of each lane and

the elapsed time since the last change in phase are treated as the state variables,

and the delay accumulated from two phases is treated as the reward. A technique

called Cerebellar Model Articulation Controller (CMAC) is proposed to store and
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generalize the value function of the learned action. Compared with a fixed-time

control, this method can achieve a much lower average delay of more than 50% in

variable traffic conditions.

(3). Intelligent Traffic Light Control in an isolated intersection Using a Ge-

netic Algorithm

Several existing studies have applied a genetic algorithm in controlling the traffic

lights of an isolated intersection, such as [23].

The genetic algorithm, first introduced by Goldberg [39], has been adopted

in problems of optimizing the control of traffic lights of single intersections in

several studies in the past decade [23].

Chen and Shi applied a real-coded genetic algorithm (RGA) to an isolated

two-way intersection with multiple lanes in [23]. Going through, right turns, and

left turns are permitted, and form four phases. This paper designed a traffic flow

model and then used RGA to optimize the green times and cycle time in order to

minimize the throughput.

(4). Intelligent Traffic Light Control in an isolated intersection Using Hybrid

Techniques

There are also several studies on applying hybrid techniques to controlling traffic

lights in an isolated intersection, such as a combination of fuzzy logic and learning

[16], fuzzy logic and a genetic algorithm [84] [24] [53], and fuzzy logic, a genetic
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algorithm, and learning [83].

Bingham considered an isolated intersection with two one-way streets in [16].

The inputted traffic data are the total traffic volume in the lane with the green light

and in the other lanes.

The author proposed a Generalized Approximate Reasoning-based Intelligent

Control (GARIC) developed by Berenji and Khedkar [14], which can essen-

tially be treated as an Actor Critic Reinforcement Learning (ACRL) method [76].

GARIC includes two components: an action selection network (ASN) and an ac-

tion evaluation network (AEN).

Based on the current traffic environment, ASN, which was designed in the

form of a fuzzy logic controller, proposes several fuzzy rules to generate contin-

uous action candidates to represent the possible duration of the extension of the

current green light. Then, AEN, which was designed in form of a fully connected

feed-forward neural network, computes the value of each state. The candidate ac-

tion with the greatest value can be selected as the decision. If it can achieve a pos-

itive impact on the environment, this action would gain a corresponding reward.

Meanwhile, a TD error was defined to update the parameters of the fuzzy mem-

bership functions of ASN and the weights of AEN. The results of the simulation

showed that in conditions of heavy traffic, the proposed method can outperform

the original fuzzy logic control.

Wei et al. [83] [84] proposed a traffic light control method based on fuzzy
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logic and neuro-fuzzy and multi-objective genetic algorithms (MOGA) for a four-

direction isolated intersection with going through and left turn movements. The

optimization criteria are the length of the green light and the sequence of green

lights, and the performance metrics include vehicle delay and the percentage of

stopped vehicles. A fuzzy logic controller was designed to determine whether to

extend or terminate the current green phase and select the sequences of phases.

A method based on neuro-fuzziness is used to predict traffic parameters in the

fuzzy logic controller. Several optimizing sets of parameters for the fuzzy logic

controller can be searched through (MOGA). Through simulation, this proposed

method can achieve a better performance than a traffic-actuated control.

2.2.2 Intelligent Traffic Light Control in Multiple Intersections

Intelligent traffic light control in multiple intersections refers to the application

of an actuated or adaptive traffic light control method in multiple interconnected

intersections to control the flow of traffic in a dynamic traffic environment. It

includes arterial coordination control and traffic network control. Different from

traffic light control in an isolated intersection, the application in multiple intersec-

tions needs to take into account the influence from neighboring intersections. As

mentioned before, different from an isolated intersection application, an additional

optimization parameter is the offset adjustment, which refers to the relationship

between adjacent intersections. The common performance measurement includes
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the maximum intersection throughput, the minimum average delay for vehicles,

and the minimum number of vehicle stops. Here, the optimization on a number of

stops is an attempt to increase the possibility of forming a green wave for traffic

flow.

As mentioned before, a number of well known traffic light control systems

have been developed, such as SCOOT [45] [71], [31], SCAT [55], [73],

DYPIC [70], OPAC [38], RHODES [58], UTOPIA [32], [33], and PRODYN [44].

We will give a brief introduction to the two most widely deployed systems, SCOOT

and SCAT. Man studies have focused on this topic, using some techniques to op-

timize the green light sequence (phase sequence), or green light length (phase

length), or both. Similarly, we group these studies by the techniques they applied,

such as Fuzzy Logic Control, Neural Network, Genetic Algorithm, Petri-Net, and

so forth. We when review existing approaches to intelligent traffic light control in

multiple intersections.

(A). SCOOT

The Split Cycle, Offset Optimization Technique (SCOOT) is a centralized traffic

response system for coordinating traffic lights in urban areas as an automatic re-

sponse to fluctuations in the flow of traffic. SCOOT, which was first developed

by Hunt et al. [45] [46], can essentially be treated as a TRANSYT-7F traffic

model with an optimization algorithm for online application [19] [18] [15]. With
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the development of advanced technologies, some new features have been added,

extending to several versions. SCOOT has been widely applied in over 150 cities

in the United Kingdom and elsewhere.

SCOOT uses embedded sensors to detect real-time traffic data, and also pre-

dicts the vehicle arrival pattern, vehicle delay, and vehicle stops. Based on this in-

formation, the system makes small changes to the optimization parameters, such

as cycle length, split, and offset. The intersections involved are grouped in sev-

eral subareas, and the traffic lights in each subarea must use a common cycle

length. Under the constraints of a minimum and a maximum cycle length, the cy-

cle length adjustment keeps a maximum degree of saturation of 90% at the most

saturated intersection. Regarding split optimization, the optimizer makes a de-

cision on whether to extend or terminate the current green phase a few seconds

before the phase changes. Then, the offset optimizer assesses whether the per-

formance can be improved if the offset is altered 4 seconds earlier or later. The

split and offset alteration candidates that improve the performance of the intersec-

tion are then selected and implemented immediately. If the changes did not seem

beneficial, they are submitted to the local controllers.

(B). SCATS

The Sydney Coordinated Adaptive Traffic System (SCATS) is another widely

used system that can provide intelligent traffic plans to schedule traffic lights.
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The result is a substantial reduction in vehicle delay, particularly in peak periods.

SCATS [55] [73] was developed by Australian researchers. It can be consid-

ered an optimization control method that is between the first generation control of

UTCS and the second generation control of UTCS [9]. SCAT consists of three

types of controllers: a central controller, regional controllers, and local controllers.

The local controller, which is installed at each intersection, is responsible for

collecting traffic data from traffic detectors, processing the collected data, making

assessments of the performance of the detectors, and putting the traffic control

decisions into operation.

The regional controller, which maintains autonomous control of several local

controllers in its area, is the heart of SCATS. It is responsible for analyzing the

information that has been preprocessed by the local controller, and implementing

the corresponding signals.

The central controller, which focuses on monitoring the entire system, is re-

sponsible for providing system management support, data backups, fault analysis,

and system inventory facilities [88].

Both SCOOT and SCATS use detected real-time traffic data to make con-

trol decisions in a whole traffic network, with the purpose of reducing delay,

decreasing stops, and so on. They have some common features, such as cycle

length, phase duration, phase sequence, and an offset that is fixed within short

time periods and updated every few minutes to avoid disturbing normal opera-
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tions. However, one critical difference between the two systems is that, unlike

SCOOT, SCATS does not have a traffic model or a traffic light control plan opti-

mizer [88]. SCAT pre-specifies several traffic light control plans, and selects the

best control decision based on real-time traffic conditions [9].

(1). Intelligent Traffic Light Control in Multiple Intersections Using Fuzzy

Logic and Rules

There are several studies on applying fuzzy logic or rule-based approaches to con-

trolling traffic lights in multiple intersections [61] [26] [27] [52] [28], [92] [82].

Nakatsuyama et al. considered two one-way adjacent intersections on an ar-

terial road in [61]. The authors applied fuzzy logic to model the control and

developed corresponding reasonable fuzzy control rules, to determine whether to

extend or terminate the current green lights for the downstream intersection based

on the upstream traffic conditions.

Chiu and Chand [26], [27] pioneered the application of fuzzy logic to multiple

intersections in a network. Their papers considered an intersection with two-way

streets where only the going through movement was permitted. Fuzzy rules were

used to adjust cycle time, phase split, and offset parameters independently, based

on local traffic conditions. Adjustments to the cycle length and splits were made

based on the degree of saturation of each direction of each intersection. These

adjustments can be tested through simulations to significantly reduce the average

delay. The offset is adjusted by the fuzzy sets, which were designed to determine

38



CHAPTER 2.

the degrees of saturation in order to coordinate the lights in the adjacent intersec-

tion in such a way as to minimize stops in the dominant direction.

Lee et al. [52] proposed a traffic fuzzy controller for a set of eight-phase

intersections that permit going forward and left turn movements. The controller

installed two sensors at each lane to detect real-time traffic data; and then, based

on the calculated information, to determine both the phase sequence and phase

length by an optimization method. The controller consists of three modules with

an independent fuzzy rules base: the next phase module, the stop module, and the

decision module. The next phase module assesses the degree of urgency of each

phase, and then chooses the most urgent phase as the next phase candidate. The

stop module evaluates the degree to which the green phase can stop. The decision

module makes a decision on whether to switch to the next phase based on the

next phase module and the stop module. The controller can periodically make

such a decision. The simulation results show that the proposed fuzzy controller

can gain obtain better performance by reducing the average delay, particularly in

conditions of fluctuating and heavy traffic.

There are also some studies on rule-based and knowledge-based intelligent

traffic light control systems [54] [65] [34]. Owen and Stallard [65] described a

rule-based scheduling algorithm to control the lights of a traffic network in a dis-

tributed way, called the Generalized Adaptive Signal Control Algorithm Project

(GASCAP). GASCAP consists of three key parts: a queue estimation model, a
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set of rules for controlling uncongested traffic, and a fixed time control algorithm

for congested traffic. The queue estimation algorithm uses an upstream detec-

tor to calculate the arrival of vehicles, and then to estimate the volume of traffic

approaching an intersection and the traffic volume in the queue. Regarding the

uncongested traffic control, which can be treated as the major difference between

GASCAP and other traffic control optimization approaches, GASCAP has five

sets of rules. Based on the estimated data, each of these sets can calculate priority

values related to green light demand, coordinated progression, saturation urgency,

spillback case, and minimum green light durations, respectively. The simulation

results indicated that GASCAP significantly reduced the delay and increased the

throughput for each of these networks.

(2). Intelligent Traffic Light Control in Multiple Intersections Using a Neural

Network and Learning

In the past, some studies, such as [77] [78], applied reinforcement learning and a

neural network to control the traffic lights in multiple intersections.

Thorpe [77], [78] conducted one of the pioneering studies on controlling

traffic lights using reinforcement learning. The authors considered a simple traffic

network with 16 one-lane four-direction intersections. Going forward and right

turn movements were permitted, resulting in the existence of only two phases.

SARSA (State Action Reward State Action) [76] was used to represent the cur-

rent state of traffic and the train intersection controller. The performance of four
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different representations of the current state of traffic was analyzed using two re-

inforcement methods. In simulations, the proposed method performed better at

minimizing total traffic travel time, individual vehicle travel times, and vehicle

wait times compared with a fixed-time traffic light control.

(3). Intelligent Traffic Light Control in Multiple Intersections Using a Ge-

netic Algorithm

Several studies, such as [36] [40] [41], have applied a genetic algorithm to control

traffic lights in multiple intersections.

The first attempt to apply a GA to control traffic lights was by Foy et al. in

[36]. That study considered a traffic network with four intersections with the pur-

pose of minimizing delay. The flow of traffic was assumed to be constant. The

cycle time, split, and offset were three optimization criteria. The authors designed

a traffic light timing strategy based on the parallel, global, and robust search char-

acteristics of GAs. The results of the simulation showed that the proposed method

could have a better performance in reducing delay.

Hadi and Wallace [40] used genetic algorithms in combination with the TRAN

SYT-7F [7] to optimize all four basic elements in designing a traffic light control

strategy: phase sequences, cycle length, split, and offset. The main purpose of this

GA application is to optimize the phase sequences, while the other three elements

can be optimized by TRANSYT-7F. The authors proposed two implementations.

In the first method, the GA application and the TRANSYT-7F optimization were
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implemented concurrently in order to obtain an optimal solution. In the second

method, the GA was used to optimize cycle length, phase sequences, and offsets;

and then TRANSTY-7F was used to adjust the resulting green light duration. The

simulation results showed that both methods could optimize the phase sequence

and phase length. However, the first method produced a better performance, while

also requiring a longer computation time.

(4). Intelligent Traffic Light Control in Multiple Intersections Using Hybrid

Techniques

There have also been several studies on applying hybrid techniques to controlling

traffic lights in multiple intersections, such as a combination of fuzzy logic, learn-

ing, and an evolution algorithm [30] [29] [74], and fuzzy logic, a neural network,

and SPSA [75].

Choy et al. [30], [29], [74] proposed a distributed, cooperative approach to

managing the real-time traffic in an arterial network by using a hybrid multi-agent

system involving an effective traffic light control strategy. The multi-agent system

architecture is designed in a hierarchical way, consisting of three layers listed

from lowest to highest, intersection controller agents (ICA), zone controller agents

(ZCA), and a regional controller agent (RCA). ICA is responsible for controlling

an isolated intersection in the traffic network; ZCA is responsible for controlling

several ICAs; and RCA is responsible for controlling all of the ZCAs.

The large-scale traffic light control problem is divided into various sub-problems,
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each of which can be solved by the respective individual intelligence agents from

different layers. Each individual agent has a fuzzy-neural decision making module

(FNDM), which can make control decision by mediating lower-level agents and

their respective higher-level agents. FNDM consists of five layers to represent: in

between the layers, the fuzzification, implication, consequent, and defuzzification

processes. The fuzzy input data includes occupancy, traffic flow and changing

rate of the traffic flow, and intersection cooperative factors recommended by cor-

responding ICAs. All of these are detected in real-time by inductive loops. The

Gaussian membership function is used to fuzzify and transfer them to the third

layer to fire the fuzzy rules. In the fourth layer, the fuzzy output is presented, and

then defuzzified as the traffic light control strategy in the fifth layer.

Furthermore, this system can achieve online adjustment in response to a dy-

namic traffic environment. This multistage online learning process includes three

steps: reinforcement learning, weight adjustment, and fuzzy relations adjustment.

First, the reinforcement from the environment would be back-propagated to the

RCA and then to all of the lower-level intelligent agents. Second, based on this

information, each agent proceeds to dynamically adjust the learning rate of each

neuron and subsequently to adjust the weights of the neurons in the FNDM. Fi-

nally, the reinforcement is used to dynamically adjust the fitness value of each

neuron in the FNDM. If the fitness values are smaller than some predefined val-

ues, the fuzzy relations will be updated by the evolutionary algorithm.
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The performance evaluation shows that the proposed multi-agent architecture

can reduce the total average delay by 40% and the total number of vehicle stops

by 50%.

Srinivasan et al. [75] also proposed another multi-agent system approach to

the real-time traffic light control problem in an urban traffic network. The first

multi-agent system mechanism is similar to the work in [30] [29] [74]. The sec-

ond multi-agent system was designed by integrating the simultaneous perturbation

stochastic approximation theorem (SPSA) in fuzzy neural networks (FNN). It uses

SPSA to update the weight of each neuron. The results of the simulation show that

the proposed multi-agent system can reduce the average delay of each vehicle by

78% and the average number of vehicle stops by 85%, as well as provide a sig-

nificant amount of improvement when the complexity of the simulation scenario

increases.

2.3 Summary

In this chapter, we first reviewed the existing approaches to collecting real-time

traffic data from two categories of method: wire-based and wireless-based. We

then discussed the advantages and disadvantages of all of the existing collection

methods. Next, we reviewed the existing actuated coordination and adaptive traf-

fic light control approaches, as applied in an isolated intersection and multiple

intersections, respectively. In each area of application, we also discussed the dif-
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ferent techniques used in the problem of controlling traffic lights. Furthermore,

we referred to the drawbacks to the existing works and showed that accuracy and

real-time should be the most important factors in measuring the performance of

the existing approaches.
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ATLCII: Adaptive Traffic Light

Control for an Isolated Intersection

In this chapter, we investigate the problem of adaptive traffic light control in an

isolated intersection using real-time traffic information collected by a wireless

sensor network (WSN). Existing studies have mainly focused on determining the

length of the green lights in a fixed sequence of traffic lights. We propose an

adaptive traffic light control scheme that adjusts both the sequence and length

of the traffic lights in accordance with the real-time traffic that is detected. Our

scheme considers a number of traffic factors such as traffic volume, waiting time,

vehicle density, and others, to determine the green light sequence and the optimal

green light length. The results of the simulation demonstrate that our scheme

produces much higher throughput and a lower average waiting time for vehicles

compared with the optimal fixed-time control approach and an actuated control

approach.

This chapter is organized as follows. In section 3.1, we briefly introduce the
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work. In section 3.2, we model the problem and define some notations. In section

3.3, we propose an adaptive traffic control scheme to detect traffic conditions, and

then determine the sequence and length of the green lights. In section 3.4, we

evaluate the performance of our scheme through simulations. In section 3.5, we

summarize this chapter.

3.1 Overview

Intelligent transportation system is an automatic road traffic management system

that can manage road traffic with the goal of improving traffic safety, optimizing

the speed of the flow of traffic, and minimizing the energy consumption of vehicles

running on the roads. Traffic light control system play a key role in ITS due to

their high performance in relieving traffic congestion.

Most current traffic light control systems use one of three control approaches:

fixed-time, actuated, or adaptive. In each case the overriding goal is the same, to

maximize safety, speed, and energy efficiency or minimize waiting time and the

number of vehicle stops. This is not a simple problem in a dynamically changing

traffic environment in which each traffic light system must take into account a

wide range of variables, such as the type of intersection (whether single-lane or

multiple-lane), traffic volumes, time of day, the effects on other roads, and the

involvement of pedestrian traffic.

The two main traffic control systems currently in use around the world are
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SCOOT [71] [31] and SCAT [73]. In addition, various computational intelligence

approaches have been proposed for the design and implementation of adaptive

light control systems, such as the Genetic Algorithm [23], Fuzzy Logic Control

[67] [62] [57], Neural Network [83] [16], Queuing Network [42] [43], and so on.

Most existing studies [71] [31] [73] [23] [67] [62] [57] [83] [16] [42] [43]

use a fixed sequence for controlling traffic lights, and take the minimum average

waiting time and the number of vehicle stops as objectives. However, they fail

to consider the throughput, and pay little attention to the characteristics of traffic

flow and special traffic circumstances, such as ambulances, fire engines, or traffic

accidents. Therefore, it is desirable to dynamically control traffic lights so that

the sequence of green lights is adaptive to a dynamically changing traffic environ-

ment, with the objectives of maximizing intersection throughput and minimizing

the average waiting time.

We propose an adaptive traffic light control scheme to use the traffic informa-

tion that is detected to determine the sequence and length of traffic lights. The

scheme contains three steps: vehicle detection, green light sequence determina-

tion and light length determination. We compare the performance of our scheme

with a fixed-time control approach and an actuated control approach. The results

of the simulation show that our scheme can achieve a higher intersection through-

put and a lower average waiting time for vehicles.
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3.2 Problem Formulation and Notations

The problem of controlling traffic lights is how to respond adaptively to a dy-

namically changing traffic environment to improve efficiency of control, under

the constraint of guaranteeing fairness for each lane. Here, efficiency includes the

intersection throughput (the number of vehicles passing through the intersection),

and the average waiting time for vehicles.

To model this problem, we will consider (see Fig. 3.1) a sensor-equipped

intersection with four directions (north, south, east, and west), each of which has

two lanes, one for going forward and the other for turning left. Each lane is

controlled with a traffic light that offers two signals, red for stop and green for go.

A total of sixteen sensor nodes are placed on the eight lanes to detect the flow of

traffic. Each lane has two sensor nodes: one is installed at the intersection and the

other at a given distance, called the S ensorDistance, from the intersection.

Subject to traffic safety rules, there exist a maximum of twelve different pos-

sible cases of green lights (see the Appendix), depicted in Fig. 3.2. Therefore,

in the face of a dynamically changing traffic environment, the problem is trans-

formed to the decision on which case should obtain a green light next and how

long it should last for.

To formulate the problem, we use the following notations, and assume that all

vehicles run at a constant speed speed and that all of the vehicles are of the same
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Figure 3.1: Isolated Intersection Model

type:

I = {north, south, east, west}, which represents the four directions of the intersec-

tion.

J = {forward, left}, which represents the two movements permitted.

R = {1,2,3,...,8}, which represents the eight lanes of the intersection.

C = {1,2,3,...,12}, which represents the twelve configurations of green lights.

T P: total throughput.

AVGWT : average waiting time.

T : total time period.

DP(k, t): number of vehicles passing through the intersection at case k at time t, k
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Figure 3.2: Twelve possible configurations of green lights

∈ C.

WT (k, t): sum of the waiting time of vehicles at case k at time t, k ∈ C.

RM(k, t): number of vehicles at case k at time t, k ∈ C.

Xy1: sensors installed at the intersection in lane y at direction X, X ∈ I, y ∈ J.

Xy2: sensors installed with distance S ensorDistance from the intersection in lane

y at direction X, X ∈ I, y ∈ J.
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Efficiency:

T P =

T
∑

t=1

∑

k∈C

DP(k, t)

T
(3.2.1)

AVGWT =

T
∑

t=1

∑

k∈C

WT (k, t)

T
∑

t=1

∑

k∈C

RM(k, t)

(3.2.2)

Equation 3.2.1 calculates the number of vehicles passing through the inter-

section within a unit of time (T P), Equation 3.2.2 calculates the average waiting

time for vehicles (AVGWT ) during time period T .

In order to maintain fairness for each case, we introduce a maximum waiting

time Tmax and the hunger level. The former is to guarantee that each vehicle in

a lane with a red signal will not wait too long. The latter is to reflect the times

for the green lights of the case. It is to avoid the circumstance in which one case

has fewer vehicles and has not gotten a green light for a long time while the other

eleven cases have gotten green light in turn again and again. Hence, if the hunger

level of one case is high, this means that this case did not have a green light for

a rather long time, thus its green light demand is high; while a low hunger level

means that the green light demand is low.

3.3 The ATLCII Scheme

In this section, we propose an adaptive traffic light control scheme based on the

above established model. The scheme contains three steps: real-time traffic de-
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tection, green light sequence determination, and light length determination. Real-

time traffic detection involves detecting and calculating traffic information in a

real-time manner. Green light sequence determination involves using traffic in-

formation to determine the next green light for the case with the largest demand.

Light length determination refers to determining how long the green light will last

for.

At the beginning, we first set a control cycle Tcontrol, which is defined as an

upper bound of light length. This value of Tcontrol is based on expert knowledge.

3.3.1 Real-time Traffic Detection

The first step is to detect the arrival and departure rate of vehicles in each lane,

and then collect relevant data, with sensor nodes installed in each lane of the in-

tersection, as illustrated in Fig. 3.1. Sensor nodes detect the number of vehicles in

each lane and each vehicle’s ID and type. Xy1 is responsible for detecting vehicles

at the intersection; Xy2 is responsible for detecting vehicles from the intersec-

tion with the distance S ensorDistance mentioned. S ensorDistance is equal to

Tcontrol × speed so that Xy1 will get the information on the vehicles that will reach

the intersection after Tcontrol time in advance through the communication between

Xy1 and Xy2.

Using these detected data, the arrival rate and departure rate in each lane can be

determined in real-time. In a lane with a green light, both the arrival and departure

53



CHAPTER 3.

rates are calculated in real-time. In a lane with a red light, the departure rate is

zero and the arrival rate reflects how many vehicles are waiting in the lane.

Because each vehicle has a length Lvehicle, we divide lane length Llane into m

intervals with the same length Linterval equal to Llane

m
, shown as D1,D2, ...,Dm. Di is

demonstrated as interval [di−1, di]; di is defined as the distance to the intersection,

which is equal to i × Linterval. RM(Di, t), AR(Di, t), DP(Di, t) are defined as the

number of vehicles in, arriving in and departing from Di at time t, respectively.

The arrival rate in Di at time t is equal to the departure rate in Di+1 at time t − 1.

RM(Di, t) can then be calculated(in equation 3.3.1 and equation 3.3.2). After

that, G(Di) can be determined (in equation 3.3.3), which is defined as the den-

sity of the traffic flow in interval Di. The density of the traffic flow in the lane

VDDF(D1,D2, ...,Dm) can be demonstrated in equation 3.3.4.

AR(Di, t) = DP(Di+1, t − 1)} (3.3.1)

RM(Di, t) = max{RM(Di, t − 1) + AR(Di, t) − DP(Di, t), 0} (3.3.2)

G(Di) =
RM(Di, t)

Linterval

(3.3.3)

VDDF(D1,D2, ...,Dm) = f (G(D1),G(D2), ...,G(Dm)) (3.3.4)

This is a nonlinear function, an example of a random function is shown in

Fig. 3.3. Different intervals have different traffic flow densities, which means a

different number of vehicles. At some intervals, there exists a sub-interval with-

out any vehicle, and its length is larger than Lvehicle. Here, we define this sub-

54



CHAPTER 3.

0 1 2 3 4 5 6 7 8 9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Distance to Intersection(interval)

D
e
n
s
it
y
 (

v
o
lu

m
e
/i
n
te

rv
a
l 
le

n
g
th

)

Figure 3.3: Vehicle Distribution Density Function

interval as a blank. In order to accurately check blanks, Linterval should be equal

to 2.5×Lvehicle. Then, if there exists a G(Di), whose value is lower than 0.4 and

higher than 0.2, we can decide that there is a blank in Di and that the length of the

blank L(blank) is equal to Lvehicle. If there exists a G(i), whose value is lower than

0.2, we can decide that there is a blank in G(Di) and that the L(blank) is equal to

2×Lvehicle.

What needs to be considered with blanks is dealing with the problem that

arises when a blank reaches the intersection and the current green light is for its

lane, which leads to a waste of a green light. This means that, within the a period

of time equal to the length of this blank L(blank), the number of vehicles passing

through the intersection is not as large as supposed, so that there is an increase in

the total waiting time of vehicles in other lanes. Therefore, we try to release the

blank by making the blank reach the intersection with the red light for that certain

lane.
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3.3.2 Green Light Sequence Determination

The second step is to make a decision to determine the sequence of green lights,

using real-time traffic data. In order to make this decision, we define GLD(k, t) to

indicate case k’s green light demand at time t, so that the case with the most urgent

demand should get the next green light. Since our objectives are to increase the

throughput and decrease the average waiting time, the number of vehicles detected

in each lane, their corresponding waiting time, and the blank circumstance are

influential factors. To guarantee that each case will not wait too long, it is also

necessary to take the hunger level into account in determining the sequence of

green lights. Furthermore, special circumstances and the effect from adjacent

intersections can also play a role. Equation 3.3.5 demonstrates all of the factors

of GLD(k, t).

GLD(k, t) = a1 × TV(k, t) + a2 ×WT (k, t) + a3 × HL(k, t) + a4 × BC(k, t)

+ a5 × S C(k, t) + a6 × Neibor(k, t)

(3.3.5)

Here, TV(k, t), WT (k, t), HL(k, t), BC(k, t), S C(k, t), Neibor(k, t) are defined

as the weight of the traffic volume, average waiting time, hunger level, blank cir-

cumstance, special circumstance and influence from neighboring intersections of

case k at time t, respectively, and ai is defined as the coefficient of these param-

eters to demonstrate their priorities, i = 1, 2, 3, 4, 5, 6. In our problem, since the

distance between two intersections is longer than S ensorDistance, Neibor(k, t)
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can be ignored in this problem. Therefore, we discuss the five main factors se-

quentially as shown in Fig. 3.4.Special Circ. Check
Traffic Accident happened in case iNo special CircumstanceAmbulance or Fire Engine happened in case k

YES
Blank Circ. CheckNo case has blankWhether all cases have blank

Computation Compute demand weight of each case.Compute waiting time of each case.Compute hunger level of each case.
 Decide Next CaseExist one nonempty case k, its waiting time larger than threshold

Next green case is case kNext green case is current case
Exist one nonempty case k, its hunger level larger than thresholdNONONO

YESYESYESDifference between maximum weight case k and current case larger than thresholdFind in case k blank reaches intersection at the latest  Must have red light next YESNO
Figure 3.4: Green Light Sequence Determination

1) Traffic Volume

After the VDDF(d,RM(t)) calculation, we can calculate the weight of the traf-

fic volume of each case. To calculate TV(k, t), we first need to obtain TraVol(i, t),

which is defined as the total number of vehicles in lane i, from time t to following

Tcontrol time. FV(i, t) is defined as the number of vehicles that would reach the

intersection at time t in lane i, i ∈ R. Equation 3.3.6 shows TraVol(i, t) in lane i

with the green light at time t, and equation 3.3.7 shows TraVol(i, t) in lane i with
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the red light at time t. Thus, traffic volume in case k can be obtained (in equation

3.3.8), and u,v are two lanes of case k. Then, the traffic volume weight can be cal-

culated (in equation 3.3.9). A higher TV has more influence in decision-making.

TraVol(i, t) = RM(i, t) +

Tcontrol
∑

j=1

(FV(i, t + j) − DP(i, t + j)) + ΣL(blank) (3.3.6)

TraVol(i, t) = RM(i, t) +

Tcontrol
∑

j=1

FV(i, t + j) (3.3.7)

TraVol(k, t) = TraVol(u, t) + TraVol(v, t) (3.3.8)

TV(k, t) =
TraVol(k, t)
∑

k∈C

TraVol(k, t)
(3.3.9)

2) Waiting time

To calculate WT (k, t), we need to obtain AVGTwait(i, t) first, which is defined

as the average waiting time in lane i, from time t to following Tcontrol time. Equa-

tion 3.3.10 shows AVGTwait(i, t) in lane i with the green light at time t, and equa-

tion 3.3.11 shows AVGTwait(i, t) in lane i with the red light at time t. Thus, the

average waiting time in case k can be obtained (in equation 3.3.12), and u,v are

two lanes which of case k. Then, the weight of the average waiting time can be

calculated (in equation 3.3.13). A longer WT has more influence in decision-

making.

AVGTwait(i, t) = 0 (3.3.10)

AVGTwait(i, t) =

RM(i, t) × Tcontrol +

Tcontrol
∑

j=1

FV(i, t + j) × (Tcontrol − j)

TraVol(i, t)
(3.3.11)

AVGTwait(k, t) =
(AVGTwait(u, t) + AVGTwait(v, t))

2
(3.3.12)
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WT (k, t) =
AVGTwait(k, t)
∑

k∈C

AVGTwait(k, t)
(3.3.13)

3) Hunger Level

The hunger level HL(k, t) is defined to guarantee fairness. It can be determined

by the number of times case k has a green light, which is represented by N(k, t),

k ∈ C, in equation 3.3.14. The more times the case previously got green lights,

the lower its current hunger level; the fewer times the case previously got green

lights, the higher its current hunger level.

HL(k, t) = 1 −
N(k, t)
∑

k∈C

N(k, t)
(3.3.14)

4) Blank Circumstance

Blanks play an important role in calculating GLD(k, t). We try to minimize the

frequency of the circumstance in which there is a blank at the intersection with the

green light for a certain lane. In order to increase the throughput and decrease the

average waiting time, we calculate how many blanks there are in each lane, and

the length of each blank.

Within a T (blank) time, if a sensor node cannot detect a vehicle passing

through, we decide there is a blank of length L(blank). T (blank) should be larger

than Lvehicle

speed
, and L(blank) = T (blank) × speed.

In the detection of blanks, there are three possible circumstances: where every

case has a blank, or some cases have a blank, or none of them has a blank. Dif-
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ferent circumstances have different solutions. When every case has at least one

blank, we would like to give a green light with high priority to the case in which

the first detected blank has the farthest distance to the intersection. In this way, a

green light would be provided to let more vehicles leave. When some cases have

a blank, we would decide to give a red light for these cases next. When none of

them has a blank, we treat them with the same level of priority. How to determine

blank length has been mentioned before.

5) Special Circumstance

Special circumstance refers to some situations where a green or red light must

be activated urgently. For example, a green light must urgently be given for the

lanes having ambulances or fire engines; a red light should be given for the lanes

in which a traffic accident has occurred. Hence, we define S C(k, t) to demonstrate

these green light demands; S C(k, t) is a signum function (equation 3.3.15) with

only three values, 1, 0, and 1.

S C(k, t) =



























1 if high green light priority vehicle detected

−1 if high red light priority vehicle detected

0 otherwise

(3.3.15)

Let us suppose an urgent circumstance in which an emergency vehicle requires

a specific light. If a vehicle that needs a high green light priority, such as an

ambulance or fire engine, is detected by node Xy2, S C(k, t) is equal to 1, and a

green light will be provided for certain lanes next. If a vehicle that needs a high
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red light priority, such as that which caused a traffic accident, is detected by node

Xy2, S C(k, t) is equal to 1, to demonstrate that this circumstance has very little

demand for a green light. Here, traffic accident is defined as a circumstance in

which one or more vehicles do not move within a period time. We use received

signal strength indication (RSSI) to detect traffic accidents. After being detected

by Xy2, with the vehicle running, the signal strength Xy2 received should become

weaker and weaker. If the difference in the strength of the signal received before

and after Tcontrol time is within a small range, we can decide that a traffic accident

happened, and then give a red light for the case until the accident is solved. If no

special circumstance occurred, S C(k, t) is equal to 0.

6) Coefficient Determination

Finally, we need to determine the coefficient of each factor, which is treated

as a priority. Priority for a green or red light should be assigned to these factors.

Different priorities are given to different factors, sorted from high to low as special

circumstance, blank circumstance, hunger level, traffic volume, and waiting time,

as shown in Table 3.1. Based on the value of GLD, the case with the largest value

can get a green light next.

3.3.3 Light Length Determination

The third step is to determine the length of the green light - that is, how long the

green light should last for. Gnext is defined as the length of the next green light. It
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Table 3.1: Green Light Sequence Determination in an Isolated Intersection

Green Light Sequence Determination in an Isolated Intersection

Input: VDDF(d,RM(t)), the case i holding green lights.

Output: decision on which case should obtain green lights.

begin

1. Check special circumstance.

2. if there exists a case k with green light priority then

3. Assign green lights to case k next.

4. else

5. if there exists a case j with red light priority then

6. Assign green lights to case j next.

7. else Check blank

9. if all cases have a blank then

10. Find the case k with the farthest blank.

Assign green lights to case k next.

11. else

12. if at least one case has a blank then

13. Assign red lights to these cases next.

14. else Compute TV(k, t), WT (k, t), HL(k, t).

16. if there exists a case k with HL(k, t) ≥ threshold then

17. Assign green lights to case k next.

18. else

19. if maximum WT ≥ WT (i, t) then

20. Assign green lights to the case with maximum WT next.

21. else

22. if maximum TV ≥ TV(i, t) then

23. Assign green lights to the case with maximum TV next.

24. else Assign green lights to current case i next.

end
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Table 3.2: Light Length Determination in an Isolated Intersection

Light Length Determination in an Isolated Intersection

Input: next case k

Output: green duration of next case

begin

1. calculate green duration of next case Gnextcase

2. if Gnextcase > Tcontrol

3. then Gnextcase = Tcontrol

4. end

end

is equal to the time for vehicles in lanes having the next green light to go through

the intersection (in equation 3.3.16), in which i, j are two lanes of the case with

the next green light. If the value of Gnext is larger than Tcontrol, Gnext should be

equal to Tcontrol, as shown in Table 3.2. Then, after Gnext time, we would calculate

the current traffic environment and again determine the sequence and length of the

green lights.

Gnext =
max{TraVol(i, t),TraVol( j, t)}

speed
(3.3.16)

After determining the sequence and length of the green lights, the traffic lights

will change color accordingly.
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3.4 Performance Evaluation

To evaluate our scheme’s performance, we conduct simulations by matlab using

the proposed adaptive traffic light control scheme, comparing it with a fixed-time

traffic control (FTC) and an actuated traffic control (ATC), which are based on the

same random arrival rate of each lane, T , Tcontrol , speed, Lvehicle and Llane.

The FTC used is the optimal fixed-time control under the given traffic parame-

ters that can be achieved through simulations. The ATC used is from [81] because

the traffic structure is the same as four directions with two permitted movements,

going forward and left.

We define volume-to-capacity to indicate the degree to which traffic condi-

tions are busy. Here, volume is calculated based on a random arrival rate in each

lane. And capacity is defined as the number of vehicles that can be in the lane at

the same time, which would be equal to Llane

Lvehicle
. We set different ranges to constrain

the arrival rate to come out different volume-to-capacity. To describe the general

traffic situation, volume-to-capacity here is defined as the average value of the to-

tal approaching lanes, and would be TraVol
capacity

. We consider one hour as T ’s value, to

evaluate the approaches’ performance in different volume-to-capacity. We choose

30km/h as the car speed which is the most common speed limit in inner cities in

real world.

The performance metrics include throughput-to-volume and average waiting

64



CHAPTER 3.

time as a response to our objectives. The intersection throughput values were

calculated using the total number of vehicles departing the intersection per unit

of time, and were expressed as the number of vehicles per second. Throughput-

to-volume is defined as the percentage of passing vehicles in total traffic volume.

Average waiting time was calculated using the total waiting time of vehicles per

vehicle. The average waiting time is defined as the average degree of waiting time

of the total traffic volume.
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Figure 3.5: Throughput-to-volume comparisons between fixed-time control, actu-

ated control, and the proposed adaptive approach

Fig. 3.5 presents the throughput-to-volume comparisons between an FTC, an

ATC, and our proposed adaptive scheme. From the figure, we can observe that our

scheme can achieve the best throughput. When the volume-to-capacity is lower

than 0.2, all of the three methods can achieve such a good performance that they

come extremely close to a 100% throughput. Among the three, the difference

is very small. When the volume-to-capacity is in intervals of [0.2, 0.4], FTC
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and ATC begin to perform worse while our scheme can still obtain a throughput

performance of almost 100%. The difference between our approach and the other

two approaches grows larger. In particular, when the volume-to-capacity is 0.4,

our approach achieves twice as much in through put as the other two approaches.

When the volume-to-capacity is [0.4, 1], there are more vehicles in the traffic

environment, and our scheme cannot gain the throughput ever. The throughput-to-

volume obtained by our scheme begins to decrease, when the other two methods

continuing to get lower throughput. The throughput of our scheme remains at

almost 1.6 times higher than the other two approaches.
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Figure 3.6: Comparison of average waiting time between fixed-time control, ac-

tuated control, and the proposed adaptive approach

Fig. 3.6 shows a comparison of the average waiting times between an FTC,

an ATC, and our proposed adaptive scheme. From the figure, we can observe

that our scheme can achieve the best throughput. When the volume-to-capacity

increases, the average waiting time in FTC increases rapidly, much faster than in
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the other two schemes, where the average waiting time remains in intervals of

[0,10] seconds.
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Figure 3.7: Comparison of average waiting time between actuated control and the

proposed adaptive approach

Since it is hard to distinguish between ATC and our scheme in Fig. 3.6, we

enlarge the performance of the two approaches in Fig. 3.7. From this figure,

we can observe more clearly that our scheme can obtain a lower average waiting

time. When the volume-to-capacity is lower than 0.2, both methods have very

short waiting time of fewer than 3 seconds. When the volume-to-capacity is in

intervals of [0.2, 0.3], the waiting time of ATC starts increasing rapidly while the

waiting time of the proposed scheme remains lower than 1 second. Especially

when the volume-to-capacity is 0.3, ATC has an average waiting time of 10 times

as much as our scheme. When the volume-to-capacity is [0.3, 1] and there are

more vehicles in the traffic environment, the waiting time in our scheme also be-

gins to grow, but still remains lower than in ATC. When the volume-to-capacity is
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1, there are too many vehicles, leading to an almost saturated intersection. At this

time, the waiting time in our scheme approaches that in ATC, though remaining

lower than 9 seconds.

Finally, from the results of the simulation, it is clear that our proposed ap-

proach can achieve higher throughput and lower average delay compared with a

fixed-time traffic control and an actuated traffic control.

3.5 Summary

In this chapter, we have proposed an adaptive traffic light control scheme with the

purpose of maximizing traffic throughput and minimizing average waiting time at

an intersection. Our experimental results demonstrate that the proposed scheme

can produce higher throughput and lower waiting time for vehicles in comparison

with a fixed-time control approach and actuated control approach.
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ATLCMI: Adaptive Traffic Light

Control for Multiple Intersections

In this chapter, we investigate the problem of adaptive traffic light control of mul-

tiple intersections using real-time traffic data collected by a wireless sensor net-

work (WSN). Previous studies mainly focused on optimizing the intervals of green

lights in fixed sequences of traffic lights and ignored the characteristics of traffic

flow and special traffic circumstances. In this chapter, we propose an adaptive

traffic light control scheme that adjusts the sequences of green lights in multi-

ple intersections based on real-time traffic data, including traffic volume, waiting

time, number of stops, and vehicle density. Subsequently, the optimal length of

the green light can be calculated from the local traffic data and traffic conditions

of neighboring intersections. The simulation results demonstrate that our scheme

produces much higher throughput, lower average waiting time, and fewer num-

ber of stops, compared with the three control approaches: the optimal fixed-time

control, an actuated control, and an adaptive control.
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This chapter is organized as follows. In section 4.1, we briefly introduce the

work. In section 4.2, we formulate the problem and define some notations. In

section 4.3, we describe the proposed adaptive traffic light control scheme, which

can detect and calculate the real-time traffic data, determine the sequence of green

lights of multiple intersections, and then determine the optimal length of the green

lights of these intersections. In section 4.4, we evaluate the performance of our

scheme through simulations. In section 4.5, we summarize this chapter.

4.1 Overview

Intelligent Transportation System (ITS) refers to a system that integrates communications-

based information and electronics technologies into transportation infrastructure

and vehicles, to relieve traffic congestion, improve safety, reduce transportation

times, and fuel consumption. The conventional surveillance methods used in ITS

to detect real-time traffic data, e.g. video image processing and inductive loops de-

tection, have several shortcomings, such as limited coverage and the high cost of

implementation and maintenance [8]. Meanwhile, wireless sensor networks have

the potential to provide real-time traffic data without these drawbacks. Hence,

a WSN-based ITS has been proposed. Controlling traffic lights plays a key role

in the system, in that an optimal traffic lights control scheme can increase traffic

throughput and reduce delay by outputting different traffic signals.

A number of traffic control systems have been implemented worldwide, such
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as SCOOT [71] [18] and SCAT [55] [73]. Furthermore, various computa-

tional intelligence approaches have been applied to the optimization of designs

for controlling traffic lights, such as Fuzzy Logic Control [52] [85], Neural Net-

work [78] [74] [75], Genetic Algorithm [74] [41], and others. Most existing works

[71] [18] [55] [73] [52] [85] [78] [74] [75] [41] consider cycle time, and split and

offset optimizations with a fixed green light sequence, with the objectives of min-

imizing average waiting time and the number of vehicle stops. However, they

pay little attention to the characteristics of traffic flow, and fail to consider special

traffic circumstances, such as ambulances, fire engines, or traffic accidents.

In a previous work [93], we proposed an adaptive control scheme applied in an

isolated intersection, and implemented into our WSN-based ITS testbed, iSensNet

[87], which can schedule both the sequence and the length of green lights, taking

into consideration discontinuous traffic flow and special traffic circumstances, to

increase throughput and decrease average waiting times.

In this chapter, we extend the previous work to investigate controlling traf-

fic lights in multiple intersections. We propose an adaptive traffic light control

scheme to schedule both the sequences and lengths of green lights based on de-

tected traffic information. The proposed scheme includes the detection of real-

time traffic data, an algorithm to determine the sequence of green lights, and an

algorithm to determine the length of lights.

The performance of our scheme is compared with those of an optimal fixed-
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time control, an actuated control, and an adaptive fuzzy control [52]. The results

of the simulation show that our scheme can achieve higher throughput, lower av-

erage waiting time for vehicles, and fewer stops.

4.2 Problem Formulation and Notations

We are given a traffic network with five four-direction (east, west, north, and

south) intersections, one central intersection C, and four minor intersections (Ce,

Cw, Cn, Cs), which are neighbors of the central intersection. We use Ce, Cw, Cn, Cs

to represent the four intersections at the east, west, north, and south of intersection

C, respectively. Each direction has four lanes (see Fig. 4.1). Two of them are

for vehicles to approach; we name them approaching lanes (ALs). Within the two

ALs, one is for turning left and one for going forward. The other two lanes are for

vehicles to leave the intersection; we name them leaving lanes (LLs). Meanwhile,

the LLs of C also approach the neighbor intersection, so the LLs also are the ALs

of the neighboring intersection. Each AL is controlled by a traffic light that offers

two signals, red for stop and green for go. This traffic network is installed with

several wireless sensor nodes to detect and monitor real-time traffic conditions.

The problem is to schedule the timing and length of the traffic lights of these

intersections cooperatively, in order to improve efficiency of control under the

constraint of guaranteeing fairness. Here, efficiency of control includes the net-

work throughput, the average delay for vehicles, and the average number of stops.
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EW
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Figure 4.1: Multiple Intersections Model

Network throughput means the rate between the number of arriving vehicles and

the number of departing vehicles in the traffic network. From Fig. 4.1, we see that

each minor intersection contributes two entrances and two exits for this traffic net-

work. Hence, there are a total of eight entrances and eight exits. Here, we define

the vehicles entering this traffic network through these entrances as arriving vehi-

cles, and the vehicles leaving this traffic network through these exits as departing
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vehicles. Average vehicle delay means the average waiting time of the vehicles in

the traffic network. Average number of stops means the average number of times

that the vehicles stop at each intersection to wait for the green light.

The constraints include an upper bound for the vehicle waiting time and an

upper bound for the waiting time for each lane to guarantee that each vehicle will

not wait too long. However, in order to reduce the cost of sensor nodes, we limit

each lane to no more than two sensor nodes.

The input is the real-time detected traffic information, such as arrival rate and

vehicle location. The output is a set of each intersection’s control decision on

which intersection should get a green light next, and then how for long the light

should last.

As mentioned in our previous study [93], each intersection has a maximum

of twelve different possible cases of green lights (see Fig. 3.2). Therefore, in the

face of a dynamically changing traffic environment, the problem is transformed

into a decision on which case should obtain a green light next in each intersection

and for how long the light should last.

We define several assumptions in this problem. First, the speed is constant and

all vehicles have the same speed. The specified speed in this problem can be ob-

tained through historical data. Second, each vehicle will automatically choose the

shortest path to its destination exit when enters this traffic network. This assump-

tion is for computing the network throughput. Third, we use the same sensor node
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in this problem so that the sensing range of each sensor node will be the same.

To formulate the problem, we use the following notations:

A = {north, south, east, west}.

V: a set of intersections.

L = {1,2,3,...,8}. This is the set of lanes. 1, 3, 5, 7 mean the forwarding lanes in

the direction east, west, north and south respectively; 2, 4, 6, 8 mean the left lanes

in the direction east, west, north and south respectively (see Fig. 4.1).

P = {1,2,3,...,12}.

T P: total throughput.

Rs: sensing range of each sensor node.

Dst: distance between two adjacent intersections.

AVGWT : average waiting time.

AVGNS : average number of stops.

T : total time period.

t: time.

v: the element of set V .

k: the element of set P.

r: the element of set L.

AR(v, r, t): number of vehicles approaching lane r of intersection v at time t.

DP(v, r, t): number of vehicles in lane r leaving intersection v at time t.

WT L(v, r, t): sum of the waiting time for vehicles in lane r of intersection v at time

75



CHAPTER 4.

t.

TVL(v, r, t): number of vehicles in lane r of intersection v at time t.

NS L(v, r, t): number of total times of vehicle stops in lane r of intersection v at

time t.

Efficiency:

T P =

∑

v∈V

T
∑

t=1

∑

i∈L

DP(v, i, t)

T
(4.2.1)

AVGWT =

∑

v∈V

T
∑

t=1

∑

i∈L

WT L(v, i, t)

∑

v∈V

T
∑

t=1

∑

i∈L

TVL(v, i, t)

(4.2.2)

AVGNS =

∑

v∈V

T
∑

t=1

∑

i∈L

NS L(TVL(v, i, t))

∑

v∈V

T
∑

t=1

∑

i∈L

TVL(v, i, t)

(4.2.3)

Equation 4.2.1 calculates the number of vehicles passing through all of the

intersections within a unit of time (T P). Equation 4.2.2 calculates the average

waiting time for vehicles (AVGWT ) during time period T . Equation 4.2.3 calcu-

lates the average number of vehicle stops (AVGNS ).

In order to maintain fairness for each case in each intersection, we define two

upper bounds [93]: maximum vehicle waiting time and the upper bound of the

hunger level.
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4.3 The ATLCMI Scheme

In order to achieve the three objectives, we propose an adaptive traffic light con-

trol scheme, including real-time traffic detection, green light sequence determi-

nation, and light length determination. Real-time traffic detection is responsible

for detecting and calculating traffic conditions in a real-time manner. Green light

sequence determination is to determine which case should be assigned the next

green light in each intersection based on the traffic data calculated, including traf-

fic volume, waiting time, number of stops, hunger level, blank circumstance, and

special circumstances. Light length determination is to determine the duration of

the next green light in each intersection using local traffic volume and traffic con-

ditions in neighboring intersections. It should be equal to the sum of a sufficient

amount of time for the traffic volume of the next green case to leave the inter-

section and the minimum remaining time of the current green case of influential

neighboring intersections.

4.3.1 Real-time Traffic Detection

Real-time traffic detection is carried out in order to detect real-time traffic condi-

tions in the traffic network and calculate traffic information in real-time. In this

part, three issues are considered: sensor deployment, vehicle detection, and data

transmission. With regard to deployment, the relationship between Rs and Dst

should be discussed first. In order to guarantee that a lane can be covered, Rs must
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be greater than 1

4
Dst. Under this circumstance, we have two discussions, one is

1

4
Dst ≤ Rs ≤

1

2
Dst , the other is Rs ≥

1

2
Dst

lanesensor nodeCircle sensing range
Figure 4.2: Sensor Deployment when 1

4
Dst ≤ Rs ≤

1

2
Dst

When 1

4
Dst ≤ Rs ≤

1

2
Dst, if only one sensor node is installed in each lane,

some vehicles in the lane will out of the sensor node’s sensing range. Therefore,

it is necessary to install two sensor nodes in each lane, as shown in Fig. 4.2. We

choose to install them at the two ends of each lane at a given distance from the

intersection, so that all of the vehicles in the lanes can be detected. The given

distance should be smaller than Rs and greater than 1

4
Dst. When a vehicle enters

the AL, its type and ID can be detected by the upstream sensor node (US N). The

vehicle length can be determined by the vehicle type, and the vehicle can be iden-

tified through the ID. Once detected, the US N will send the detected data, such as

the arrival rate, to the intersection sensor node (IS N) to record. Meanwhile IS N

will detect the departure rate in real-time. Based on the arrival rate and departure
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rate, the number of vehicles can be calculated in equation 4.3.1.

TVL(v, r, t) = max{TVL(v, r, t − 1) + AR(v, r, t) − DP(v, r, t), 0} (4.3.1)

As to the waiting time of each vehicle, we can calculate the total waiting time

of the vehicles in each lane at time t. In the lane with the green light, the waiting

time should be equal to zero; while in the lane with the red light, the waiting time

of vehicles in time t should be equal to the number of vehicles in each lane at

time t. When the IS N determines the TVL(v, r, t), it can determine the current

WT L(v, r, t).

WT L(v, r, t) = TVL(v, r, t) (4.3.2)

WT L(v, r, t) = 0 (4.3.3)

The number of stops of each vehicle also can be calculated using the approach

in [56]. If the US N detects the location of a vehicle did not change within a

period Tns, we can determine that the vehicle stops within that period. Then,

the times of the stops can be determined by checking whether the vehicle stops

at the same lane. Once a vehicle stops in the lane, if it is in the sensing range

of the US N, the US N will store the vehicle’s ID and send the message to the

corresponding IS N. Then, when the vehicle enters the sensing range of the IS N

and stops again, the IS N will check whether it has stopped in the range of the

US N before, by looking for a stored vehicle ID. If it finds this ID, the IS N will
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determine that the vehicle has stopped in the lane before; otherwise, the IS N will

determine that this is the first time that the vehicle has stopped in the lane. Hence,

the number of stops can be determined in this way. The value of Tns is constant;

here, 1 second is a suitable value.

Finally, the IS N will send the real-time local traffic information to the inter-

section controller, including the traffic volume, the corresponding waiting time,

and their number of stops.

lanesensor nodeCircle sensing range
Figure 4.3: Sensor Deployment when Rs ≥

1

2
Dst

When Rs ≥
1

2
Dst, the lane can be covered by one sensor node installed at the

middle of the lane, as shown in Fig. 4.3. Then, all the vehicles in the lanes can be

detected. We use the US N to represent this sensor node. Similar to the circum-

stance when 1

4
Dst ≤ Rs ≤

1

2
Dst, the vehicle type and ID are the items detected

by the US N. Using the vehicle type and ID, the vehicle can be identified and the
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vehicle length can be determined. In this circumstance, the US N is responsible

for detecting the real-time arrival rate and departure rate to calculate the number

of vehicles.

Similarly, when the US N determines the TVL(v, r, t), it can determine the

WT L(v, r, t), as shown in equation 4.3.2 and equation 4.3.3.

With regard to the number of stops of each vehicle, this can also be calculated

using the approach in [56]. Similarly, if the US N detects that the location of

a vehicle has not changed within a given period Tns, we can determine that the

vehicle has stopped within that period. The times of the stops can then be deter-

mined by checking whether the vehicle is stopped at the same lane. Once a vehicle

stops in the lane for the first time, the US N will store the vehicle’s ID. When the

vehicle stops in the lane again, the US N will check whether it has stopped before

by checking the vehicle’s ID. If so, the US N will determine that the vehicle has

stopped in the lane before; otherwise, that is the first time that the vehicle has

stopped in the lane. Hence, the number of stops can be determined.

Finally, the US N will send the real-time local traffic information to the inter-

section controller, including the traffic volume, the corresponding waiting time,

and the number of stops.
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4.3.2 Green Light Sequence Determination

Using the traffic data that has been detected and calculated, the local controller

LC in each intersection can make a control decision about which case should get

a green light next.

In each intersection, there are 12 cases that are candidates to be selected to

have the green light next. We define a green light demand (GLD) to represent

each case’s demand for a green light. The case with greatest value can obtain the

green light next. As in our analysis, there are six impact factors that will influence

the computation of the GLD value: the traffic volume in each case, the average

delay of the vehicles in each case, the average number of stops of each vehicle in

each case, the hunger level of each case, the blank circumstance of each case, and

the special circumstances of each case.

GLD(v, k, t) =a1 × TV(v, k, t) + a2 ×WT (v, k, t) + a3 × NS (v, k, t)

+ a4 × HL(v, k, t) + a5 × BC(v, k, t) + a6 × S C(v, k, t)

(4.3.4)

In equation 4.3.4, GLD(v, k, t) is defined as the green light demand of case k at

intersection v at time t. TV(v, k, t), WT (v, k, t), NS (v, k, t), HL(v, k, t), BC(v, k, t),

S C(v, k, t) are defined as the weight of traffic volume, average waiting time, av-

erage number of vehicle stops, hunger level, blank circumstance, and special cir-

cumstance of case k at intersection v at time t, respectively. ai is defined as the

weight of each factor in the GLD computation, i = 1, 2, ..., 6.

In each case, there are two lanes with green lights, we use Green Light Lane
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(GLL) to represent each of them. CL is defined as a set of the corresponding lanes

mapping to the case set C. Hence, CL(k, 1) and CL(k, 2) are two lanes belong to

case k. We also define M to represent the direction of the cases. M(k, i) is equal

to [
CL(k,i)+1

2
], i = 1, 2. M(k, 1), M(k, 2) are the directions of CL(k, 1), CL(k, 2),

respectively.
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2 4

1 2

5 7

5 6

6 8
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, M = [
CL + 1
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] =
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We then have a way of computing TV(v, k, t), WT (v, k, t), NS (v, k, t), HL(v, k, t),

BC(v, k, t), and S C(v, k, t).

1) Traffic Volume Computation

To calculate TV(v, k, t), we first need to obtain the corresponding TVL(v, r, t),

which can be calculated in equation 4.3.1. When in the lane with the red light,

DP(v, r, t) is equal to zero. The traffic volume in case k at intersection v can then

be obtained in equation 4.3.5. CL(k, 1), CL(k, 2) are the two lanes of case k. A
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higher TV has more influence in the computation of GLD.

TV(v, k, t) = TVL(v,CL(k, 1), t) + TVL(v,CL(k, 2), t) (4.3.5)

2) Waiting Time Computation

To calculate WT (v, k, t), we first need to obtain the corresponding WT L(v, r, t),

which can be calculated in equation 4.3.2 and equation 4.3.3. The average waiting

time in case k at intersection v can then be obtained in equation 4.3.6. A higher

WT has more influence in the computation of GLD.

WT (v, k, t) = WT L(v,CL(k, 1), t) +WT L(v,CL(k, 2), t) (4.3.6)

3) Number of Stops Computation

To calculate NS (v, k, t), we first need to obtain NS L(v, i, t). NS (v, k, t) should be

equal to the total number of stops of the vehicles in the two corresponding lanes

(in equation 4.3.7).

NS (v, k, t) = NS L(v,CL(k, 1), t) + NS L(v,CL(k, 2), t) (4.3.7)

4) Hunger Level Computation

To calculate HL(v, k, t), we first need to obtain N(v, k, t), which is defined as the

times of the previous green lights of case k of intersection v at time t, so that

HL(v, k, t) is equal to the ratio between N(v, k, t) and the total times of the previous
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green lights of all cases (in equation 4.3.8).

HL(v, k, t) =
N(v, k, t)
∑

k∈C

N(v, k, t) (4.3.8)

5) Blank Circumstance Computation

The consideration of blank circumstance relates to the discontinuous flow of traffic

and the attempt to reduce the frequency of the circumstance in which there is no

vehicle in the GLL to reach the intersection. Blank plays a rather important role

in calculating GLD(v, k, t). We try to minimize the frequency of the circumstance

in which there is a blank at the intersection with the green light for a certain lane,

which would lead to the waste of a green light. This means that, within the time

period equal to the length of this blank L(blank), the number of vehicles passing

through the intersection is not as many as supposed, and the total waiting time of

the vehicles in the other lanes would therefore increase. Thus, in order to increase

the throughput and decrease the average waiting time, we try to release the blank

by making the blank reach the intersection with the red light for that certain lane.

We therefore need to calculate how many blanks there are in each lane, and the

length of each blank.

Within a T (blank) time, if a sensor node cannot detect a vehicle passing

through, we decide that there is a blank of length L(blank).

T (blank) ≥
Lvehicle

speed
(4.3.9)

85



CHAPTER 4.

L(blank) = T (blank) × speed (4.3.10)

When the US N detects the blank at the upstream end, it will immediately

inform the LC. The LC will then compare the possible traffic conditions at the

following corresponding time, and try to select a case with the greatest need and

without a blank at that time. After making the selection, the LC will give a short

green. If all of the cases have a blank at that time, the LC will select the one with

the shortest length, and assign the green light to that case.

6) Special Circumstance Computation

We would like to divide the problem of controlling traffic lights into two circum-

stances: one where some special circumstance has happened; and the other where

there are no special circumstances, which means that the common circumstances

prevail in scheduling the traffic lights.

As mentioned before, special circumstances refer to some situations where

a green or red light must be activated urgently because of the presence of some

special type of vehicle, such as an ambulance or fire engine; also, a traffic accident

should receive special treatment. Hence, S C(v, k, t) is a signum function (equation

4.3.11) with only three values, 1, 0, and 1.

S C(v, k, t) =



























1 if high green light priority vehicle detected

−1 if high red light priority vehicle detected

0 otherwise

(4.3.11)

Let us suppose an urgent circumstance in which an emergency vehicle requires
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a specific light. If a vehicle, such as an ambulance or fire engine, is detected by

the US N, S C(v, k, t) is equal to 1, and a green light will immediately be provided

for certain lanes next. If a traffic accident has been detected, S C(v, k, t) is equal to

1, to demonstrate that this circumstance has very little demand for a green light.

If the difference in the signal strength of the US N or IS N received before and

after Tcontrol time is within a small range, we can decide that a traffic accident has

happened, and then give red light for the case until the accident solved. If there

are no special circumstances, S C(v, k, t) is equal to 0.

7) Coefficient Determination

Since there are so many coefficients here, we choose to simplify some to deter-

mine these coefficients ai. We choose to compute them through simulations. In

order to simplify the number of simulations and increase the processing speed,

we would like to give different values to the coefficients of traffic volume (TV),

average waiting time (WT ), and the average number of stops (NS ); and a fixed

value to the coefficients of the other factors. Based on expert knowledge, TV ,

WT , NS are important; therefore, we define a range [0.15, 0.3] for them to adjust

themselves.

After that, the GLD of each case in each intersection can be calculated, and

the greatest one in each intersection is selected to obtain the next green light.
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4.3.3 Light Length Determination

After determining the sequence of the green lights, the length of the green light in

each intersection should be determined. Len(v, t) is defined as the length of green

light in intersection v at time t, which can take both local traffic conditions and

neighboring traffic conditions into consideration.

First, we compute a preliminary value of the length in each intersection, based

on the traffic conditions in the next green case (NGC). Lenpre(v, t) is defined to

represent it in intersection v at time t, and it should be equal to a sufficient amount

of time for the vehicles in the two GLLs to pass through the intersection (see

equation. 4.3.12).

Lenpre(v, t) =
max{TVL(v,CL(g(v), 1), t),TVL(v,CL(g(v), 2), t)}

speed
(4.3.12)

Then, the offset between the adjacent intersections to get green waves is con-

sidered, which can lead to the vehicles meeting red lights as few times as possible

when going through the intersections. Lenos(v, t) is defined as a sufficient amount

of time for the vehicles permitted from intersection v’s neighboring intersection

(NeiInt) to pass through intersection v. In order to guarantee fairness, we also

define a maximum green light length Tmax so that Len(v, t) should be smaller than

Tmax.
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Len(v, t) = Lenpre(v, t) + Lenos(v, t) (4.3.13)

A. Analysis of the Neighboring Intersection’s Influence

Before computing Lenos(v, t), the influence from the neighboring intersection should

be taken into account and analyzed. When Dst is smaller than Tcontrol × speed, the

traffic conditions of neighboring intersections will have a significant amount of in-

fluence on the central intersection, which cannot be ignored. The shorter Dst has

more influence from the four neighboring intersections. In each neighboring in-

tersection, there are several possible impact factors, such as the vehicles from the

neighboring intersection, the corresponding waiting time, their number of stops,

remain current green light duration, and so on.

CeC

Figure 4.4: An Example of neighboring intersections

Ne(v, t), Nw(v, t), Nn(v, t) and Ns(v, t) are defined to represent the possible

influence from the four NeiInts of the four directions, east, west, north and south,
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respectively.

Let us take Ce as an example to analyze the effect of Ne(v, t) from NeiInt

for C. In Ce, it would be possible for 12 cases to obtain the green light. Within

them, 5 (see Fig. 4.5), cases 1,4,7,8,11, would allow vehicles to pass through and

approach intersection C when getting a green light. We define a set of these five

cases as the impact case set (ICS ) and a set of the others as the non-impact case

set (NICS ). In ICS , when case 11 obtains a green light, vehicles in both GLLs

will approach intersection C, while in the other four cases, only one GLL will let

the vehicles approach C. We define these impact GLLs in NeiInt s as possible

impact lanes (PILs) for C. Hence, there are two PILs for C when the green case

of Ce is case 11, and there is only one PIL for C when cases 1, 4, 7, 8 have a green

light in Ce.

We define a matrix NC to contain all of the cases taking PIL, including two

block matrixes, NCT and NCS . NCT contains all of the cases that would take

two PILs, and NCS contains all of the cases that would take only one PIL. The

element in the i-th row of NC, NCT and NCS refers to the case in the NeiInts s

at the i direction of intersection C, i=1, 2, 3, 4.

NCS =



















































1 4 7 8

1 2 6 7

3 4 5 6

2 3 5 8
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EW N SCase 7 EW N SCase 8
EW N SCase 4EW N SCase 1 EW N SCase 11

Figure 4.5: Five Impact Cases

NC = [NCS ,NCT ] =



















































1 4 7 8 11

1 2 6 7 9

3 4 5 6 12

2 3 5 8 10



















































On the other hand, there exist some forward-backward-lane (FBL) pairs be-

tween two adjacent intersections, which mean that vehicles in the backward lane

of NeiInt would approach the forward lane of the central intersection. A set F B

is defined to include all possible FBLs. FB(i, j) refers to the vehicles in the j lane

of the NeiInt at the i direction of intersection C.

91



CHAPTER 4.

FB =
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Since at each time, each intersection always has one case to which to assign a

green light, there are only two GLLs. We use g(Int) to represent the case having

a green light; Int refers to the intersection; it can be C, EaNI, WeNI, NoNI and

S oNI. These two GLLs may be in the same direction or in different directions.

When the two GLLs are in the same direction, if the current case of the neighbor-

ing intersection is the impact case, we can determine that only one neighboring

intersection’s traffic conditions would influence the central intersection; otherwise

we can determine that no neighboring intersection is exerting an influence at that

time. When the two GLLs are in two different directions, if one or more than one

current case of a neighboring intersection is the impact case, we can determine that

there is influence from the traffic conditions of one or more neighboring intersec-

tions; otherwise, we can determine that there is no influence from a neighboring

intersection at that time.

Given the next green case candidate of the central intersection g(v), which has

been determined in the green light sequence determination algorithm, CL(g(v), 1)

and CL(g(v), 2) are the two GLLs, M(g(v), 1) and M(g(v), 2) are the directions

that the CL(g(v), 1) and CL(g(v), 2) are towards. Since each direction has two
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ALs, the corresponding backward lanes of the M(g(v), 1) direction neighboring

intersection, in which the vehicles can pass through the neighboring intersec-

tion and enter into the ALs of the central intersection, are FB(M(g(v), 1), 1) and

FB(M(g(v), 1), 2); and the corresponding backward lanes of the M(g(v), 2) direc-

tion neighboring intersection are FB(M(g(v), 2), 1), FB(M(g(v), 2), 2).

On the other hand, based on the current green case of the neighboring in-

tersections, we know the two GLLs, CL(PN(M(g(v), 1)), 1) and CL(PN(M(g(v),

1)), 2) in the M(g(v), 1) direction neighboring intersection; and the two GLLs

in the M(g(v), 2) direction neighboring intersection, CL(PN(M(g(v), 2)), 1) and

CL(PN (M(g(v), 2)), 2).

Hence, we define NLS as representing the impact lanes set of the central inter-

section, NLS (g(v), 1) as the impact lanes (ILs) that are the backward lanes of the

two ALs in the M(g(v), 1) direction of the central intersection, and NLS (g(v), 2)

as the ILs that are the backward lanes of the two ALs in the M(g(v), 2) direction

of the central intersection.

Based on the above analysis, we get that NLS (g(v), 1) is equal to the bigcap

of the backward lanes of two ALs in the M(g(v), 1) direction and the two GLLs

of the M(g(v), 1) direction neighboring intersection (see equation 4.3.14). We

use n(NLS (g(v), 1)) to represent the number of elements in NLS (g(v), 1). From

the analysis, we know that n(NLS (g(v), 1)) ≤ 2; it can be 0, 1, or 2. When

n(NLS (g(v), 1)) is equal to zero, the green case of the M(g(v), 1) direction neigh-
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boring intersection should belong to NICS . When n(NLS (g(v), 1)) is equal to

one, the green case of the M(g(v), 1) direction neighboring intersection should be

one element of matrix NCS (M(g(v), 1)). When n(NLS (g(v), 1)) is equal to two,

the green case of the M(g(v), 1) direction neighboring intersection should be one

element of matrix NCT .

NLS (g(v), 1) ={FB(M(g(v), 1), 1), FB(M(g(v), 1), 2)}
⋂

{CL(PN(M(g(v), 1)), 1),CL(PN(M(g(v), 1)), 2)}

(4.3.14)

Similarly, NLS (g(v), 2) is equal to the bigcap of the backward lanes of two

ALs in the M(g(v), 2) direction and the two GLLs of the M(g(v), 2) direction

neighboring intersection (see equation 4.3.15). We use n(NLS (g(v), 2)) to rep-

resent the number of elements in NLS (g(v), 2). From the analysis, we can know

that n(NLS (g(v), 2)) ≤ 2, it can be 0, 1, or 2. When n(NLS (g(v), 2)) is equal to

zero, the green case of the M(g(v), 2) direction neighboring intersection should

belong to NICS . When n(NLS (g(v), 2)) is equal to one, the green case of the

M(g(v), 2) direction neighboring intersection should be one element of matrix

NCS (M(g(v), 2)). When n(NLS (g(v), 2)) is equal to two, the green case of the

M(g(v), 2) direction neighboring intersection should be one element of matrix

NCT .

NLS (g(v), 2) ={FB(M(g(v), 2), 1), FB(M(g(v), 2), 2)}
⋂

{CL(PN(M(g(v), 2)), 1),CL(PN(M(g(v), 2)), 2)}

(4.3.15)

When the vehicles in the impact lanes ILs approach the central intersection,

they will meet two ALs in a certain direction of the central intersection, the for-
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warding lane, and the left lane. In fact, only the vehicles in the GLLs of the central

intersection would be able to influence the central intersection; others may not do

so. Therefore, it is necessary to calculate the probabilities of which AL these ve-

hicles will enter into. Using a large number of historical traffic data, the average

probabilities of FBLs pairs can be calculated. Different time periods have differ-

ent FBLs probabilities. Usually, the average probabilities can be achieved through

historical data. In peak times, we can obtain some regular traffic patterns, such as

that some FBLs pairs are rather busy so that the probabilities may be higher than

usual, and that some FBLs pairs are rather free so that the probabilities may be

lower than usual.

On the other hand, there are two possibilities for the two GLLs. First, both

of them are in the same direction; second, they belong to different directions. In

the first case, some of the vehicles from ILs would approach the forwarding lane,

the rest would approach the left lane. Since both of the ALs are GLLs, all of the

vehicles from ILs would influence the central intersection. In the second case,

in one neighboring intersection, only the vehicles approaching the GLL would

influence the intersection C. Hence, it is necessary to determine whether the two

GLLs are in the same direction. We use another way of represent this. If the

two GLLs are in the same direction, there is only one influential neighboring

intersection (INI); otherwise, there are two INIs.
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B. Offset Length Computation

After the analysis of the INIs and ILs, the remaining duration of g(M(g(v), i))

at time t, defined as RmT (M(g(v), i), t), also should be taken into account due to

its significance in the offset length computation, i=1,2. If the remaining duration

is large, the traffic conditions in the INI would have a significant effect on the

central intersection. If the remaining duration is short, the traffic conditions in the

INI would have a slight effect on the central intersection. Due to the existence

of Tmax, Lenos(v, t) should be smaller than a threshold Thdrmt(v, t), which can be

computed in equation. 4.3.16.

Based on the previous analysis, we can divide matters into one INI and two

INIs for discussion.

Thdrmt(v, t) = Tmax − Lenpre(v, t) (4.3.16)

1. One Possible Influential Neighboring Intersection

It indicates that g(v) is one of the cases of 2,4,6,8, M(g(v), 1) = M(g(v), 2). We

use M(g(v), 1) to represent them. The current green case of INI is g(M(g(v), 1)),

and two GLLs are CL(g(M(g(v), 1)), 1) and CL(g(M(g(v), 1)), 2). There are three

possibilities of ILs, no IL, one IL, and two ILs. Different circumstances would

have different influences on the central intersection.

• None Impact Lane
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In this circumstance, the current green case of INI, g(M(g(v), 1)), belongs

to NICS which means no influence from a neighboring intersection. Re-

gardless of whether RmT (M(g(v), 1), t) is greater than Thdrmt, Lenos(v, t) is

equal to zero.

Lenos(v, t) = 0 (4.3.17)

• One Impact Lane

In this circumstance, g(M(g(v), 1)) is an element of matrix NCS (M(g(v), 1)).

NL(g(v), 1) is defined as this IL. Regarding the Lenos, we divide it into

two possibilities for discussion, when RmT (M(g(v), 1), t) ≥ Thdrmt(v, t) and

when RmT (M(g(v), 1), t) < Thdrmt(v, t) in equation 4.3.18.

Lenos(v, t) =















Thdrmt(v, t) if RmT (M(g(v), 1), t) ≥ Thdrmt(v, t)

RmT (M(g(v), 1), t) if RmT (M(g(v), 1), t) < Thdrmt(v, t)

(4.3.18)

• Two Impact Lanes

In this circumstance, g(M(g(v), 1)) is an element of matrix NCT (M(g(v), 1)).

NL(g(v), 1) and NL(g(v), 2) are defined as the two ILs. And Lenos(v, t) can

be computed in equation 4.3.18, as if only one IL existed.

2. Two Possible Influential Neighboring Intersections

When there are two INIs, this indicates that g(v) is one of the cases of 1, 3, 5, 7, 9,

10, 11, 12. At this time, M(g(v), 1) , M(g(v), 2). The next green case candidate
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of the two INIs are g(M(g(v), 1)) and g(M(g(v), 2)) respectively. Subsequently,

the two remaining green durations are RmT (M(g(v), 1), t) and RmT (M(g(v), 2), t).

Two GLLs of case g(M(g(v), 1)) are CL(g(M(g(v), 1)), 1) and CL(g(M(g(v), 1)), 2),

and two GLLs of case g(M(g(v), 2)) are CL(g(M(g(v), 2)), 1) and CL(g(M(g(v), 2)), 2).

In each INI, there are three possibilities of ILs, none IL, one IL and two ILs,

which lead to nine circumstances (see Table 4.1) for discussion.

Table 4.1: Number of Impact Lanes of the Central Intersection

Circumstance n(NLS (g(v), 1)) n(NLS (g(v), 2))

1 0 0

2 1 0

3 2 0

4 0 1

5 1 1

6 2 1

7 0 2

8 1 2

9 2 2

• Circumstance 1

In this circumstance, there is no IL for the central intersection, both g(M(g(v), 1))

and g(M(g(v), 2)) belong to NICS . There are no influence from neighbor

intersection. Similarly, Lenos(v, t) should be equal to zero, and Len(v, t)

should be equal to Lenpre(v, t).
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• Circumstance 2

In this circumstance, g(M(g(v), 1)) is an element of matrix NCS (M(g(v), 1))

and g(M(g(v), 2)) ∈ NICS . There are two ALs for vehicles in NL(k, 1) to

approach, while there is only one GLL in the two ALs. The Lenos(v, t) com-

putation is similar to the circumstance of one IL of one INI (see equation

4.3.18).

• Circumstance 3

In this circumstance, g(M(g(v), 1)) is an element of matrix NCT (M(g(v), 1))

and g(M(g(v), 2)) ∈ NICS . The Lenos(v, t) computation is also similar to

the circumstance of one IL of one INI (see equation 4.3.18).

• Circumstance 4

This circumstance is similar to circumstance 2 when 2 INIs exist. In this

circumstance, g(M(g(v), 1)) ∈ NICS and g(M(g(v), 2)) is an element of

matrix NCS (M(g(v), 2)). There are two ALs for vehicles in NL(g(v), 2)

to approach; while there is only one GLL in the two ALs. Similarly, the

Lenos(v, t) can be computed in equation 4.3.19.

Lenos(v, t) =















Thdrmt(v, t) if RmT (M(g(v), 2), t) ≥ Thdrmt(v, t)

RmT (M(g(v), 2), t) if RmT (M(g(v), 2), t) < Thdrmt(v, t)

(4.3.19)

• Circumstance 5
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In this circumstance, g(M(g(v), 1)) is an element of matrix NCS (M(g(v), 1))

and g(M(g(v), 2)) is an element of matrix NCS (M(g(v), 2)). For the off-

set length computations, we define RmT (v, t) to represent the minimum of

RmT (M(g(v), 1), t) and RmT (M(g(v), 2), t) as shown in equation. 4.3.20.

Lenos(v, t) can then be computed in equation 4.3.21.

RmT (v, t) = min{RmT (M(g(v), 1), t),RmT (M(g(v), 2), t)} (4.3.20)

Lenos(v, t) =















Thdrmt(v, t) if RmT (v, t) ≥ Thdrmt(v, t)

RmT (v, t) if RmT (v, t) < Thdrmt(v, t)
(4.3.21)

• Circumstance 6

In this circumstance, g(M(g(v), 1)) is an element of matrix NCT (g(v), 1),

and g(M(g(v), 2)) is an element of matrix NCS (M(g(v), 2)). The Lenos(v, t)

computation is similar to circumstance 5 in equation 4.3.21.

• Circumstance 7

In this circumstance, g(M(g(v), 1)) ∈ NICS and g(M(g(v), 2)) is an ele-

ment of matrix NCT (M(g(v), 2)). The Lenos(v, t) computation is similar to

circumstance 3 and can be shown in equation 4.3.19.

• Circumstance 8

In this circumstance, g(M(g(v), 1)) is an element of matrix NCS (M(g(v), 1))

and g(M(g(v), 2)) is an element of matrix NCT (g(v), 2). The Lenos(v, t)

computation is similar to circumstance 5 (see equation 4.3.21).
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• Circumstance 9

In this circumstance, g(M(g(v), 1)) is an element of matrix NCT (M(g(v), 1))

and g(M(g(v), 2)) is an element of matrix NCT (M(g(v), 2)). The Lenos(v, t)

computation is similar to circumstance 5 (see equation 4.3.21).

Based on all of the above analysis, the next green light length in each intersec-

tion can be determined.

4.4 Performance Evaluation

To evaluate our scheme’s performance, we conduct simulations using our pro-

posed scheme, comparing it with a fixed-time traffic control (FTC), an actuated

traffic control (ATC), and an adaptive fuzzy logic control (AFLC), which are based

on the same random arrival rate of each lane, T , speed, Lvehicle and Llane.

The FTC used is the optimal fixed-time control in each intersection under

the given traffic parameters, which can be achieved through simulations. The

ATC used is a simplified SCOOT control scheme applied in this traffic network

structure; and the AFLC used is from [52] because of the same traffic network.

Since our scheme schedules the traffic lights of multiple intersections in a dis-

tributed way, it can be applied in an arbitrary number of intersections. In this

simulation, we define a traffic structure consisting of 13 inter-connected inter-

sections. There is one central intersection connected to four major neighboring
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intersections. Meanwhile, each major intersection connects to its own three minor

neighboring intersections. The five intersections (the central intersection and the

major intersections) can schedule the traffic lights in a decentralized way.

Similar to Section 3.4, we use volume-to-capacity to indicate the degree to

which traffic conditions are busy. Here, the average traffic volume would be equal

to TV
capacity

.

The performance metrics include throughput-to-volume, average waiting time,

and average number of stops. The network throughput can be calculated using the

total number of vehicles departing the network per unit of time, and would be

expressed as the number of vehicles per second. Throughput-to-volume is defined

as the ratio of departing vehicles to the total volume of traffic.
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Figure 4.6: Throughput-to-volume comparisons between fixed-time traffic con-

trol, actuated traffic control, adaptive fuzzy logic control, and our proposed ap-

proach
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Fig. 4.6 presents the throughput-to-volume comparisons between FTC, ATC,

AFLC, and our proposed scheme. From the figure, it is apparent that our scheme

can achieve the best throughput. When the volume-to-capacity is lower than 0.2,

all of the approaches can achieve a good performance although ours obtains the

best performance. When the volume-to-capacity is in the interval of [0.2, 0.4], the

other three start to perform worse while our scheme obtains increasing throughput

and achieves almost 100% throughput. The difference between our control the

other three controls increases. When the volume-to-capacity is [0.4, 1], the traffic

flow increases so that our scheme can no longer achieve the high throughput. The

throughput-to-volume obtained by our scheme begins to decrease when the other

three approaches continue getting lower throughput.
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Figure 4.7: Comparisons of average waiting time between the fixed-time traffic

control, actuated traffic control, adaptive fuzzy logic control, and our proposed

approach
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Fig. 4.7 shows comparisons of average waiting times. As seen in the figure,

the average waiting time in FTC increases rapidly - much faster than the other

three controls, when the volume-to-capacity is growing. Due to the difficulty of

identifying ATC, AFLC, and our scheme in Fig. 4.7, we enlarge the performance

of the three approaches in Fig. 4.8, making it easier to observe the comparisons

of performance.
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Figure 4.8: Comparisons of average waiting time between the actuated traffic

control, adaptive fuzzy logic control and our proposed approach

With the volume-to-capacity increasing to 0.6, the average waiting time in our

proposed scheme remains lower than 5 seconds, while the other two control ap-

proaches have a growing average waiting time reaching approximately 20 seconds

and 35 seconds, respectively. Under this circumstance, our scheme can achieve at

least a 75% reduction in average delay. As the volume-to-capacity increases from
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0.6 to 1, the waiting time in all three approaches keeps growing, but our scheme

always results in the shortest waiting time.

Fig. 4.9 shows the comparisons of the average number of stops among the

four approaches. Before the volume-to-capacity increases to 0.4, the number of

stops in the other three approaches is almost double or triple the number of stops

in our scheme, which remains under 0.5. When the volume-to-capacity increases

from 0.4 to 1, the number of stops in all of the approaches increase, although our

scheme still has the fewest stops.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

3

Volume−to−Capacity

A
v
e

ra
g

e
 N

u
m

b
e

r 
o

f 
V

e
h

ic
le

 S
to

p
s

 

 

Fixed−time Control

Actuated Control

Adaptive Fuzzy Control

Proposed Control

Figure 4.9: Comparisons of average number of stops between the fixed-time traffic

control, actuated traffic control, adaptive fuzzy logic control, and our proposed

approach.

Finally, from the results of the simulation, we can find that our proposed

scheme can achieve higher throughput, lower average delay, and fewer average

number of stops compared with the optimal fixed-time traffic control, an actuated

traffic control, and an adaptive traffic control.
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4.5 Summary

In this chapter, we have proposed an adaptive traffic light control scheme of

multiple intersections with the purpose of increasing traffic throughput, reducing

average waiting time, and the average number of stops. Our experimental results

demonstrated that the proposed scheme could produce higher throughput, lower

waiting time for vehicles, and fewer number of stops compared with the optimal

fixed-time control, an actuated control, and an adaptive control.
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Prototype Implementation on

iSensNet

In order to approach real world applications, we implement our proposed ap-

proaches into our WSN-based ITS testbed, the iSensNet (Intelligent Services with

Wireless Sensor Network) platform, as shown in Fig. 5.1. The iSensNet platform

is used for running various protocols or application programs in three layers: the

MAC Layer, routing layer, and application layer [21]. There are two types of

sensor nodes installed in this platform: stationery sensor nodes and mobile nodes.

The stationery sensor nodes include detection nodes, which are installed under

the platform; and roadside units, which are installed at each intersection. Mo-

bile nodes refer to the sensor nodes installed at each mobile car model, and can

communicate with the stationary nodes. Furthermore, iSensNet is able to evaluate

performance in a real-time manner because of the dual-mote design which con-

sists of two motes using different frequencies to communicate. One frequency is

for normal functions of user programs, and the other frequency is for real-time
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performance evaluation.

Figure 5.1: iSensNet platform

On our iSensNet testbed, there are four four-leg intersections and two three-

leg intersections equipped with traffic lights. Vehicles are allowed to move in

the testbed in an adjustable speed. Each vehicle would choose an option (going

forward or turning left) randomly when at the intersection such that the traffic

environment is dynamically changing. In this way, the arrival rate of each lane of

each intersection is able to be random since the vehicles move around in a random

manner on the testbed.

Our iSensNet can satisfy the requirements of transportation and civil engi-

neering applications by using a system approach. iSensNet has the following

advantages. It can process complex events, which can significantly improve the
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usability of the WSNs and energy efficiency. Furthermore, it also can handle sam-

pling and event processing at a very high rate, which is crucial to many practical

applications.

5.1 A Simplified Intersection Model in iSensNet

Due to the physical constraints inherent in our platform, we have a simplified

intersection model (see Fig. 5.2) that is different from the intersection model de-

signed in previous chapters. In this intersection model, there are four approaches:

east, south, west, and north; each approach has only one lane with going forward

and left turns are permitted. Each lane of this intersection has a traffic light that

can provide two signals: red (stop) and green (go).

In this scenario, we install three categories of sensor nodes because of their

different functionalities: Detection Sensor Nodes (DSNs), Vehicle Nodes (VNs)

and Roadside Units (RNs).

DSNs, which are installed under the two ends of each lane, are responsible

for detecting whether the vehicles passing through these locations in the lanes are

equipped. If any vehicle is detected, the number of vehicles in the lane can be

calculated in real-time. Currently, we use an IC card.

VNs, which are installed in each vehicle, can communicate with each other

and with other sensor nodes. In this way, vehicles can know the current surround-

ing traffic conditions to avoid possible traffic congestion.
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Figure 5.2: A simplified Intersection Model in iSensNet

RNs, which are installed at the intersection to control the traffic lights, can

communicate with each other. RNs have two functions in this implementation.

First, they are responsible for helping vehicles to register and for giving them

information about current traffic lights to guarantee the reliability of the wireless

communication. Second, it can make traffic light scheduling decisions based on

our proposed approaches.

5.2 Work Flow

Under the consideration of maximizing the number of vehicles going through the

intersection and avoiding any traffic congestion at the intersection, there exist two
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Figure 5.3: All Possible Cases of the Intersection in iSensNet

different combinations of traffic green lights, which from different our previous

research work. Another difference in this model is that the vehicles run left; while

in our research, we assume that all vehicles run right. Hence, there are only two

cases of the corresponding configurations of traffic green lights, as shown in Fig.

5.3.

Therefore, our task is to schedule the timings and periods of the traffic lights

adaptively to maximize the intersection throughput and minimize the average de-

lay in a dynamic traffic environment. Similarly, there also exist two constraints:

the maximum vehicle waiting time at the intersection and the hunger level of all

cases, which could be considered as system fairness.

The working process is designed as follows.

Step 1. When a vehicle passes through the DSN installed below, the VN can
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identify the current location. Then, VN will broadcast a packet to all one hop

neighbors; the packet contains its own VN id and the DSN id.

Step 2. If the vehicle is in the approaching lane of the intersection, the cor-

responding RN can receive the packet, and help the VN to register for its arrival.

Meanwhile, the RN will send information on the current traffic lights to the vehi-

cles so that vehicles will know whether they should stop at the intersection or can

pass through the intersection.

Step 3. At the same time, the RN can process the information to calculate the

number of vehicles currently in the four approaching lanes. Then, the RN makes

a control decision using our proposed approach. Based on the real-time traffic

volume, we can compute the two case’s respective green light demand according

to the same principle proposed in chapter 3. Next, the RN makes a control decision

that approaches the objective while satisfying the constraints. After that, the RN

will schedule the traffic lights accordingly.

With the process working when it is repeated, it seems clear that the traffic

light control system run properly and adaptively using our proposed approach.

5.3 Demonstration

We define several different traffic conditions to evaluate our approaches’ perfor-

mance. The result show that our approach can achieve a real-time schedule and

adjust the case sequence and durations adaptively.
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Figure 5.4: Sequence Adjust-

ment, before the light changes

Figure 5.5: Sequence Adjust-

ment, after the light changes

From Fig. 5.4 and Fig. 5.5, we can observe the adjustment to the case se-

quence. Fig. 5.4 shows the traffic conditions before the light changes. There is

only one vehicle in this approaching lane that needs a green light, while the other

approaching lane has no vehicles and does not need a green light. Under this kind

of traffic situation, the RN makes a control decision to assign the green light to the

case with the vehicle, allowing it to pass through. Fig. 5.5 shows the green light

being assigned to that certain case for a duration of 5 seconds, which is defined

initially as the minimum green light length.

From Fig. 5.6 and Fig. 5.7, we can observe the adjustment in the duration of

the case. Fig. 5.6 shows the traffic conditions before the light changes. There are

two vehicles in this approaching lane, which needs the green light again, while the

other approaching lane is not occupied by any vehicle. Under this kind of traffic

situation, the RN makes a control decision to assign the green light for the case

again with a longer green light length that admits the vehicles to pass through.
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Figure 5.6: Length Adjustment,

before the light changes

Figure 5.7: Length Adjustment,

after the light changes

Fig. 5.7 shows the green light assigned to that case for a duration of 6 seconds,

which is different from the initial value, in order to let more vehicles pass.

Figure 5.8: Sequence and

Length Adjustment, before the

light changes

Figure 5.9: Sequence and

Length Adjustment, after the

light changes

From Fig. 5.8 and Fig. 5.9, we can observe both the case sequence and

the adjustments to the duration of the case. Fig. 5.8 shows the traffic conditions

before the light changes. There are two vehicles in this approaching lane that need

a green light, while the other approaching lane is not occupied by any vehicle and

does not need a green light. Under this kind of traffic situation, the RN makes
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a control decision to assign the green light for the case with the vehicles, with a

longer green light duration. Fig. 5.9 shows the green light assigned to that case

for a duration of 6 seconds, which is different from the initial value in order to let

the current two vehicles leave.

Apart from the above three scenarios, we also define more complex traffic

conditions to evaluate the performance of our approach. A demonstration [5]

with different types of traffic conditions shows that our approach is both effective

and practical in our platform.

5.4 Summary

In this chapter, we implemented our approach into our iSensNet platform to eval-

uate the performance of the approach and investigate the possibility of applying it

to the real world. Our experimental results demonstrate that our approach can deal

with a number of different types of traffic conditions in an effective and practical

manner with fewer average delay and more throughput than other approaches.
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Conclusions and Future Works

6.1 Conclusions

In this chapter, we first summarize the works included in this thesis. Then, we

discuss the future directions of our current work.

In this thesis, we first investigated the characteristics of WSN-based ITS, in the

aspects of surveillance, communication, and traffic light control, and identified the

challenging issues in the problem of optimizing the control of traffic lights. Based

on the investigations, we addressed the issue of how to design adaptive traffic light

control approaches for an isolated intersection and for multiple intersections.

Regarding to the traffic light control in an isolated intersection, we proposed

an adaptive traffic light control scheme, with a wireless sensor network to detect

and transmit real-time traffic data, to increase the throughput and decrease the

average delay. First, we defined twelve green lights cases, under the constraints

of a given intersection model and subject to traffic safety rules, and then made
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control decisions determining the sequence and length of the traffic lights based

on the cases. The scheme contains three steps: real-time traffic detection, green

light sequence determination, and light length determination. Real-time traffic

detection involves detecting and calculating traffic information in real-time, e.g.,

traffic volumes, waiting time, and characteristics of traffic flow. Based on the

calculated data, all of the cases will compute their green light demand, and the

case with the greatest value will be assigned the next green light. The length of

the light will be determined by the minimum of upper bound of the green light,

and sufficient time will be given for vehicles to pass through.

On the subject of traffic lights in multiple intersections, we proposed an adap-

tive traffic light control scheme, using traffic data provided by a wireless sensor

network. The control scheme also includes real-time traffic detection to collect

traffic data in a real-time manner, green light sequence determination to decide

the sequence of the traffic lights of multiple intersections using the traffic infor-

mation that was collected, and light length determination to determine the length

of the traffic lights of multiple intersections based on the local traffic volume and

the remaining duration of the green lights in neighboring intersections.

Extensive evaluations, including simulations and implementations, were con-

ducted to examine the performance of our proposed approaches. The results show

that our objectives have been well fulfilled, and that our approaches outperform

the previous approaches in terms of throughput, average delay, and average num-
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ber of stops.

6.2 Future Works

Our research in this thesis mainly focused on the adaptive traffic light control in

a WSN-based ITS. In future work, we hope to improve the proposed approaches

and to investigate related research directions.

One issue that deserves further study is the need to change the assumption

of constant speed. In our current models, the speed of all vehicles is treated as

the same, which does not reflect traffic conditions in the real world. Changing

the consideration of speed would make our models more dynamic and compli-

cated, and increase the complexity of the design of our approach. How to achieve

an adaptive and real-time traffic light control for vehicles with dynamic speed is

worth investigating.

Controlling traffic lights in over-saturated intersections is another promising

research direction. In this thesis, we only consider under-saturated traffic condi-

tions, which is common in daily life except during the rush hours. How to improve

traffic control performance in peak periods is a significant and attractive issue for

research, which still needs further study.

Finally, we would like to take pedestrians into account when controlling traffic

lights. In this thesis, we only take vehicles into consideration. However, most of

urban traffic networks include pedestrian traffic, which cannot be ignored in the
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real world. Hence, the subject of controlling traffic lights with both vehicle and

pedestrian traffic in mind should be studied further.

119



Chapter 7

Appendix

Proposition 1. Two traffic lights at most have green signals simultaneously.

Proof. At first, let us assume that there exists one case of three traffic lights having

green signals at same time. Let us divide this situation into three cases.

First, the three green lights are all for forward lanes. This is obviously impos-

sible. If one green light is in the approach west, then the approach north and south

cannot have green signals; if there is a red light in the approach west, this means

that green lights are in the other three approaches. This is also impossible. Hence,

the first case is impossible.

Second, the three green lights are all for left lanes. This is also impossible.

Similar to the first case, the second case is also impossible.

Therefore, only one case is possible, including going forward and turning left.

So in the case of three green lights, there is at least one in the forward lane and one

in the left lane. If the remaining green light is for the forward lane, there would
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be two green lights for the forward and one for the left lane. In this case, the two

green lights should be in the forward lane in opposite approaches.

Then, it is not difficult to find that left turns would be unavailable, regardless

of the approach. If the remaining light is for the left lane, there would be two

green lights for the left lanes and one for the forward lane. This is similar to the

former case. Therefore, the third case is also impossible.

Hence, at most two traffic lights can simultaneously have green signals. �

Definition 1. Let F(x), L(x) be admission for the movement going forward and

turning left in direction x, respectively. x ∈ I.

Proposition 2. There exist twelve combinations of movements taking into con-

sideration maximum throughput and congestion avoidance.

Proof. Let us observe going forward in the approach north F(n). Three move-

ments are available for it at same time, F(s), L(n), L(e). Then, let us observe

going left in the approach north L(n). Three movements are available for it at

same time, F(n), F(w), L(s). A similar situation can be seen in the other three

approaches. Meanwhile, the movements going left have been counted twice: one

is in its own calculation, the other is together with the other available movements

of going forward. Similarly, therefore, there exist 6×4

2
= 12 cases. �
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