
UC Davis
UC Davis Previously Published Works

Title
Adaptive traffic signal control with vehicular Ad Hoc networks

Permalink
https://escholarship.org/uc/item/0kq8k0jq

Journal
IEEE Transactions on Vehicular Technology, 62(4)

ISSN
0018-9545

Authors
Pandit, K
Ghosal, D
Zhang, HM
et al.

Publication Date
2013

DOI
10.1109/TVT.2013.2241460
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/0kq8k0jq
https://escholarship.org/uc/item/0kq8k0jq#author
https://escholarship.org
http://www.cdlib.org/


Adaptive Traffic Signal Control With

Vehicular Ad hoc Networks
Kartik Pandit, Dipak Ghosal, Member, IEEE, H. Michael Zhang, and

Chen-Nee Chuah, Senior Member, IEEE

Abstract—In this paper, we propose to use vehicular ad hoc
networks (VANETs) to collect and aggregate real-time speed and
position information on individual vehicles to optimize signal
control at traffic intersections. We first formulate the vehicular
traffic signal control problem as a job scheduling problem on
processors, with jobs corresponding to platoons of vehicles. Under
the assumption that all jobs are of equal size, we give an online
algorithm, referred to as the oldest job first (OJF) algorithm, to
minimize the delay across the intersection. We prove that the OJF
algorithm is 2-competitive, implying that the delay is less than or
equal to twice the delay of an optimal offline schedule with perfect
knowledge of the arrivals. We then show how a VANET can be
used to group vehicles into approximately equal-sized platoons,
which can then be scheduled using OJF. We call this the two-phase
approach, where we first group the vehicular traffic into platoons
and then apply the OJF algorithm, i.e., the oldest arrival first
(OAF) algorithm. Our simulation results show that, under light
and medium traffic loads, the OAF algorithm reduces the delays
experienced by vehicles as they pass through the intersection, as
compared with vehicle-actuated methods, Webster’s method, and
pretimed signal control methods. Under heavy vehicular traffic
load, the OAF algorithm performs the same as the vehicle-actuated
traffic method but still produces lower delays, as when compared
with Webster’s method and the pretimed signal control method.

Index Terms—Conflict graphs, online job scheduling, traffic
signal control, vehicular ad hoc network (VANET) simulation,
vehicle-actuated traffic signal control, Webster’s algorithm.

I. INTRODUCTION

INTELLIGENT traffic signal control has been extensively

studied in the literature [9], [25], [28]. Current methods of

implementing intelligent traffic signal control include roadside

sensors, such as loop detectors and traffic monitoring cameras.

Loop detectors can only detect the presence or absence of

vehicles [15], [16], which is a serious limitation. These loop de-

tectors are physically connected to the traffic signal controller,

and this connection is used to communicate the information

Manuscript received June 15, 2012; revised October 15, 2012 and December
16, 2012; accepted January 9, 2013. Date of publication January 18, 2013; date
of current version May 8, 2013. The review of this paper was coordinated by
Dr. G. Mao.

K. Pandit and D. Ghosal are with the Department of Computer Science,
University of California at Davis, Davis, CA 95616 USA (e-mail: kdpandit@
ucdavis.edu; ghosal@ucdavis.edu).

H. M. Zhang is with the Department of Civil and Environmental Engi-
neering, University of California at Davis, Davis, CA 95616 USA (e-mail:
hmzhang@ucdavis.edu).

C.-N. Chuah is with the Department of Electrical and Computer Engi-
neering, University of California at Davis, Davis, CA 95616 USA (e-mail:
chuah@ucdavis.edu).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TVT.2013.2241460

gathered from the loop detectors to the traffic signal controller.

The traffic signal controller then uses the data to schedule traffic

through the intersection by cycling through preset phases and

assigning appropriate amounts of GREEN time or skipping

phases altogether. More recently, video-based traffic detection

systems employing traffic monitoring cameras have been con-

sidered for traffic signal control. A prominent example of this

is in Reno, NV, USA, where traffic data from video cameras

is aggregated, and duration of red lights are adjusted based on

current traffic volumes [1], [2]. While these have been effective,

particularly to coordinate traffic conditions with known events,

they require a high degree of human intervention.

In this paper, we examine the possibility of deploying

an intelligent and real-time adaptive traffic signal controller,

which receives information from vehicles, such as the vehi-

cle’s position and speed, and then utilizes this information

to optimize the traffic signal scheduling at the intersection.

This approach is enabled by onboard sensors in vehicles and

standard wireless communication protocols specifically for

vehicular applications. For example, all vehicles are already

equipped with a speed sensor. In addition, new vehicles are

increasingly being equipped with Global Positioning System

(GPS) units that can provide location information with accuracy

of a few meters [25]. Furthermore, vehicles can use wireless

communications for vehicle-to-vehicle (V2V) or vehicle-to-

infrastructure (V2I) communications, as described in the dedi-

cated short-range communications/wireless access in vehicular

environments standards operating in the spectral range of 5.85–

5.95 GHz [19]. We refer to the transient mesh networks formed

via V2V or V2I communication links as vehicular ad hoc

networks (VANETs).

A. VANET Applications

The speed and location information on vehicles that can be

disseminated to the traffic signal controller using VANETs [10]

are both spatially and temporally fine-grained. Such precise per-

vehicle speed and location information can enable additional

capabilities such as being able to predict the time instance when

vehicles will reach the stop line of the intersection. This is in

comparison with roadside sensors such as loop detectors that

can only detect the presence or absence of vehicles and, at best

estimate, the size of vehicle queues. Furthermore, it is cheaper

to equip vehicles with wireless devices than to install roadside

equipment [25].

Traffic adaptive signal control has been widely studied.

Examples include the well-known Split, Cycle, and Offset



Optimization Techniques (SCOOT) [16] and Sydney Coordi-

nated Adaptive Traffic System (SCATS) [26]. SCOOT uses

a loop detector as a sensor that is placed at the entry point

of every link to an intersection. SCATS also relies on loop

detectors, which are immediately placed before the stop line

of an intersection. RHODES and its successor MILOS [14] are

probably the most sophisticated traffic adaptive control systems

that have been recently developed. They are also based on loop

detectors, and they optimize lost times on a global scale. In

MILOS, the traffic signal scheduling is done for a network of

traffic controllers, including freeway ramp controllers. Loop

detectors provide vehicle’s position information to a central

controller, which then generates schedules for the entire traffic

network. In [7], a detailed survey of vehicle-actuated traffic

signal control methods is given, both for one-way and two-

way streets. The VANET-based vehicle-actuated traffic method

is based on the study presented in [7], with additional enhance-

ments that take advantage of the finer grain information enabled

by a VANET. These enhancements take advantage of the ability

of the VANET infrastructure to estimate when a vehicle is going

to approach the stop line. The controller uses this information

to extend the GREEN time by an appropriate amount so that the

vehicle can pass through the intersection. Another example of

VANET-based traffic signal control is Traffic View [25]. This

work modified the Webster’s method to leverage VANETs to

communicate with the traffic signal controller.

VANETs have also been used to enhance other traffic control

and management applications. The study in [10] presents a

VANET-based method for variable speed limits to improve

the flow of vehicles in freeways. In [21], VANETs are used

to detect highway incidents and broadcast this information

to drivers. In an extension to this work, [12] examines the

“memory” that platoons of vehicles can keep to more efficiently

broadcast freeway incident messages. VANETs have also been

used in many driver experience improvement applications. For

example, VANETs have been used to monitor road conditions

in [18]. In addition to VANET, cellular communications have

been used to design a system that estimates traffic delays

in [11].

B. Our Contributions

In this paper, we present an algorithm, which we call the

oldest arrival first (OAF) algorithm, that makes use of the

per-vehicle real time position and speed data to do vehicular

traffic scheduling at an isolated traffic intersection with the

objective of minimizing delays at the intersection. This simple

algorithm leads to a near optimal (delay minimizing) schedule

that we analyze by reducing the traffic scheduling problem to

a job scheduling problem, with conflicts, on processors. The

scheduling algorithm captures the conflicts among opposing

vehicular traffic with a conflict graph [9], and the objective

of the algorithm is to minimize the latency values of the jobs.

If the condition that all jobs require equal processing time is

enforced, we can show that the OAF algorithm becomes the

oldest job first (OJF) algorithm in the job scheduling domain

with conflicts between jobs and the objective of minimizing job

latency values. We present a 2-competitive (with respect to job

latencies) online algorithm that does nonclairvoyant scheduling

[27] with conflicts of the jobs on the processors and then prove a

stronger result that the best possible nonclairvoyant scheduling

with conflicts algorithm is 2-competitive.

We leverage a VANET to implement the OJF algorithm. An

important requirement for the OJF algorithm is that all jobs

require equal processing time. We give an algorithm that uses

the VANET to divide up the approaching vehicular traffic into

platoons that can be treated as jobs in the job scheduling with

conflicts. The traffic signal controller can then use the conflict-

free schedule from the OJF algorithm to schedule platoons

of vehicles in a safe conflict-free manner. This two-phase

approach, where we first use the platooning algorithm to divide

up the traffic into platoons and then treat each platoon as an

equal-sized job and then apply the OJF algorithm on the jobs to

generate a conflict-free schedule, leads to what we call the OAF

algorithm.

To ascertain the performance of the algorithm, we choose

the average delay per vehicle that has passed through the

intersection as the measure of effectiveness. We compare the

performance of the OAF algorithm against an vehicle-actuated

traffic signal controller, Webster’s algorithm, and a fixed-time

algorithm. The vehicle-actuated algorithm and Webster’s algo-

rithm are well-known traffic algorithms [9] that traditionally

utilize fixed road-based sensors such as loop detectors. We

have modified these methods to also utilize the information

from VANETs, and we give the details in Section III. We also

test the performance of the OAF algorithm in the scenario

where only a proportion of the vehicles are VANET enabled.

We conduct the experiments on a closed-loop VANET sim-

ulator that couples the realistic and the well-known Simula-

tion of Urban Mobility (SUMO) traffic simulator [3] and the

INET/OMNET++ [4] wireless simulator. This novel simulator

realistically simulates the closed-loop interaction between the

wireless communication characteristics and the mobility of the

vehicles. The vehicular traffic simulator has a proven mobility

model and is a widely used tool in industries and laboratories

to do experiments on urban traffic operations research. The

wireless simulator INET/OMNET++ also realistically simu-

lates the wireless channel and wireless packet traffic delivery

probabilities in the presence of multiple radio transmitters.

The rest of this paper is organized as follows. In Section II,

we outline the OJF traffic signal algorithm and analyze its

optimality. In Section III, we describe how a VANET and,

more specifically, V2I communications can be leveraged to

implemented the OAF algorithm. In Section IV, we describe

the simulation tool that has been implemented to study the per-

formance of OAF and compare it with other VANET-enabled

traffic light scheduling algorithms. In Section V, we discuss the

simulation results. Finally, in Section VI, we conclude with a

discussion on future research directions.

II. TRAFFIC LIGHT SCHEDULING REDUCED

TO JOB SCHEDULING (OJF ALGORITHM)

Here, we propose a method to reduce traffic signal control

problem to the problem of scheduling jobs on processors, and

we propose an online job scheduling algorithm called the OJF



Fig. 1. Typical four-leg intersection showing the different movements on the
approaches.

Fig. 2. Conflict graph for the intersection in Fig. 1.

algorithm. This is phase two of the OAF two-phase traffic signal

control algorithm.

Fig. 1 shows a typical four-leg intersection with eight traffic

movements numbered 1–8. This type of intersection is the most

common and well-studied type [7], [8]. There are conflicts

among some of these movements. For example, traffic move-

ments 1 and 2 cannot simultaneously occur. We can reduce

the problem of traffic signal control to scheduling of jobs on

a processor, where a job is a platoon of one or more vehicles.

We classify jobs as follows. A job is of type i if and only

if the platoon of vehicles that it represents is part of traffic

movement i. A pair of jobs of type i and j are said to be in

conflict if the traffic movements i and j are in conflict; hence,

jobs of type i and j cannot be scheduled to be simultaneously

processed. For the intersection in Fig. 1, we can build a conflict

graph G(V,E), where V is a set of vertices, and E is a set

of arcs. There is a vertex for each job type, i.e., for each

job type i, ∃ vertex i ∈ V . The arc set E is constructed as

follows. If jobs of type i, j are in conflict (and cannot be

scheduled simultaneously), then there exists an arc (i, j) in E.

E does not contain any other arc, and V does not contain any

other vertex. The conflict graph for the four-leg intersection in

Fig. 1 is shown in Fig. 2. Conflict graphs have been studied by

traffic engineers to build safe traffic signal control plans. In [9],

methods of developing safe signal control plans are shown for

more complicated traffic intersections. We will assume that jobs

are of equal size, and each job i of type j has an arrival time aji ,

which would correspond to the instance of time when the first

vehicle of platoon i arrives at the stop line in movement j. We

will assume that time is divided into slots, and since all jobs are

equal, without loss of generality, we can assume that all jobs

need 1 unit of time to complete. Thus, if a job is scheduled at

time t, it will complete at time t+ 1. The ability to divide the

oncoming traffic into platoons that require approximately equal

amount of GREEN time (the green time represents the amount

of processing time required) is achieved using a VANET. We

discuss how this is done in Section III. At the beginning of time

unit t, jobs of any type j can arrive, and we can think of them

as arriving at vertex j in G. A group of vertices is chosen that

do not conflict, and a job from each of these is scheduled in

time t. Now, our objective would be to minimize the maximum

latency over all jobs. For a particular job aji , the latency is

di − aji − 1, where di is the time unit at the beginning of which

job i has disappeared (completed), and aji is the time unit at

the beginning of which job i of type j arrived. Therefore, the

objective is simply to minimize the maximum latency. In the

context of vehicular traffic, minimizing maximum latency is

equivalent to minimizing the maximum time that any vehicle

spends at rest at an intersection waiting for green light. An

important simplification that we make here is that all jobs need

equal service time.

Job scheduling with conflicts is a well-studied problem. It

was first identified in [20] as one of the famous 21 NP-hard

(Complete) problems. It was shown that even approximating

the problem is hard [23]. It is easy to see that the graph coloring

problem can be reduced to job scheduling with conflicts. In

particular, bipartite graphs can be colored in polynomial time,

and the minimum number of colors needed is 2. A bipartite

graph (or bigraph) is a graph whose vertices can be divided

into two disjoint sets U and V , such that every edge connects a

vertex in U to one in V , i.e., U and V are each independent sets.

However, in our problem setting, we have no prior knowledge

of the time instance at which jobs arrive. Consequently, any

algorithm that schedules jobs in this setting cannot make any

assumptions on the arrival times of jobs and can only schedule

jobs that have already arrived at the vertices. Such a type

of algorithm is called an online algorithm. In contrast, if an

algorithm has prior knowledge of arrival times of all jobs, it

might use this information to compute a better schedule. This

type of algorithm is called an offline algorithm. An online

algorithm is said to be c-competitive if, for any sequence of

jobs, its cost on the sequence is at most c times the cost of the

optimal offline algorithm on the same sequence plus an additive

constant [13].

The techniques that are used to analyze online algorithms are

described in [13]. In [27], a 2-competitive algorithm was shown

that minimizes the makespan in the case of bipartite conflict

graphs. More recently, in [17], it has been proven that, for the

problem of minimizing maximum latency on conflict graphs, no

algorithm can be better than a n/4-competitive algorithm, and

they actually devise an algorithm that has maximum latency

of O(n2T 2), where T is the maximum latency of any job in

the schedule returned by the optimal offline algorithm, and n is

the number of vertices. We give a 2-competitive algorithm for



Fig. 3. Bipartite graph for the conflict graph G′ in Fig. 2.

the much simpler case of a bipartite graph with n = 2. The

proof in [17] can then be used to show that there cannot exist a

better online algorithm.

A. 2-Competitive Algorithm for Job Scheduling

Having made the reduction from vehicular traffic scheduling

to job scheduling with conflicts, we present a 2-competitive

algorithm that minimizes latency for each job that we call the

OJF scheduling algorithm. In addition, it turns out that, under

the assumption of no future knowledge, this is the best possible

online algorithm. The OJF scheduling algorithm can only be

applied to bipartite conflict graphs; therefore, we need to do this

transformation first. Graph G in Fig. 2 can be transformed into

a bipartite graph G′ by merging vertices 1 and 2, 3 and 4, 5 and

6, and 7 and 8. Fig. 3 shows the bipartite graph. We describe the

OJF scheduling algorithm as follows.

Algorithm 1: OJF scheduling algorithm.

Let ari , ar
′

j , alk, and al
′

m be the earliest arrival times on each

of the vertices of G′;

while r, r′, l, l′ have jobs waiting, do

Let ast be the earliest arrival time among ari , ar
′

j , alk,

and al
′

m;

Let S be the side of G′ on which vertex s lies;

for Each vertex s′ on side S in G′, do

Schedule the job with the earliest arrival as
′

t ;

Let r and r′ be the vertices on the right side, and let l and

l′ be the vertices on the left side of the bipartite graph. Let L
be the list of jobs that would arrive at the vertices in some time

interval. Since we have no prior knowledge of the composition

of L, the OJF algorithm aforementioned in Algorithm 1 makes

decisions on the fly to reduce the maximum latency and is hence

an online algorithm. For example, there exists an algorithm

A∗ that, given L, generates the optimal schedule (a schedule

that minimizes maximum latency). A∗ is the optimal offline

algorithm (see Table I for notations). Let us compare the

performance of OJF and A∗ when it comes to minimizing the

maximum latency. We claim that the OJF scheduling algorithm

is 2-competitive, i.e., for any L, OJF produces a schedule where

the maximum latency experienced by any job is at most twice

the maximum latency experienced by any job in a schedule

produced by A∗. Thus, the OJF algorithm is 2-competitive.

Furthermore, it turns out that there cannot exist a better than

2-competitive algorithm for job scheduling under the assump-

tion of no future knowledge.

To prove that OJF is 2-competitive, we need the following

lemma.

Lemma 2.1: Let the weight of a vertex be the number of jobs

waiting on it. The weight of an arc in G′ is the sum of the

weights of its two vertices. For example, T is the maximum

latency in the schedule for L returned by A∗. Then, OJF always

maintains the following for all time t.

1) If A∗ has an arc of weight w at some time unit t, then the

optimal schedule has at least w − T jobs on the same arc

at time t.
2) If A∗ has a vertex of weight w at some time unit t, then

the optimal schedule has at least w − T jobs on the same

vertex at time t.

Proof: See the Appendix. �

Theorem 2.2: OJF is 2-competitive.

Proof: We will prove that, for any L, if the schedule

generated by A∗ for L has maximum latency T , then OJF will

generate a schedule that has latency at most 2T . As long as

the two conditions specified in the lemma are maintained, there

can never be an arc of weight 2T + 2 or more as algorithm OJF

runs, since otherwise (by the lemma) there would be an arc of

weight at least T + 2 and then the schedule produced by A∗

would have a latency of at least T + 1 on some job. Therefore,

OJF never has more than 2T + 1 jobs on an arc, and when

job j arrives on vertex l, there are never more than 2T other

jobs on any arc going into to l. Let X be the number of jobs

already on l when the job j arrives, i.e., 0 ≤ X ≤ 2T . There

are at most 2T −X jobs on any vertex on the right side. Once

the left side has been chosen x times by OJF, j will be the oldest

job on vertex l; therefore, it will be scheduled the next time the

left side is chosen by OJF. If we can prove that the right side

is not chosen more than 2T −X times before j, then we know

that j incur latency at most 2T before it is scheduled. After the

right side has been chosen 2T −X times, if j has not yet been

chosen, then the left side has the oldest job in the system. This

gives us our result. �

The given discussion shows that, if we can do the reduction

from vehicular traffic scheduling to job scheduling correctly,

we can employ the OJF algorithm to generate schedules that

will then be applied to schedule vehicular traffic at intersections

while maintaining the 2-competitive performance bounds.

B. Optimality of the OJF Algorithm

Here, we prove that the algorithm presented earlier obtains

the optimal competitive ratio. We adopt the proof for a bipartite

graph with n vertices given in [17]. The method is based on an

adversary technique in which the adversary creates a sequence

of job arrivals based on the behavior of the online algorithm. At

the beginning of each time unit, the adversary can determine

how many jobs arrive and on which vertices of the conflict

graph. After the entire job sequence has been determined, the



TABLE I
SEMANTICS OF NOTATIONS USED IN THE OJF SCHEDULING ALGORITHM

adversary then can determine a schedule for the jobs in an

offline manner. The adversary tries to create the worst sequence

possible for the online scheduling algorithm. The cost of the

online algorithm is then compared with the cost of the adversary

determined offline algorithm. For a four-leg intersection, we

consider to reproduce the same proof for the much easier case

of n = 4, which makes the proof shorter.

Lemma 2.3: For example, OJF is an arbitrary scheduling

(online) algorithm. Suppose that, at the end of time unit t, the

adversary has no jobs and OJF has i jobs on a single arc (l, r).
Then, the adversary can create a sequence of jobs where OJF

has an arc of weight i+ 1 while the adversary has no jobs left

on any vertices. Furthermore, the adversary never has a job with

latency more than i+ 1.

Proof: See the Appendix. �

Theorem 2.4: For the case of bipartite conflict graphs, there

is no online algorithm, which is c-competitive with c < 2.

Proof: Let OJF be an arbitrary scheduling (online) algo-

rithm. We will show that, for T , an adversary can force the

algorithm to have a job of latency at least 2T , whereas the

adversary only has a latency of at most T .

Let j vary from 0 to T − 1. The algorithm will start each

phase with j jobs on an arc. Lemma 2 is used to obtain an arc

with j + 1 jobs. At the end of the whole process, OJF has an

arc, e.g., (l, r), with T jobs, whereasthe adversary’s graph is

empty. For the next T time units, the adversary has a job arrive

on l and r. By always scheduling the oldest job, the adversary

never has a latency value of more than that of OJF. OJF, on the

other hand, will have 2T + 1 jobs on arc (l, r) and must incur a

latency of at least 2T . This proves the theorem. �

We have proved in Theorem 2.2 that OJF is 2-competitive on

G′, i.e., the bipartite conflict graph. Thus, we need to prove that

OJF is also 2-competitive on G, i.e., the original conflict graph.

This is proven in lemma 2.5 as follows.

Lemma 2.5: Suppose that OJF produces a maximum delay

of 2L on G′. Then, an optimal job scheduling algorithm on G
will produce a maximum delay of at least L.

Proof: Since OJF produces a maximum delay of 2L, using

Theorem 1, we know that the optimal algorithm on G′ produces

a maximum delay of at least L. Suppose there exists an optimal

algorithm that produces a maximum delay of less than L on G.

Because of the way we did the reduction from G to G′ and the

fact that only one job can be scheduled at a time whenever there

is a conflict, this optimal algorithm on G can also be applied on

G′ to produce a maximum delay of less than L. This contradicts

Theorem 1. Hence, the optimal algorithm on G will produce a

maximum delay of at least L. �

III. VEHICULAR AD HOC NETWORK-BASED

TRAFFIC INTERSECTION CONTROL

Here, we show how we implemented the platooning phase

(phase one) of the OAF algorithm and how we implemented

the other traffic light control schemes, such as the vehicle-

actuated logic and Webster’s method using VANETs. We first

explain some of the terms used in describing our adaptive

traffic control algorithms that may differ slightly from their

conventional definitions.

• MAX-OUT: The maximum amount of GREEN time that

can be allocated to the current phase.

• GAP-OUT: If a vehicle is more than the GAP-OUT units

of time away from the stop line, then the signal goes to the

next phase.

• EXTENSION: If a vehicle is detected less than GAP-OUT

units of time away from the stop line, then the GREEN

time is extended by EXTENSION units of time.

A. System Description

In this paper, we only study an isolated intersection. Fig. 1

shows the single traffic intersection under consideration. It is a

typical four-leg intersection with eight traffic movement groups

represented by the arrows. Each of the legs of the intersection

is L meters long, and each of the left turning bays is B meters

long. The numbered arrows show the directions of the various

traffic movements. For this type of traffic intersection, we

now describe the system architecture of the VANET-based

traffic signal controller. In the single traffic intersection

scenario, the traffic signal controller is connected to a wireless

receiver that is placed at the intersection. The wireless receiver

listens to information being broadcast from the vehicles. The

broadcast medium is the 5.9–5.95-GHz radio spectrum, and

the communication standards are defined in the IEEE 802.11p

standards [19]. This system architecture is shown in Fig. 4.

The information consists of speed and position data collected

from vehicles. Speed data can be gathered from the vehicle

speedometers, and position data can be gathered using GPS

receivers fitted to the vehicles. In our implementation, the

following data are gathered and encapsulated in data packets

that are broadcast over the wireless medium. This is what we

call the data dissemination phase.

• Vehicle ID: Every vehicle is uniquely identified by its

Vehicle ID#. In our traffic simulator SUMO, every vehicle

is identified by a unique unsigned integer. In practice, the

medium access control (MAC) address of the network



Fig. 4. VANET-based traffic signal control architecture.

interface card in the wireless receiver would serve the

same purpose.

• Location: In SUMO, the location of each vehicle is speci-

fied by the LINK NUMBER#, Lane#, and position from

a point of reference. The position from a point of ref-

erence is a subfield containing (x, y), which are floating

point quantities. We chose to use the stop line as a point

of reference; therefore, the stop line has position (0, 0)

for each Link Number# and Lane#. Thus, collectively,

these three fields describe vehicle location. In practice,

it is assumed that each vehicle is equipped with a GPS

receiver; therefore, vehicles always know their locations. It

is possible to convert the GPS coordinates of each vehicle

to the format that we described earlier. We will show later

that we can compute the distance from each vehicle to the

stop line from this information.

• Speed: Speed of a vehicle is a floating point quantity

expressed in meters per second and is obtained from the

in-vehicle speedometer sensor.

• Current Time: The time at which the packet was created.

The format is (hh:mm:ss). Because of the nature of the

traffic control application, there is no need for a finer grain

time. However, we need to assume that all clocks are

synchronized. The current time is required to distinguish

between old packets and new packets.

After the data dissemination phase, we have the data aggre-

gation and processing phase where we actually make use of the

transmitted information to do traffic signal control. The pro-

cessing logic that does this consists of the adaptive traffic signal

control algorithms, such as the adaptive Webster’s method and

the vehicle-actuated traffic control algorithm. These algorithms

are contained in the traffic signal controller. The details of the

data aggregation phase and the processing phase are closely

linked with the type of adaptive traffic signal control algorithm

used, and we describe these details in Section IV.

B. Platooning Algorithm

In Section II, we obtained the lower bounds on how well

an online algorithm can perform when it comes to minimizing

the maximum latency. These lower bounds were achieved by

an online algorithm that had no knowledge of future inputs.

Can we use information gathered from the VANET to obtain

future knowledge of traffic and use this to obtain a better-than-

2-competitive algorithm? Unfortunately, this is unlikely; since

due to radio range limitations, the VANET can only provide a

relatively myopic view of the future, and in the long run, we

will fall back to a 2-competitive performance. However, we can

use the information from the VANET in a different way. One

of the conditions under which the performance bounds hold

is that all jobs, which represent platoons of vehicles, are of

equal size and hence require equal processing time. This means

that, for the OJF algorithm to be effective, all platoons must

require equal amounts of time to pass through the intersection.

We can achieve this requirement by using the vehicle position

and speed data obtained via the VANET to compute the spatial

headways between the vehicles. We can then divide the vehi-

cles into platoons using this headway information, where each

platoon takes equal amount of time to pass through the intersec-

tion. This platooning phase will be the phase one of the OAF

algorithm, with the OJF being phase two of the OAF algorithm.

In addition, in our job scheduling transformation, we as-

sumed that a job completes at the end of the slot in which

it is scheduled. Under this assumption, the OJF scheduling

algorithm produces optimal schedules. However, if we treat

each vehicle as a job (platoons of size 1 vehicle) and apply

the OJF scheduling algorithm, then in the worst case, the OJF

algorithm would behave similar to a stop sign and produce very

high delays. This is because there is a delay experienced by

vehicles as they accelerate through the intersection once they

are scheduled, which is called the startup delay. By scheduling

platoons that contain a large number of vehicles, we can amor-

tize the startup delay over a large number of vehicles.

To solve the two problems discussed earlier, we propose to

formulate an optimization problem that decides platoon sizes

with the objectives being the following.

1) Select the platoon size that minimizes the difference in

times required to service platoons of vehicles.

2) Maximize the size of the platoons.

The way we solve this optimization problem is to estimate

the amount of GREEN time that a platoon needs and find the

platoon configuration that minimizes the difference between the

maximum and minimum GREEN times for that configuration.

We can estimate the GREEN time necessary to service a

platoon as follows.

• If platoon has stopped at the stop line: Green time =
start-up time + time for platoon to pass through the inter-

section.

• If Platoon is in motion: Green time = time for platoon

vehicles to pass through the intersection.

We can estimate the time for a platoon to pass through the

intersection as

1.5 + h1 + · · ·+ hn (1)

where the hi values are the headways of the 1 ≤ i ≤ n vehicles

in the platoons, and 1.5 is a constant that accounts for the startup

delay of the very first vehicle in the platoon. Headways are

defined as either the distance between two vehicles or the time

between two vehicles. We define the headway hi as the time



Fig. 5. Traffic signal phase sequence for the VANET-based vehicle-actuated
traffic signal control. The numbers refer to the traffic movements shown in
Fig. 1.

between vehicle i and i+ 1 in a platoon. We can estimate hi by

measuring the distance between vehicle i and vehicle i+ 1 and

divide by the current speed of the vehicles.

The platooning algorithm is an exhaustive search over all

the platoon configurations to determine the platoon combina-

tion that minimizes the difference between the maximum and

minimum GREEN times. For n vehicles, we first generate

all the platoon combinations using IntegerPartitions[n], which

generates all partitions of an integer n. Each partition represents

a platoon configuration. For example, n = 10, then a possible

partition is 3, 2, 2, and 3, which would represent a platoon con-

figurations containing platoons of size 3, 2, 2 and 3. Since the

vehicles arrive on a leg of the intersection, only a platoon size is

required to identify a particular platoon. The constraint on the

search result is that the maximum service time for a platoon in

the configuration is less than or equal to MAXGREEN. Once

the platoon size of the head-of-line platoon is determined, it

does not change. The head-of-line platoons are then scheduled

using the OJF scheduling algorithm shown in Algorithm I.

We show that the platooning algorithm in Algorithm 2, where

Estimate_Green_Time(j) is computed from (1).

Algorithm 2 Platooning Algorithm

for each approach k do

Configuration = IntegerPartitions(n)
for each platoon configuration i in Configuration do

for each platoon j in i do

Platoon_Green_Time[j] =
Estimate_Green_Time(j);

Add Platoon_Green_Time[j] to the list

Config_Green_Time[i, k];
Min_Diff =
mini∈k,k={1,...,4}{max{Config_Green_Time[i, k]} −
min{Config_Green_Time[i, k]}};

Final_Platoon_Configuration =
argmini∈k,k={1,...,4}{max{Config_Green_Time[i, k]} −

min{Config_Green_Time[i, k]}};

C. Vehicle-Actuated Traffic Signal Control

Here, we explain how the vehicle-actuated traffic signal

control method is implemented in a VANET environment.

Fig. 5 shows the phase sequence of the traffic signal controller.

We initialize the traffic signal controller to the initial phase

and initially set the EXTENSION time for the phase to 0.

Next, we search for a vehicle that is closest to the stop line by

examining the location field of all the vehicles. We compute

the approximate traveling time to the stop line using the

Compute_Traveling_Time() function as follows. The packet

broadcast by the closest vehicle contains its position and

speed data. These data are extracted, and since the position

data consist of a Cartesian coordinates, we can compute the

Euclidean distance of the vehicle from the stop line. Given

the distance of a vehicle from the stop line, we can use the

current speed information to compute the traveling time to the

stop line. This traveling time is an approximation of the actual

traveling time. If the vehicle closest to the stop line indicates a

speed of 0, Compute_Traveling_Time() returns a traveling time

of 2 s [28]. We set variable GAP to be equal to the traveling

time returned by Compute_Traveling_Time(). If GAP is less

than GAP-OUT, then the phase is the allocated EXTENSION

units of GREEN time. If there is no close vehicle, then all

packets received from vehicles would indicate that all vehicles

are more than the GAP-OUT amount of time away from the

stop line, and the signal controller would GAP-OUT and go to

the next phase, indicating 0 GREEN time.

The magnitude of the EXTENSION is set to EXTENSION +
GAP. Then, the GAP for the next closest vehicle is computed

using Compute_Traveling_Time(), and the process is repeated.

The EXTENSION accumulates while it is less than or equal

to MAX-OUT. Once it crosses the MAX-OUT threshold, the

signal controller switches to the next phase. The RED plus

GREEN times are set to 5 s. Fig. 5 shows the sequence of

phases. The sequence of phases is represented as a graph.

This represents the set of vertices consisting of the phases,

which are pictured as the square boxes in Fig. 5. Each phase

is a combination of traffic movements represented by the num-

bers within the square boxes. The edges between the vertices

represent phase transitions.

D. Webster’s Method

Webster’s algorithm [29] is the most quoted method of

determining a delay minimizing cycle time or evaluating delay

for a cyclic fixed signal control scheme. In the Webster’s

algorithm, simulation tools are used to generate random

vehicle arrival times to the intersection at a given average

arrival rate. Arrivals to the stop line are added to a queue

estimate and dispersed during the effective GREEN time at a

constant departure rate called the saturation flow rate. Delay is

calculated as the integral of the queue over the cycle, and an

average value is obtained by dividing the delay by the volume.

Webster used the result of simulation analysis to deduce a

model of average delay per vehicle as a function of the cycle

time, GREEN split, saturation flow rate, and arrival rate. In

particular, the average delay per vehicle on the particular leg of

the intersection, which is denoted by d, is given by

d =
c(1 − λ)2

2(1 − λx)
+

x2

2q(1 − x)
− 0.65

(

c

q2

)0.5

x(2+5λ) (2)

where c is the cycle time; λ is the proportion of the cycle,

which is effectively GREEN for the phase under consideration;



1466 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 62, NO. 4, MAY 2013

q is the flow rate; s is the saturation flow; and x is the degree of

saturation. This is the ratio of the actual flow to the maximum

flow that can be passed through the intersection. The first two

terms are theoretically derived, and the last term is a correction

factor to account for the difference between empirical and

theoretical results. The first term is the delay for uniform

arrivals, and the second term is the additional delay for Poisson

arrivals [24].

In this paper, we consider a simplified alternative, suggested

by Webster, where the third term is dropped, which generally

reduces the value by about 5% to 15%, and 0.9 is multiplied by

the sum of the first two terms [24]. Among approaches served

by a given phase, the approach with the highest degree of satu-

ration is often referred to as the critical lane group or the critical

movement. The following equation gives the delay minimizing

cycle time as a function of lost time per cycle and critical move-

ment saturation levels. The optimal cycle time Co is given by

Co =
1.5L+ 5

1 − Y
(3)

where yi is the degree of saturation for the critical movement

relative to phase i, Y =
∑

i yi for all phases i; and L is the total

lost time per cycle. This is the sum all-red clearance intervals

and lost time (due to startup or yellow) over all phases in the

sequence. Phases are allotted GREEN time in proportion to the

degree of saturation on their corresponding critical lane groups.

This simple rule, known as the critical movement approach,

has been found effective in minimizing vehicle delay.

We have extended Webster’s method to make use of the data

collected by the wirelessly enabled vehicles. This works by

measuring traffic flow on each of the lanes of the intersections.

The optimal cycle times are computed using the expression

given, and the optimal GREEN time Gi is given by

Gi =
(C − L)yi
∑

j yj
. (4)

One parameter that needs to be chosen is the length of the

interval during which to measure the traffic flow. During pe-

riods of high variance of flow, we choose short intervals (5 min

in our experimental studies) and longer intervals (2 h) when

the variance is low. We can also choose to measure traffic

flow during a cycle, e.g., Ci, and then use the data collected

to determine the length of the next cycle ci+1. However, our

results show that there is negligible difference between this and

a measuring interval of 5 min.

IV. SIMULATION MODEL

We have developed a simulator that integrates a vehicular

traffic simulator and a wireless network simulator to produce a

closed-loop simulation environment. The vehicular traffic sim-

ulator is the SUMO traffic simulator [3], [5], which is a space

continuous microscopic simulator for vehicular traffic. The

SUMO simulator is a C++-based open-source highly portable

microscopic road traffic simulation package designed to handle

large road networks. The underlying vehicular traffic model

has been validated in [22]. The wireless network simulator is

the OMNET++/INET [4] wireless network simulator, which

is a component-based modular open-architecture discrete-event

network simulator implemented in C++. One important reason

for choosing OMNET is that it implements the IEEE 802.11p

standard at both the physical and the MAC layers.

To connect the discrete-event simulator OMNET++/INET

with the continuous simulator SUMO, we used the TRACI

interface [6]. SUMO runs as a process that cannot be accessed

during the execution of a simulation step. TRACI uses a

client/server architecture; SUMO is configured as a server, and

using methods provided by TRACI allows client applications to

connect SUMO to TRACI, providing access to SUMO. The ar-

chitecture is actually based on Transmission Control Protocol/

Internet Protocol (TCP/IP); therefore, applications connect to

SUMO via a TCP socket. The client send commands to SUMO

to control the simulation run, to influence a single vehicle

movement, or to request for environmental details. SUMO

responds with a status response to each command and a traffic

trace after executing a single step. Both the commands to

SUMO and the traffic traces from SUMO are transported using

TCP. Each TCP segment consists of a small header that gives

the overall message size and a set of commands or traffic traces

contained in the segment. As shown in Fig. 6, TRACI can be

used to allow a connected OMNET++ instance to send a series

of commands to the traffic signal controller, influencing the

mobility of SUMO vehicle instances.

Every vehicle in SUMO is mapped to a mobile node in

OMNET++. We have extended OMNET++ with a module

that allows creation of new nodes as vehicles are injected

into SUMO, deleting nodes when their corresponding vehicles

reach their destination and reflecting the movement of their

corresponding vehicles in SUMO. SUMO executes in discrete

time steps, and the traffic trace generated by SUMO is parsed

by a manager module. The manager module then communicates

the traffic trace to the OMNET wireless nodes. OMNET then

executes one time step, and the wireless packet delivery trace

generated by OMNET is parsed by the data aggregation mod-

ule. It is the data aggregation module that actually generates

the traffic light commands that are sent to the traffic simulator.

Therefore, in our implementation, the data aggregation mod-

ule encapsulates the adaptive traffic signal control algorithms

for the traffic lights. The timing sequence diagram of these

events is shown in Fig. 6. OMNET++ also uses the TRACI

interface to send the vehicle control information in the form

of TRACI commands, as shown in Fig. 6. The commands here

are SIM_SIGNAL_GREEN and SIM_SIGNAL_RED, which

identify a traffic signal controller and make it cycle through its

phases. During the simulation, at regular intervals, the manager

module triggers the execution of one time step of the road traffic

simulation, receives the resulting mobility trace, and triggers

position updates for all wireless nodes it has instantiated.

A. Vehicular Traffic Simulation Parameter Set

The four-leg traffic intersection is the most commonly found

intersection, and it is also considered to be a canonical in-

tersection used in most studies. We set the following vehic-

ular traffic characteristics in our simulations. There are four



Fig. 6. Sequence diagram of TRACI message exchange between SUMO and OMNET++. OMNET++ acts as a application connecting to SUMO via a
TCP socket.

approaches, which are referred to as the north, south, east, and

west approaches. The saturation flow for each lane in the link

is 1800 vehicles/h, and the approaches are 1000 m long. We

modeled the vehicular traffic arrival process first as a Poisson

arrival process and second as a uniform arrival process. For the

Poisson arrival process, vehicles were injected at the beginning

of each approach, following a Poisson distribution with rate λ.

Thus, the vehicle interarrival times are exponentially distributed

with inverse rate parameter r, where r = λ−1. Similarly, for the

uniform arrival process, vehicles were injected at the beginning

of each approach where the interarrival time follows a uniform

distribution on (0, 1)× 2λ−1. Again, there is a 0.15 probability

that a vehicle makes a left turn and enters the left-turn bay.

We conducted experiments under four traffic conditions. In

the first condition, we have model the traffic arrival as a Poisson

arrival process with identical traffic arrival rate on all four

approaches to the intersection, and we vary the traffic arrival

rates. We called this the homogeneous traffic condition. We

classified traffic arrival rates into three categories: heavy with

λ = 1700 vehicles/h, medium with λ = 800 vehicles/hour, and

light with λ = 400 vehicles/h. We start at light traffic arrival

rate and then increase the traffic arrival rate as the simulation

continues. All Vehicles are of the same type. In our second

traffic condition, we model the traffic arrival as a Poisson arrival

process, keep the arrival rate on the north and south approaches

at λ = 800 vehicles/h, and vary the traffic arrival rates on the

east and west approaches. We call this the heterogeneous traffic

condition. In the third traffic condition, we model the traffic

arrival process as a Poisson arrival process, and we have a

very low arrival rate, i.e., λ = 100 vehicles/hour, on the north

and south approaches and vary the traffic on the east and west

approaches. In our fourth traffic condition, we model the traffic

arrival process as a uniform arrival process with identical traffic

arrival rate on all four approaches to the intersection, and we

vary the traffic arrival rates.

B. Wireless Network Simulation Parameters

As aforementioned, the wireless network simulator imple-

ments the IEEE 802.11p. The mobile nodes transmit messages,

encapsulated in MAC packets, to the traffic signal controller

that include the following information: vehicle ID, location

of the vehicle, speed, and current time. The size of the MAC

packets transmitted, including overhead, is 2 kB. Transmission

rate was set to 0.1 Mbps, which corresponds to 50 packets/s.

V. RESULTS AND DISCUSSION

We compare the performance of the OAF algorithm against

the VANET-enabled vehicle-actuated control, VANET-enabled

Webster’s method, and an optimized fixed-time signal control.

For the fixed-time approach, the controller has been optimized

for the current traffic parameters, following the guidelines in

[7]. The timing parameters were 60 s of GREEN for the through

traffic and 30 s of GREEN for the left turning for the heavy

traffic condition, 40 s of GREEN for the through traffic and 20 s

of GREEN for the left turning traffic for the Medium traffic

condition, and 35 s of GREEN for the through traffic and 15 s



Fig. 7. Performance of OAF algorithm compared with other VANET-based
traffic signal scheduling methods when all four approaches have equal vehicle
arrival rates.

of GREEN for left turning traffic for the light traffic. We also

tested the effectiveness of the platooning algorithm, which is

part of the OAF signal control algorithm.

A. Comparison of Traffic Signal Control Methods During

Homogeneous Traffic Arrival Rates

In our first experiment, we have homogeneous traffic arrival

rate on all four approaches to the intersection, and we vary the

traffic arrival rates. Fig. 7 shows the performance of the OAF in

comparison with the vehicle-actuated logic, the pretimed logic,

and the Webster’s logic. The performance parameter that we

measured was the average delay per vehicle in terms of seconds,

and we plot this delay value at 5-min intervals for all the traffic

signal control methods.

The labels light, medium, and heavy indicate the time in-

tervals during the simulation with different traffic arrival rates.

We started out the simulation at a light traffic arrival rate, and

20 min into the simulation, we switched to the medium traffic

arrival rate. At the 40-min mark, we switched to a heavy arrival

rate, and at 75 min mark, we switched to the light traffic arrival

rate, and let the simulation run to the 160-min mark. We can

see that, at every instant, the OAF Algorithm performs better

than both Webster’s and the pretimed algorithm. During a heavy

traffic arrival rate, we see that the OAF algorithm degenerates

to the vehicle-actuated control since the MAX-OUT times for

both the OAF algorithm and the vehicle-actuated algorithm

become the same. However, when we switch back to the Light

traffic arrival rate, we see that the OAF Algorithm recovers

from congestion much faster; hence, the delays experienced

decreased much faster. This is because the OAF algorithm is

able to take advantage of the gaps that occur among vehicles

and create platoons, and then, it minimizes the maximum delay

that each platoon experiences. The delay is then amortized

among all the vehicles in the platoon. In effect, it is much more

efficient at discharging the queues. Intuitively, this is because

Webster’s method and the pretimed control method both react

very slowly to the changes in the traffic arrival rate.

Fig. 8. Performance of the OAF algorithm compared with other VANET-
based traffic signal scheduling methods when north–south approaches have
constant (800 vehicles/hour) arrival rates and east–west approaches have a
varying vehicle arrival rate.

Fig. 9. Performance of the OAF algorithm compared with other VANET-
based traffic signal scheduling methods when north–south approaches have
constant (100 vehicles/hour) arrival rates and when the east–west approaches
have a varying vehicle arrival rate.

B. Comparison of Traffic Signal Control Methods for

Heterogeneous Traffic Arrival Rates

Next, we study the performance of the OAF and the other

three traffic control algorithms for the case with heterogeneous

traffic arrivals. We set up the experiment in the following way.

In Figs. 8 and 9, the east-to-west traffic and the west-to-east

traffic are set at 800 and 100 vehicles/h, respectively, but the

north-to-south traffic and the south-to-north traffic vary from

400 (light), 800 (medium), and 1700 (heavy) vehicles/h and

then back to 400 (light) vehicles/h. Once again, there is a 0.15

probability that a vehicle makes a left turn. Once again, we

compare the average delay per vehicle of the OAF algorithm

and the vehicle-actuated traffic control algorithm against the



Fig. 10. Performance of the OAF algorithm compared with other VANET-
based traffic signal scheduling methods when all four approaches have equal
vehicle arrival rates, and the arrival process is modeled by a uniform arrival
process.

Webster’s and pretimed traffic signal control methods. Again,

the OAF outperforms all the other three algorithms. Because of

the lower variance in the traffic arrival rates, the delay curves

are flatter than in the identical traffic arrival rate experiment,

and the overall delays are lower for all the traffic signal

control methods. The OAF and vehicle-actuated traffic control

algorithms perform better than both Webster’s method and

the pretimed logic. However, because of the slower variance

of the traffic arrival rates, the vehicle-actuated traffic control

algorithm exhibits a flatter average delay curve.

C. Comparison of Traffic Signal Control Methods for Identical

Traffic Arrival Rates Modeled as a Uniform Arrival Process

Fig. 10 shows the performance of the OAF in comparison

with the vehicle-actuated logic, the pretimed logic, and the

Webster’s logic under a uniform traffic arrival process. The

performance parameter that we measured was the average delay

per vehicle in terms of seconds, and we plot this delay value

at 5-min intervals for all the traffic signal control methods.

OAF performs better than the other traffic control methods

and achieves delays comparable with the Poisson arrival case,

indicating that no assumption on the traffic arrival process is

needed to achieve good performance.

D. Performance of the Platooning Algorithm

The performance of the OAF algorithm depends on the

ability of the platooning algorithm to divide the vehicular traffic

on the approach into platoons that require equal amounts of

GREEN time. We show the distribution of the platoon size

generated by the OAF algorithm in Fig. 11 for different traffic

arrival rates. Here, at an arrival rate of 400 vehicles per platoon,

we see that 33% of the platoons were platoons of size 4, 45%

were platoons of size 5, and 22% of the platoons were of size 6.

This implies that the platooning algorithm produces approx-

imately equal-sized platoons, which is a necessary condition

for the OAF algorithm to maintain the 2-competitiveness of the

Fig. 11. Platoon size distribution under identical traffic arrival rate.

OJF algorithm. The figure shows that, at relatively heavy traffic

arrival rates, we see platoons containing approximately equal

number of cars, and they take approximately equal amount of

GREEN time to pass through the intersection. For the OAF

algorithm to perform well, we want to see this desired property

in order for the real performance to approach the theoretical

bound.

E. Performance of OAF Under Varying Penetration Rates

We define the penetration rate as the proportion of vehicles

that are VANET enabled. The OAF algorithm depends upon

the vehicle speed and position data to form and detect platoons;

therefore, if some proportion of the vehicles are not detected,

then we expect a reduction in performance. An example of this

would be a VANET-enabled vehicle that is waiting at the end

of a long queue of vehicles that are not VANET enabled. Then,

this vehicle would be in a one-vehicle platoon, which is at the

head of the line. Then, when the OAF algorithm schedules this

platoon, all the vehicles in front of the platoon would need to

clear the intersection before the platoon can pass through the

intersection. This creates nondeterministic delays that severely

reduce the effectiveness of the OAF algorithm. To quantify

these delays we tested the performance of the OAF algorithm

at various penetration rates: 90%, 70%, 50%, and 30%. We

compare the delays produced under these scenarios with the de-

lays produced under the 100% penetration scenarios in Fig. 12.

We consider a homogeneous traffic condition, and we vary the

traffic arrival rate during the course of the simulation.

The results in Fig. 12 show that, under a 90% penetration

rate, the delays produced by the OAF algorithm are the same

as those produced under the 100% penetration case while the

traffic arrival rate is heavy. There is, however, a degradation

in performance under light and medium traffic arrival rates.

This is because, when we have a heavy traffic arrival rate, the

platoons formed by the OAF algorithm, under 90% penetration

rate, require approximately equal amounts of GREEN, but this

is not the case for light and medium arrival rates. As we further



Fig. 12. Average delays produced by the OAF algorithm under various
penetration rates.

reduce the penetration rate, we see increasing delays being

produced by the OAF algorithm. Particularly at a 30% pene-

tration rate, the delays experienced by vehicles are even higher

than the delays produced by a nonadaptive fixed-time signal

controller. This is because, at 30% penetration, we observe large

numbers of vehicles that are not grouped into a platoon. The

OAF algorithm assigns the MINGREEN amount of green time

for all traffic phases, whereas the pretimed algorithm assigns

the GREEN amount of green time computed using Webster’s

method, following guidelines in [7]. To compute this value, we

need to measure the traffic arrival rate, which we would not

be able to accurately estimate at 30% penetration. In the OAF

algorithm, MINGREEN was set to 15 s, resulting in stop-and-

go traffic that showed increased amount of startup times. This

is why, at 30% penetration, the pretimed method performed

better. If MINGREEN was suitably computed, then the OAF

method would perform at least as well as the pretimed method.

This indicates that the OAF method is not suitable under low

penetration rates.

VI. CONCLUSION

In this paper, we have shown how a VANET can be used

to aid in traffic signal control, including a new job-scheduling-

based online algorithm, i.e., the OAF algorithm. We imple-

mented several adaptive traffic signal control algorithms that

use the fine grain information broadcasts by the vehicles. We

implemented and compared these algorithms under various

traffic conditions. Our experimental results show that the OAF

algorithm reduces the delays experienced by the vehicles as

they pass through the intersection, as compared with the other

three methods under light and medium vehicular traffic loads.

Under heavy vehicular traffic load, the performance of the

OAF algorithm degenerates to that of the vehicle-actuated

traffic method but still produces lower delays, compared with

Webster’s method and the pretimed signal control method.

This is because, under lighter traffic, the OAF algorithm can

dynamically skip through phases and minimize the delay of

vehicles whenever there is a gap in the traffic. However, when

the traffic gets heavier, the gaps in traffic disappear, and we

always have queues on the approaches, reducing the advantage

that a dynamic scheduling algorithm may have.

APPENDIX A

PROOF OF LEMMA 2.1

The proof is by induction. Assume that OJF has maintained

the two conditions up to and including time t− 1. Therefore,

at the beginning of time t, they are still maintained. We will

prove that, after new jobs have arrived and scheduled by both

OJF and A∗, the conditions will still hold at the end of time t.
(Therefore, they also hold at the beginning of time t+ 1.) Let l
be the vertex in G′ with the oldest job at the beginning of time t.
If OJF has at least one job on l′ at the start of time unit t, then it

schedules a job from both arcs connected to l and both arcs con-

nected to l′, and condition 1 will still hold at the end of time t.
Notice that A∗ can only schedule one job from each arc in one

time unit.

On the other hand, for OJF, if there are no jobs at the

beginning of time t on l′, then if condition 2 is satisfied at

the end of t, we are guaranteed that condition 1 will also be

satisfied. If there are at most T jobs on a vertex on the right side

for OJF, then Condition 2 holds; therefore, the only problem

with guaranteeing condition 2 is if OJF has a vertex on the right

side with at least T + 1 jobs. For example, r is this type of

vertex (symmetrically, we can argue for r′). For example, OJF

has X jobs on l, and Y jobs on r at the start of time unit t.
Therefore, in the schedule output by A∗, by the inductive

hypothesis, there are at least (X + Y − T ) jobs on the arc

(l, r), and of these jobs, at least Y − T jobs are on r.

We will now prove that the A∗ schedule has at least Y − T
jobs on r at the end of time unit t. This maintains condition 2.

There are two cases.

Case 1: OJF has job j on l with latency of at least T at the start

of time unit t. If the schedule generated by A∗ still has j
on l, it must schedule that one; therefore, Y − T jobs will

remain on r at the end of time t. Suppose that the optimal

schedule does not still have job j on l. First, there can be

no more than X − 1 arrivals on l in the last T − 1 units

of time. This is because OJF has at most X − 1 jobs that

are more recent than j, and OJF would not schedule any

of these over job j. Therefore, the schedule generated by

OJF can have at most X − 1 jobs on l, and this means that

it has at least Y − T + 1 jobs on r at start of time unit t.
Therefore, at least Y − T jobs remain at the end of time

unit t.
Case 2: OJF does not have a job on l with latency of at least T

at the start of time t. Remember that l has the oldest job;

therefore, OJF does not have a job on r with latency of

at least T . Therefore, Y jobs have arrived on r in the last

T − 1 time units. A∗ (in fact any algorithm) could only

have scheduled at most T − 1 of these by start time unit t.
This means that the optimal schedule has at least Y + 1 −
T jobs on r before time t and at least Y − T jobs at the end

of time unit t. �



APPENDIX B

PROOF OF LEMMA 2.3

The adversary creates jobs on both l and r until the OJF has

i+ 1 jobs on l or on y. This will happen by the beginning of

some time unit t′ ≤ t+ i+ 1. Suppose that l is the vertex on

which the OJF has i+ 1 jobs. The adversary can schedule the

jobs with a maximum latency cost of at most i+ 1 so that,

after time t′, l is empty. The adversary can do the following.

Complete all jobs on its own graph while at the same time

forcing the OJF to keep i+ 1 jobs on an arc. Let r′ be the vertex

on the right side of the graph, noting that r′ �= r. For the next

i+ 1 time units, the adversary has a job arriving on r′. The

adversary schedules the oldest job on r and the new job on r′.
After the i+ 1 time units, the adversary’s graph is empty. Since

a job arrived on r in each time unit, OJF still has i+ 1 jobs on

arc (l, r′). �

REFERENCES

[1] The City of Reno Public Works Department. [Online]. Available: http://
www.reno.gov/index.aspx?page=658

[2] America Revealed: Nation On The Move. PBS documetary. [Online].
Available: http://video.pbs.org/video/2223774770/

[3] The vehicular traffic simulator. [Online]. Available: http://sumo.
sourceforge.net/

[4] The wireless simulation framework. [Online]. Available: http://www.
omnetpp.org/

[5] The German Aerospace Research Laboratory. [Online]. Available: www.
dlr.de/en/

[6] The TRACI interface can be found. [Online]. Available: http://
sourceforge.net/apps/mediawiki/sumo/?title=TraCI

[7] G. F. Newell, Theory of Highway Traffic Signals, 6th ed. Berkeley, CA,
USA: Univ. California, 1989.

[8] D. C. Gazis, Traffic Science, 1st ed. New York, NY, USA: Wiley, 1989.
[9] Optimal Traffic Control: Urban Intersections, 1st ed. Boca Raton, FL,

USA: CRC, 2008, pp. 400–401.
[10] C. N. Chuah, D. Ghosal, A. Chen, B. Khorashadi, and M. Zhang,

“Smoothing vehicular traffic flow using vehicular_based ad hoc network-
ing amp; computing grid (VGrid),” in Proc. IEEE ITSC, Sep. 2006,
pp. 349–354.

[11] K. LaCurts, S. Madden, H. Balakrishnan, S. Toledo, A. Thiagarajan,
L. Ravindranath, and J. Eriksson, “Vtrack: Accurate, energy-aware road
traffic delay estimation using mobile phones,” in Proc. 7th ACM Conf.

Embedded Netw. SenSys, New York, NY, USA, 2009, pp. 85–98.
[12] D. Ghosal, C. N. Chuah, B. Liu, B. Khorashadi, and M. Zhang, “Assessing

the VANET’s local information storage capability under different traffic
mobility,” in Proc. INFOCOM, 2010, pp. 1–5.

[13] A. Borodin and R. El-Yaniv, Online Computation and Competitive

Analysis. New York, NY, USA: Cambridge Univ. Press, 1998.
[14] K. L. Mirchandani, D. Head, and P. B. Sheppard, “Hierarchical framework

for real-time traffic control,” Transp. Res. Rec., Traffic Operations, vol. 16,
no. 1360, pp. 1420–1433, Dec. 2008.

[15] V. Gradinescu, C. Gorgorin, R. Diaconescu, V. Cristea, and L. Iftode,
“Adaptive traffic lights using car-to-car communication,” in Proc. IEEE

65th VTC-Spring, Apr. 2007, pp. 21–25.
[16] N. Hounsell, J. Landles, R. D. Bretherton, and K. Gardener, “Intelli-

gent systems for priority at traffic signals in London: The INCOME
project,” in Proc. 9th Int. Conf. Road Transp. Inf. Control, Number 454,
1998, pp. 90–94.

[17] S. Irani and V. Leung, “Scheduling with conflicts,” in Proc. 7th Annu.

ACM-SIAM SODA, Soc. Ind. Appl. Math, Philadelphia, PA, USA, 1996,
pp. 85–94.

[18] B. Hull, R. Newton, S. Madden, J. Eriksson, L. Girod, and
H. Balakrishnan, “The pothole patrol: Using a mobile sensor network for
road surface monitoring,” in Proc. 6th Int. Conf. MobiSys, New York, NY,
USA, 2008, pp. 29–39.

[19] D. Jiang and L. Delgrossi, “Ieee 802.11p: Towards an international stan-
dard for wireless access in vehicular environments,” in Proc. IEEE VTC

Spring, May 2008, pp. 2036–2040.

[20] R. M. Karp, “Reducibility Among Combinatorial Problems,” in Com-

plexity of Computer Computations, R. E. Miller and J. W. Thatcher, Eds.
New York, NY, USA: Plenum, 1972, pp. 85–103.

[21] B. Khorashadi, F. Liu, D. Ghosal, M. Zhang, and C. N. Chuah, “Dis-
tributed automated incident detection with VGRID,” IEEE Wireless

Commun., vol. 18, no. 1, pp. 64–73, Feb. 2011.
[22] S. Krauss, P. Wagner, and C. Gawron, “Metastable states in a microscopic

model of traffic flow,” Phys. Rev. E, vol. 55, no. 5, pp. 5597–5602,
May 1997.

[23] C. Lund and M. Yannakakis, “On the hardness of approximating mini-
mization problems,” in Proc. 25th Annu. ACM STOC, New York, NY,
USA, 1993, pp. 286–293.

[24] W. R. McShane, R. P. Roess, and E. S. Prassas, Traffic Engineering.
Englewood Cliffs, NJ, USA: Prentice-Hall, 1998.

[25] C. Priemer and B. Friedrich, “A decentralized adaptive traffic signal
control using v2I communication data,” in Proc. 12th Int. IEEE ITSC,
Oct. 2009, pp. 1–6.

[26] M. Besley, R. Akcelik, and E. Chung, “An evaluation of SCATS master
isolated control,” in Proc. 19th ARRB Transp. Res. Conf., May 1998,
pp. 1–24.

[27] S. Phillips, R. Motwani, and E. Torng, “Non-clairvoyant scheduling,” in
Proc. 4th Annu. ACM-SIAM SODA, Soc. Ind. Appl. Math., Philadelphia,
PA, USA, 1993, pp. 422–431.

[28] S. G. Shelby, “Design and evaluation of real-time adaptive traffic sig-
nal control aalgorithms,” Ph.D. dissertation, Univ. Arizona, Tucson, AZ,
USA, 2001.

[29] F. V. Webster and B. M. Cobbe, “Traffic signals,” Road Research technical
paper. H. M. S. O. Road Res. Lab., Berkshire, U.K., 1966.

Kartik Pandit is currently working towards the Ph.D. degree in computer
science with the Department of Computer Science, University of California,
Davis, CA, USA.

His research interests are resource allocation in wireless networks, trans-
portation research, optimization, and operations research.

Dipak Ghosal (M’08) received the B.Tech. degree in electrical engineering
from the Indian Institute of Technology, Kanpur, India, in 1983, the M.S.
degree in computer science and automation from the Indian Institute of Science,
Bangalore, India, in 1985, and the Ph.D. degree in computer science from the
University of Louisiana, Lafayette, LA, USA, in 1988.

He is currently a Professor with the Department of Computer Science,
University of California, Davis, CA, USA. His main research interests include
high-speed networks, wireless networks, vehicular ad hoc networks, next-
generation transport protocols, and parallel and distributed computing.

H. Michael Zhang received the B.S.C.E. degree from Tongji University,
Shanghai, China, and the M.S. and Ph.D. degrees in engineering from the
University of California, Irvine, CA, USA.

He is currently a Professor with the Department of Civil and Environmental
Engineering, University of California, Davis, CA, USA. He is an Area Editor
for the Journal of Networks and Spatial Economics and Associate Editor
for Transportation Research—Part B: Methodological. His research interests
include transportation systems analysis and operations.

Chen-Nee Chuah (M’01–SM’06) received the B.S. degree from Rutgers Uni-
versity and the M.S. and Ph.D. degrees in electrical engineering and computer
sciences from the University of California, Berkeley, CA, USA.

She is a Professor of electrical and computer engineering with the University
of California, Davis (UC Davis), CA, USA. Her research interests include
Internet measurements, network management, anomaly detection, online social
networks, and vehicular ad hoc networks. She is an ACM Distinguished
Scientist.

Dr. Chuah received the NSF CAREER Award in 2003 and the Outstanding
Junior Faculty Award from the UC Davis College of Engineering in 2004. In
2008, she was named a Chancellor’s Fellow of UC Davis. She has served on the
executive/technical program committee of several ACM and IEEE conferences
and is currently an Associate Editor for the IEEE/ACM TRANSACTIONS ON

NETWORKING.


