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ABSTRACT

Standard noise compensation techniques for automatic speech recog-

nition assume a clean trained acoustic model. What is thought of as

“clean” data, may still have a variety of speakers, different channels

and varying noise conditions. Hence it may be more reasonable to

consider such data multi-conditional for multistyle training. This

paper shows that multistyle models benefit from VTS compensation

or Joint uncertainty decoding by reducing the mismatch between

training and test. An EM-based noise estimation procedure that pro-

duces ML VTS or Joint noise models is also described. Alterna-

tively, adaptive training with Joint uncertainty transforms factors

out the noise from the data. The uncertainty variance bias de-weights

observations in the training data where the SNR is low. This prop-

erty allows data with a wide SNR range to be used and produces

canonical models that truly represent clean speech, whereas multi-

style trained models must account for all acoustic variation associ-

ated with different noise conditions. This paper presents Joint
adaptive training including formula for estimating the transforms

and canonical model parameters. Experiments are conducted on the

Resource Management and Broadcast News corpora.

Index Terms—Speech recognition, Robustness

1. INTRODUCTION

Conventional approaches to improve recognition robustness of noisy

speech presume the acoustic model is clean trained. Despite be-

ing considered “clean”, the training data may contain a wide variety

of speakers, accents, channels and noise conditions. Hence, clean

data may be considered multi-conditional and the models trained on

this data in a multistyle fashion. Little research has been conducted

on applying noise compensation techniques to multistyle systems.

This paper examines VTS and Joint compensation as general ap-

proaches to reducing the mismatch between the training and test con-

dition for both clean and multistyle trained acoustic models.

Alternatively, adaptive training may be applied to remove these

unwanted factors, such as speaker differences or the acoustic envi-

ronment, from being included in the acoustic models [1, 2]. Rather

than force the acoustic model to represent all these factors, as ex-

pected in multistyle training, transforms are used instead to model

the variation from different factors. MLLR transforms can only nor-

malise low levels of noise, hence is unsuitable for adaptive training

with data that has large variations in SNR. This motivates a novel

model training framework called Joint adaptive training (JAT),

based on noise normalisation using Joint transforms for training

models on noisy data. JAT takes into account the SNR of the data

when estimating the canonical model parameters. When the noise
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subsumes the speech, the uncertainty variance bias ensures those ob-

servations do not contribute to the parameter update. In this way, JAT

weights the training data using uncertainty due to noise. Hence, JAT

explicitly handles a large range of SNR in the training data, produc-

ing a final acoustic model that is truly noise-free.

Experiments are reported on the large vocabulary Broadcast News

transcription task and an artificially corrupted 1000-word Resource

Management corpus.

2. MODEL-BASED NOISE COMPENSATION

In speech recognition, there are two main approaches to compensat-

ing noisy speech: cleaning the features, e.g. CMN or SPLICE, or

modifying the model parameters. The latter approach, often called

model-based compensation, tends to give better results than the for-

mer, feature-based approach [3]. It is frequently assumed that a noise

corrupted speech observation, ot = [yT

t ∆yT

t ∆2yT

t ]T, at time t is

conditionally independent of all other observations given the clean

speech st and the noise nt at that time frame. The clean speech and

noise are also assumed to be generated by HMMs with states θn
t for

the noise1 and θt for the clean speech. Under these assumptions the

likelihood of the noisy speech may be expressed as

p(ot|M,M̌, θt) =

Z

p(ot|st,M̌)p(st|M, θt)dst (1)

where

p(ot|st,M̌) =

Z

p(ot|st, nt)p(nt|M̌, θ
n
t )dnt (2)

and M̌ denotes the compensation model parameters, which may or

may not have an explicit model of the noise2. Typically the uncom-

pensated “clean” acoustic model M consists of Gaussian compo-

nents each defined by a prior, cm, mean, µ(m)
s , and variance, Σ

(m)
s .

PMC [5] and VTS compensation [6] approximate the integrals

in equation 1 for each acoustic model component. This assumes that

the frame/state alignment of the clean speech does not change with

noise. In the cepstral domain, the relationship between the static

clean speech x, additive noise n, channel h and static corrupted

speech y is often written as [5, 6]

yi = xi + hi + ci log(1 + exp(C -1(n − x − h))) (3)

where matrices C and C -1 are the discrete cosine transform matrix

(DCT) and its inverse. The vector ci denotes the ith row of the DCT.

The log and exp functions operate at an element level on the resul-

tant filterbank vectors. VTS compensation approximates this non-

linear equation with a first-order vector Taylor series. While VTS

has shown to be more efficient than PMC [7] and a better approxi-

mation than the log-normal [6] it is still computationally expensive

1A single state is assumed for the noise model in this paper.
2If the compensation model parameters M̌ are single-pass retrained, as

in [4], then no noise model is explicitly estimated.



as every model component must be individually adapted with respect

to the noise. This involves the computation of noisy speech gradients

with respect to the noise and clean speech.

In contrast, model-based Joint uncertainty decoding [4], shares

parameters as Joint transforms estimated per cluster or class of

model components—analogous to how MLLR transforms may be

estimated and applied. The number of clusters R is usually several

order of magnitudes less than the total number of Gaussians M in

the system. In uncertainty decoding, the corrupted speech likelihood

for a component m takes this form

p(ot|M,M̌, m)= |A(r)|N
“

A
(r)

ot+b
(r); µ(m)

s ,Σ
(m)
s +Σ

(r)
b

”

(4)

where the parameters A(r), b(r) and Σ
(r)
b are simply estimated from

the corrupted/clean speech conditional. For Joint uncertainty de-

coding, this conditional is estimated from the joint distribution. In

comparison, front-end uncertainty decoding estimates a joint distri-

bution for each component of a front-end GMM representing the

observed, corrupted acoustic space; this form however suffers from

a fundamental problem and is less efficient than the model-based

approach [8].

Previously, the joint distribution was estimated using stereo

data [4, 8]. It may be predicted given the clean speech and noise

model using VTS or PMC [3, 7], resulting in noise compensating

Joint transforms. However, the Joint transform may model

other factors, such as speaker differences, if they are accounted for

in the mismatch function during generation of the joint distribution.

Furthermore, the joint distribution may be considered simply a joint

model of training and test conditions. The “clean” speech models

may be multistyle or adaptively trained and the compensation ap-

plied as a mechanism to reduce the mismatch between training and

test. In this way Joint transforms are similar to MLLR transforms

as they reduce mismatch, howver with the addition of a variance bias

and they may be predicted given some prior models.

2.1. The Clean Speech Class Model

To determine this joint distribution per class r, an a priori model of

the clean speech N
`

µ(r)
x ,Σ

(r)
x

´

is needed; this is derived from the

full acoustic models. The class and component posteriors, and mean

and variance of each class r are

L
(m) =

T
X

t=1

γ
(m)
t , L

(r) =
X

m∈r

L
(m)

, µ
(r)
x =

1

L(r)

X

m∈r

L
(m)

µ
(r)
x

(5)

Σ
(r)
x =

1

L(r)

X

m∈r

L
(m)
“

Σ
(m)
x +µ

(m)
x µ

(m)T

x

”

−µ
(r)
x µ

(r)T
x

where c(m) is the component weight, µ(m)
x the mean, Σ

(m)
x the vari-

ance, and γ
(m)
t the component posterior alignment probability at

time frame t. An approximation to this is to use the diagonal form of

Σ
(m)
x although Σ

(r)
x is full. For low numbers of classes R compared

to the number of model components M in the acoustic model, this

should be a good approximation, since the between class covariance

should dominate over the within class covariance.

2.2. Noise Model Estimation

In order to apply these predictive compensation schemes to either

clean or multistyle trained models, the noise parameters must be

estimated to best reduce the mismatch between training and test.

Non-speech regions may be used to estimate the additive noise [7],

however this does not easily provide an estimate of the channel,

nor can this strategy accommodate changes in the noise over long

speech utterances. Hence consider an approach where a clean acous-

tic model is compensated using VTS, with the noise model itera-

tively improved using EM to maximise the likelihood of the test

condition. Such an EM framework for estimating the additive and

convolutional noise was presented in [9], but in this work estimation

is conducted in the cepstral domain. Also, a simple iterative 1st-

order gradient search is used to find an MLE of the noise variance.

Although using the MLE noise model derived using VTS com-

pensation may give good results for Joint compensation [10], there

is a mismatch between the compensation used during noise estima-

tion and that applied during recognition. Hence, it is sensible to

generate ML noise parameters explicitly tuned for Joint compen-

sation rather than VTS. ML Joint noise estimation gave improved

results especially for multistyle trained acoustic models [10]. The

following auxiliary function is used for ML Joint noise estimation

QJ (Φ; Φ̂) =
T
X

t=1

M
X

m=1

γ
(m)
t log

h

pJ(ot|Φ̂,M, m)
i

(6)

except the log probability for the output distribution is now given by

pJ (ot|Φ̂,M, m)= |Â
(r)

|N
“

Â
(r)

ot+b̂
(r)

; µ(m)
s ,Σ

(m)
s +Σ̂

(r)

b

”

(7)
The set of R Joint transforms, T =

h

T (1), T (r), . . . , T (R)
i

, may

be derived from the joint distribution that is estimated from the clean

speech class model and the estimated noise parameters Φ̂.

Given the acoustic model M, from which the clean speech class

model may be derived, an estimate of the noise parameters Φ̂ that

maximises the auxiliary function QJ is required. That is find

Φ̂ =
n

µ̂n, Σ̂n, µ̂h

o

= arg max
ˆ
Φ

QJ

“

M, T ;M, T̂
”

(8)

where T̂ is computed directly from clean speech class model and Φ̂.

With a suitable initial starting point, here the VTS-based MLE noise

model, the noise parameters may be iteratively refined using a simple

gradient-based optimisation scheme. For example the additive noise

mean update is

µ̂n,i = µn,i − ζ
∂2QJ

∂µ2
n,i

-1
∂QJ

∂µn,i

(9)

where ζ is the learning rate; the additive noise variance and channel

mean are similar. The second derivatives need to be conditioned

such that they remain negative to ensure the updates converge to a

local maximum; when they are not, a simple back-off strategy is to

switch to a first-order optimisation. It is also important to ensure that

each step improves the auxiliary. More detailed information of this

estimation procedure for both VTS and Joint MLE noise models

is given in [10].

3. JOINT ADAPTIVE TRAINING

Adaptive training is a powerful technique for factoring out unwanted

variability due to speaker, channel and environmental mismatch [1,

2]. This yields a pure “canonical” model of speech compared to

multistyle training where the models incorporate all the variability

of the acoustic data. In adaptive training, both a set of transforms

and the acoustic model parameters are iteratively estimated in an

EM framework. First, given the current acoustic models M, a new

set of transform T is estimated. Subsequently, the canonical model

parameters are updated given this new set of transforms. Multiple

iterations of this interleaved training may be performed to optimise

an auxiliary function for the noisy speech observations O and state

sequence θ given the transcription. Compared to adaptation with



MLLR, Joint uncertainty transforms may explicitly model the ef-

fects of noise when a mismatch function for noise, such as VTS, is

used to generate the joint distribution.

With JAT, determining the ML transforms and model parameters

is not directly possible so an auxiliary function is used

QJ

“

M,Φ;M̂, Φ̂
”

=

H
X

h=1

T (h)
X

t=1

M
X

m=1

γ
(m)
t × (10)

log
h

|Â
(rh)

|N
“

Â
(rh)

ot+b̂
(rh)

; µ̂(m)
s , Σ̂

(m)

s +Σ̂
(rh)

b

”i

where γ
(m)
t is the posterior probability that the observation ot is gen-

erated by component m on heterogeneous training data segmented

into H homogeneous blocks, each of length T (h), for all valid state

sequences given the transcription.

The uncertainty transforms in JAT are estimated as described in

section 2.2. Note the clean speech class model, described in 2.1,

needs to be re-computed every time the canonical model is updated.

When estimating new transforms, this creates a disconnect where

the initial ML noise model is estimated with a different clean speech

class model than the input transform. Nevertheless, it may be pos-

sible to begin with the Joint transform produced from Φ̂ and M̂.

More discussion of this issue may be found in [10].

3.1. Canonical Model Parameter Estimation

After a new set of transforms are estimated, the model parameters

are retrained. The auxiliary function, from equation 10, where only

terms dependent on the model parameters are shown, given Φ̂, is

QJ

“

M;M̂
”

= −
1

2

H
X

h=1

T (h)
X

t=1

M
X

m=1

γ
(m)
t × (11)

D
X

i=1

 

log(σ
(m)2
s,i +σ̂

(rh)2
b,i )+

(â
(rh)
i ot+b̂

(rh)
i −µ

(m)
s,i )2

σ
(m)2
s,i + σ̂

(rh)2
b,i

!

where diagonal covariance matrices assumed and D is the number

of dimensions in the feature vector. Because the joint transform pa-

rameters affect the model parameters and are shared over many ho-

mogeneous blocks, there is no closed form solution for the model

parameters that maximise this auxiliary function. Hence a gener-

alised EM approach is taken, where a second order gradient based

optimisation scheme is used to optimise the model parameters

"

µ̂
(m)
s,i

σ̂
(m)2
s,i

#

=

"

µ
(m)
s,i

σ
(m)2
s,i

#

−ζ

2

6

4

∂2QJ

∂µ
(m)2
s,i

∂2QJ

∂µ
(m)
s,i

∂σ
(m)2
s,i

∂2
QJ

∂σ
(m)2
s,i

∂µ
(m)
s,i

∂2
QJ

∂
“

σ
(m)2
s,i

”2

3

7

5

-1
2

4

∂QJ

∂µ
(m)
s,i

∂QJ

∂σ
(m)2
s,i

3

5

(12)

The learning rate ζ may be less than one, but in this work a value of

unity was found to be stable. The first derivative of the auxiliary in

equation 11 with respect to the mean of component m and dimension

i is

∂QJ

∂µ
(m)
s,i

=
H
X

h=1

T (h)
X

t=1

γ
(m)
t

 

â
(rh)
i ot + b̂

(rh)
i − µ

(m)
s,i

σ
(m)2
s,i + σ̂

(rh)2
b,i

!

(13)

and with respect to the model variance

∂QJ

∂σ
(m)2
s,i

=
H
X

h=1

T (h)
X

t=1

1

2
ω

(m)
t,i

 

(â
(rh)
i ot + b̂

(rh)
i − µ

(m)
s,i )2

σ
(m)2
s,i + σ̂

(rh)2
b,i

− 1

!

(14)

where ω
(m)
t,i =

γ
(m)
t

σ
(m)2
s,i

+σ̂
(rh)2
b,i

. The Hessian matrix is composed of

∂2QJ

∂µ
(m)2
s,i

=−
H
X

h=1

T (h)
X

t=1

ω
(m)
t,i (15)

∂2QJ

∂
`

σ
(m)2
s,i

´2
=

H
X

h=1

T (h)
X

t=1

ω
(m)
t,i

 

1

2
−

`

â
(rh)
i ot+b̂

(rh)
i −µ

(m)
s,i

´2

σ
(m)2
s,i + σ̂

(rh)2
b,i

!

(16)

∂2QJ

∂µ
(m)
s,i ∂σ

(m)2
s,i

= −
H
X

h=1

T (h)
X

t=1

ω
(m)
t,i

 

â
(rh)
i ot + b̂

(rh)
i − µ

(m)
s,i

σ
(m)2
s,i + σ̂

(rh)2
b,i

!

(17)

From equations 13 and 14, it can be seen that contributions from

observations when the SNR is low will be de-weighted by the un-

certainty bias term σ̂
(rh)2
b,i . When the noise completely subsumes the

speech, the uncertainty bias will be infinite and these observations

will not contribute to the model parameter update. If the SNR is

high, the uncertainty bias will tend to zero, allowing these observa-

tions to fully contribute. This allows the canonical model to truly be

a representation of clean, noise-free speech.

The estimation of the model variance is stabilised by limiting it

to changing at most by a factor of υ

σ̂
(m)2
s,i = min

„

max

„

σ̂
(m)2
s,i ,

1

υ
σ

(m)2
s,i

«

, υσ
(m)2
s,i

«

(18)

In practice, υ was set at 2. The Hessian matrix must also be negative

definite for the optimisation to converge, however the 2nd derivative

is not guaranteed to be. It may be re-expressed as

∂2QJ

∂(σ
(m)2
s,i )2

= w
(m)
1,i

„

−ϑ̂ +
1

2

«

(19)

where ϑ̂ = max

„

ϑ,−
w

(m)
2,i

w
(m)
1,i

«

and

w
(m)
1,i =

H
X

h=1

T (h)
X

t=1

γ
(m)
t

“

σ
(m)2
s,i + σ

(rh)2
b,i

”2
(20)

w
(m)
2,i = −

H
X

h=1

T (h)
X

t=1

γ
(m)
t

0

B

@

(a
(rh)
i ot + b

(rh)
i − µ

(m)
s,i )2

“

σ
(m)2
s,i + σ

(rh)2
b,i

”3

1

C

A
(21)

This parameter ϑ should remain greater than a half to ensure stabil-

ity of the optimisation. It may be observed that the ratio of w
(m)
2,i to

w
(m)
1,i should converge to unity as the model parameters better ap-

proximate the training data, given the set of Joint transforms.

Lastly, instead of directly optimising the variance, the log of

the variance is estimated to ensure that the converged value remains

positive. Thus, the following change of variable is made

ς = log Σ
(m)
s (22)

The derivatives may be easily recomputed to now optimise ς .

4. EXPERIMENTS

A simplified Broadcast News system based on the 2003 CU-HTK

system [11] was evaluated. MFCC parameters with the 0th cepstra,

and associated 1st- and 2nd-order features for 39 dimensions were

used with cross-word triphones and decision-tree clustered states.



There were 16 Gaussian components per state, yielding over 100K

model components. The CU RT-03 diarisation system segmented

and clustered the BN audio providing 143 hours of data for ML train-

ing. The dictionary contained 59K words. For decoding, a bigram

LM generated lattices which were re-scored using a trigram LM.

An initial decoding run provided the hypothesis for noise estima-

tion. Figures are reported against the dev03 test set encompassing

3 hours of shows from six different news sources aired in Jan 2001.

Compensation Noise Est. Type %WER

None — 20.8

Joint
ML VTS 19.1

ML Joint 18.8

VTS ML VTS 18.8

Table 1. Broadcast News results using 256 Joint transforms or

VTS with 2 full CMLLR transforms on dev03 test set.

BN results are presented in table 1. There was a 2% abso-

lute gain over the baseline system when applying either 256 Joint
transforms or VTS compensation. When these compensation schemes

are used with CMLLR, this improved to 18.0% and 17.7% respec-

tively, although with Joint a small gain of 0.1% is maintained over

solely using CMLLR. However, clearly the noise estimation type

should match the compensation; there is a 0.3% gain for Joint
compensation when Joint noise estimates are used rather than VTS.

Preliminary experiments with JAT on BN showed no improvements.

This was felt to be due to the training data being of relatively high

SNR. Hence further experiments were conducted by artificially cor-

rupting the RM task.

For experiments on the 1000-word Resource Management task,

the same features and model topology as the BN system were used,

except for 6 components per GMM. This gave 9492 system compo-

nents. Data was corrupted with Car and Operations Room noise from

the NOISEX-92 database to give 20 and 14 dB SNR tests; results are

averaged across the feb89, oct89 and feb91 test sets totaling an

hour. A multistyle model was built from data with Operations Room

noise added at the speaker level at SNRs of 8, 14, 20, 26 or 32 dB.

This was used as the initial model to begin JAT. The parameter ϑ was

reduced from 2.5 to 1 in increments of 0.5 for 4 iterations of model

re-estimation between each of 4 transform updates.

Acoustic Model Operations Car

Training Compensation 20 dB 14 dB 20 dB

Matched — 7.4 14.3 —

— 38.0 83.7 49.7

Clean Joint 9.2 22.6 8.0

VTS 8.4 23.6 7.4

— 7.0 15.5 43.5

Multistyle Joint 6.7 12.3 7.6

VTS 6.5 12.0 6.9

JAT Joint 6.2 11.4 6.2

Table 2. Baseline RM clean, multistyle, and JAT performance with

16 transform Joint and VTS compensation, %WER).

Table 2 provides RM results. As expected, clean performance

was poor, while multistyle trained acoustic models gave results com-

parable to matched system. Applying VTS or 16 diagonal model-

based Joint transforms to the clean models greatly improved re-

sults; but more interestingly, compensating multistyle models gave

accuracies better than matched for either scheme. Using 16 diagonal

constrained MLLR transforms was consistently poorer than Joint
compensation for these conditions. The best training scheme was

the JAT system, which exceeded matched and multistyle with VTS

performance at both 20 and 14 dB SNR. The 20 dB Car test contains

noise not seen in the training data. The results illustrate the weakness

of multistyle training when the noise is not present in the training;

the error rate only improves slightly to 43.5% from 49.7% on clean

trained. However, the JAT system factors in the Car noise as easily

as the Operations Room, yielding the same word error rate of 6.2%.

Still, this is double the matched clean WER of 3.1%.

5. CONCLUSIONS

This paper has discussed various approaches to building robust au-

tomatic speech recognition systems. Multistyle training, where the

data is used directly estimate the model parameters, may be also be

compensated with VTS or Joint schemes to give additional robust-

ness by reducing the mismatch between training and test conditions.

Experiments on a multistyle, large vocabulary Broadcast News sys-

tem show improvements with Joint and VTS compensation and

demonstrate how matching the compensation used during noise es-

timation to that used during test improves accuracy. Moreover, a

new form of adaptive training with Joint transforms gives the best

results since the noise is factored out from the training data. The

uncertainty due to noise will de-weight noisier segments of speech

allowing JAT to accommodate a wide range of SNR in the training

data. This results in acoustic models which truly represent the pure

acoustic speech variability, rather than effects due to speaker dif-

ferences or noise conditions. This was shown on experiments con-

ducted on the RM database.
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