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Abstract— Skid-steered mobile robots have been widely used
for terrain exploration and navigation. In this paper, we present
an adaptive trajectory control design for a skid-steered wheeled
mobile robot. Kinematic and dynamic modeling of the robot
is first presented. A pseudo-static friction model is used to
capture the interaction between the wheels and the ground. An
adaptive control algorithm is designed to simultaneously esti-
mate the wheel/ground contact friction information and control
the mobile robot to follow a desired trajectory. A Lyapunov-
based convergence analysis of the controller and the estimation
of the friction model parameter is presented. Simulation and
preliminary experimental results based on a four-wheel robot
prototype are demonstrated for the effectiveness and efficiency
of the proposed modeling and control scheme.

I. INTRODUCTION

Skid-steered mobile robots have been widely used in
many applications, such as terrain navigation and exploration,
waste management, defense, security, and household services.
Figure 1 shows an example of a skid-steered four-wheel
mobile robot. The absence of a steering system for a skid-
steered mobile robot (vehicle) makes the robot mechanically
robust and simple for terrain or outdoor environment navi-
gation. Due to the varying tire/ground interactions and over-
constrained contact, it is quite challenging to obtain accurate
dynamic models and tracking control systems for such mobile
robots. Although there is a great deal of research on dynamic
modeling and tracking control of differential-driven mobile
robots that are under the nonholonomic constraint of zero
lateral velocity, such as unicycles or car-like robots (readers
can refer to [1] and references therein), the counterpart
research on skid-steered mobile robots is less frequently
reported.

Because of the similarity between skid-steering of
tracked and wheeled vehicles, the method of modeling the
track/ground interaction for tracked vehicles can be utilized
for skid-steered wheeled robots. Song et al. [2] use the
tracked vehicle models discussed in [3]. In [4], localization of
a tracked vehicle based on kinematic models is presented. For
skid-steered modeling of tracked vehicles, readers can refer
to [5]–[7] for details. Because of the difficulty in accurately
capturing skid-steering, Anousaki and Kyriakopoulos [8]
propose an experimental study to model the kinematic re-

Fig. 1. A skid-steered four-wheel mobile robot.

lationship and demonstrate that a kinematic model for an
ideal differential-driven wheeled robot cannot account for
skid-steered robots.

There is little work discussing the dynamic control of skid-
steered mobile robots due to the lack of a good understanding
of skid-steering and the complexity of the wheel/ground
interactions. In [9], a dynamic model was presented for a
skid-steered four-wheel robot, and a nonholonomic constraint
between the robot’s lateral velocity and yaw rate is con-
sidered. A perfect knowledge of the wheel/ground contact
was assumed. In [10], a simple Coulomb friction model is
used to capture the wheel/ground interaction and a nonlinear
feedback controller is designed to track the desired path.
Ahmadi et al. [11] discuss tracked vehicle trajectory control
and a linearized track-soil interaction model with known
parameters is used for the controller design.

There is some research on modeling the wheel/ground
interaction for mobile robots. In [12], a comparison study is
presented for the control performance of an omni-directional
mobile robot with and without considering wheel slip. It
was found that the significance of slip increases when the
wheel/ground friction coefficient is larger. A tire/road friction
model in automotive study was considered for the longitudi-
nal friction force in [12]. For a detailed review of the tire/road
friction model, readers can refer to [13]. Dynamic modeling
of wheel/ground interaction is also presented in [14] for
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wheeled omni-directional robots. The longitudinal and lateral
friction coefficients are considered independently. Recently,
Ray et al. [15] use the force-slip relationship from tire/road
interaction to control the slip for the cooperative control of
a group of skid-steered autonomous mobile robots.

In this paper, a kinematic and dynamic model of a
skid-steered four-wheel mobile robot is first presented to
characterize the skid-steering properties. A wheel/ground
friction model is incorporated into the robot model for both
the longitudinal and lateral friction forces. Based on these
models, an adaptive trajectory control algorithm is utilized to
asymptotically track the desired trajectory. The contribution
of this paper is twofold. First, we propose a dynamic model
for skid-steered four-wheel mobile robots. Most existing
work only discusses the kinematic model due to the complex
dynamics involved in the wheel/ground interactions. Second,
we propose an adaptive tracking control mechanism that
can estimate the wheel/ground interaction in real time. Such
a control system design can enhance the tracking control
performance of a skid-steered mobile robot.

This paper is organized as follows. In section II, we discuss
the kinematic and dynamic modeling of a four-wheel skid-
steered mobile robot. A wheel/ground interaction model is
also discussed in this section. Section III presents a trajectory
control design for the skid-steered robot. Simulation and
experimental results of a prototype robot are presented in
section IV. Finally, we conclude the paper and discuss future
research directions in section V.

II. DYNAMIC MODELS

Figure 2 shows the kinematic schematic of a skid-steered
robot. Without loss of generality, we consider the following
assumptions.

Assumption 1 Robot modeling assumptions.

1. The mass center of the robot is located at the geometric
center of the body frame 1.

2. There is point contact between the wheel and the ground.
3. The contact rolling resistance force is negligible 2.
4. Each side’s two wheels rotate at the same speed.
5. The normal forces at the wheel/ground contact points are

equally distributed among four wheels during motion.
6. The robot is running on a flat ground surface and four-

wheels are always in contact with the ground surface.

Denote the wheel angular velocities ωi and the velocities
of the wheel contact points as vi, i = 1, . . . , 4, for the left-
front, left-rear, right-front, and right-rear wheels, respectively.
Assumption 1.4 implies ω1 = ω2, ω3 = ω4. The longitu-
dinal and lateral forces at each wheel’s contact point are Fi

and Pi, i = 1, . . . , 4, respectively. The velocity of the robot
mass center is denoted as vG. We can define a fixed frame
(X,Y ) and a robot body frame (x, y) as shown in Fig. 2.

1Similar results could be obtained if the mass center of the robot were
located somewhere other than the robot’s geometric center.

2Since we only consider wheel/ground point contact, the ground resistance
force is negligible.
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Fig. 2. A top-view schematic of a skid-steered mobile robot on a flat
surface.

We also denote the longitudinal and lateral wheel bases as L
and W , respectively.

Because of Assumption 1.4, we denote the instantaneous
center of rotation (ICR) of the left-side wheel contact points,
right-side wheel contact points, and the robot body as ICRl,
ICRr, and ICRG, respectively. It is known that ICRl,
ICRr and ICRG lie on a line parallel to the y-axis [4], [7],
[16]. Let (ẋ, ẏ, φ̇) be the longitudinal, lateral, and angular
velocity of the robot in body frame (x, y). It is straightfor-
ward to calculate the relationship of the robot velocities and
accelerations in both frames as follows.[

Ẋ

Ẏ

]
= RT (φ)

[
ẋ
ẏ

]
,

[
Ẍ

Ÿ

]
= RT (φ)

[
ẍ − ẏφ̇

ÿ + ẋφ̇

]
, (1)

where

R(φ) =
[

cos φ sin φ
− sin φ cos φ

]
.

Given mass center velocity vG and yaw rate φ̇, the lon-
gitudinal velocities vix of the wheel/ground contact points
are

v1x = v2x = ẋ − W

2
φ̇, v3x = v4x = ẋ +

W

2
φ̇, (2)

where r is the wheel radius. Then we can define the longi-
tudinal wheel slips λi as

λi =
rωi − vix

rωi
= −Δvix

rωi
, i = 1, . . . , 4, (3)

where Δvix = vix − rωi. Note that λ1 = λ2 and λ3 = λ4

due to Assumption 1.4. It is also observed that under the
above definition, λ ∈ [0, 1] if the wheel is under traction,
and λ ∈ (−∞, 0] if the wheel is under braking, which is
undesirable for uniformly modeling the wheel/ground friction
under traction and braking cases. To avoid such a problem,
using the same treatment as in [5], we restrict the magnitude
of λ to a maximum magnitude of 1.0 for λ < 0 under
braking.

On the other hand, we denote the x-y coordinates for
ICRl, ICRr, and ICRG as (xl, yl), (xr, yr), and (xG, yG),
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respectively. We can find that the x-coordinate S of the ICRs
satisfies the following constraints [4], [16].

S = xl = xr = xG = − ẏ

φ̇
. (4)

We can also write the longitudinal skid velocities of the
wheel/ground contact points as3

Δv1x = Δv2x =
(

yl − W

2

)
φ̇,

Δv3x = Δv4x =
(

yr +
W

2

)
φ̇. (5)

Combining Eqs. (2), (5), and Δvix = vix − rωi, we can
obtain

yl =
ẋ − rω1

φ̇
, yr =

ẋ − rω3

φ̇
, yG =

ẋ

φ̇
. (6)

We consider the longitudinal friction forces Fi = Niμi

for the ith wheel, where μi is the friction coefficient and
Ni is the normal force. It has been widely considered that
the friction coefficient μ is a function of the longitudinal
slip λ [7], [13], [17]. Figure 3(a) shows the μ-λ curve that
is obtained by fitting the experimental data [18]. Here, we
consider a linear approximation of the μ-λ curve as shown
in Fig. 3(b). For the traction case, the friction coefficient μ
can be approximated by the following functions.

μ(λ) =

{
Kλ λ ∈ [0, λm)
Kλm − Kλm−μs

1−λm
(λ − λm) λ ∈ [λm, 1],

(7)

where K is the friction stiffness coefficient, λm is the
longitudinal slip value which corresponds to the maximum
wheel/ground friction coefficient, and μs is the longitudinal
wheel/ground sliding friction coefficient.
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Fig. 3. (a) Relationship between the wheel/ground friction coefficient
μ and the longitudinal slip λ under various road conditions. (b) A linear
approximation of the μ-λ relationship.

We assume that the sliding friction coefficient is a fraction
of the peak friction coefficient μp, i.e. μs = αμp = αKλm,
where 0 ≤ α ≤ 1. With such a simplification, we can rewrite
Eq. (7) as

μ(λ) = K [σ1(λ) + σ2(λ) sgn(λ)λ] , (8)

3The ICRs are well-defined at a finite distance from the wheel/ground
contact point for zero yaw rate φ̇ = 0 since ẏ = 0 in this case [4].

where function sgn(x) = 1 if x ≥ 0 and sgn(x) = −1 if
x < 0 and

σ1(λ) =
{ 0 if 0 ≤ λ < λm

1−αλm

1−λm
λm if λ ≥ λm,

and

σ2(λ) =
{ 1 if 0 ≤ λ < λm

− 1−α
1−λm

λm if λ ≥ λm.
(9)

Eq. (8) can still be used to calculate the magnitude of the fric-
tion coefficients for the braking case while the longitudinal
slip λ < 0 and μ < 0.

The longitudinal friction force Fi and the lateral fric-
tion Pi are dependent on each other and their magnitudes
form a friction force circle [16], [17], [19], namely, Fi =
Fir cos θi, Pi = Fir sin θi, where Fir is the resultant
maximum friction force and θi is the slip angle at the ith
wheel (see Fig. 2). Noting that the longitudinal friction force
Fi = Niμi(λi), then we can rewrite the lateral friction force
Pi as

Pi = Fi tan θi, i = 1, . . . , 4, (10)

where slip angles θi can be calculated as the angles be-
tween the line formed by the wheel contact point and the
instantaneous rotating center and the centerline of the wheel’s
rotating axis (Fig. 2).

Figure 4 shows the four combinations of friction forces
for each side of wheels. The longitudinal forces Fi and the
lateral forces Pi follow the relationship in Eq. (10). Denote
the ICR coordinates as (x, y) and for all cases shown in
Fig. 4 we can rewrite Eq. (10) as follows.

P1 = F1 sgn(λ1)
L
2 − x

y
, P2 = −F2 sgn(λ2)

L
2 + x

y
. (11)

Notice that y �= 0 and F1, F2 ≥ 0 is the magnitude of the
longitudinal friction force in the above equations.

For the four-wheel robot, we assume that the normal load
at each wheel Ni = mg

4 is a constant and that the ground
soil conditions are the same for the four wheels 4. Due to the
fact λ1 = λ2, λ3 = λ4, we can obtain F1 = F2, F3 = F4.
Using the relationship given by Eq. (11), we can obtain

P1 = F1 sgn(λ1)
L
2 − xl

yl − W
2

, P2 = −F1 sgn(λ1)
L
2 + xl

yl − W
2

,

(12)

P3 = F3 sgn(λ3)
L
2 − xr

−(yr + W
2 )

, P4 = −F3 sgn(λ3)
L
2 + xr

−(yr + W
2 )

.

(13)

Therefore, we can write the dynamic equations in the (x, y)
frame as follows.

mẍ = 2 [sgn(λ1)F1 + sgn(λ3)F3] , (14a)

mÿ = P1 + P2 + P3 + P4, (14b)

IGφ̈ = 2 [− sgn(λ1)F1 + sgn(λ3)F3]
W

2
−

(−P1 + P2 − P3 + P4)
L

2
, (14c)

4This is a reasonable assumption since the robot size is relatively small.

ThC7.2

2607



x

y

Δv1

Δv2

θ1

θ2

ICR
(x, y) F1

F2

φ̇ > 0
P1

P2

(a)

x

y
Δv1

Δv2

θ1

θ2
ICR

(x, y)

F1

F2

φ̇ > 0P1

P2

(b)

x

y

Δv1

Δv2

θ1

θ2

ICR
(x, y)

F1

F2

φ̇ < 0

P1

P2

(c)

x

y
Δv1

Δv2

θ1

θ2

ICR
(x, y)

F1

F2

φ̇ < 0
P1

P2

(d)

Fig. 4. Friction forces. (a) Braking while turning left, (b) traction while turning left, (c) braking while turning right, and (d) traction while turning right.

where m is the mass of the robot and IG is the mass moment
of inertia of the robot about its mass center G.

Using Eqs. (3), (5), (6), and (8), we can rewrite the
traction/braking forces as

F1 = F2 =
mg

4
Kσ1(λ1) −

mg

4
K sgn(λ1)σ2(λ1)

[(
ẋ − W

2
φ̇

)
u1 − 1

]
,

F3 = F4 =
mg

4
Kσ1(λ3) −

mg

4
K sgn(λ3)σ2(λ3)

[(
ẋ +

W

2
φ̇

)
u2 − 1

]
, (15)

where u1 = 1
rω1

and u2 = 1
rω3

. Defining the control input
variables v1 = σ2(λ1)u1 − σ2(λ3)u2, v2 = σ2(λ1)u1 +
σ2(λ3)u2 and using the friction force model (15) and the
relationship for λi, Eqs. (14a)-(14c) become

ẍ = gK

[
1
2
σP +

1
4
Wφ̇v1 − 1

2
ẋv2

]
, (16a)

ÿ = −1
2
gKẏ

[
v2

(
1 +

1
2
σr1

)
+

1
2
σr2v1

]
, (16b)

φ̈ =
mg

4IG
K
{
−WσΔ +

(
Wẋ +

L2

2
φ̇σr1

)
v1 −

1
2

[
W 2 + L2

(
1 +

1
2
σr2

)]
φ̇v2

}
, (16c)

where

σr1 =
σ1(λ1) sgn(λ1φ̇)

λ1σ2(λ1)
− σ1(λ3) sgn(λ3φ̇)

λ3σ2(λ3)
,

σr2 =
σ1(λ1) sgn(λ1φ̇)

λ1σ2(λ1)
+

σ1(λ3) sgn(λ3φ̇)
λ3σ2(λ3)

,

and σP = σ1
P + σ2

P, σΔ = σ1Δ + σ2Δ, σ1
P =

σ1(λ1) sgn(λ1) + σ1(λ3) sgn(λ3), σ1Δ = σ1(λ1) sgn(λ1) −
σ1(λ3) sgn(λ3), σ2

P = σ2(λ1) + σ2(λ3), and σ2Δ =
σ2(λ1) − σ2(λ3).

Defining the generalized coordinates q = [X Y φ]T and
using Eq. (1), we can rewrite Eqs. (16) into the XY -frame

as
Mq̈ + c(q, q̇) = E(q, q̇)v , (17)

where v = [v1 v2]T and

M =

⎡
⎣m 0 0

0 m 0
0 0 Ig

⎤
⎦ , E(q, q̇) =

1
4
mgK

[
RT E1

e2

]
,

c(q, q̇) = mφ̇

⎡
⎣ 0 1 0
−1 0 0
0 0 0

⎤
⎦ q̇ − 1

4
mgK

⎡
⎣2RT

[
σP

0

]
−WσΔ

⎤
⎦ ,

E1 =
[
Wφ̇ −2ẋ
σr2ẏ −2ẏ

(
1 + 1

2σr1

)] ,

e2 =
[
Wẋ + 1

2L2σr1φ̇ − φ̇
2

[
W 2 + L2

(
1 + 1

2σr2

)]]
.

We have to incorporate the nonholonomic constraint (4)
into the above dynamics. Using Eq. (1), we can rewrite
Eq. (4) as

A(q)q̇ = 0, (18)

where A(q) = [− sin φ cos φ S]. Following a similar
derivation in [9], we can find the following reduced state-
space model 5

q̇ = G(q)η, (19a)

η̇ = (GT (q)MG(q))−1GT (q)(Ev − MĠ(q)η − c),(19b)

where η = [η1 η2]T = [ẋ ẏ]T is the pseudo-velocity and
matrix G(q) has its columns in the null space of A(q) 6.

G(q) =

⎡
⎣cos φ − sin φ

sin φ cos φ
0 − 1

S

⎤
⎦ =

[
RT

g1

]
, g1 =

[
0 − 1

S

]
.

We can simplify Eq. (19b) as follows.

η̇ =
mgK

4
Mη

[(
E1 + gT

1 e2

)
v +

[
2σP

WσΔ
S

]]
, (20)

5We drop the variable dependency for those variables that have been
previously defined.

6Here we can enforce S �= 0 to define the matrices well. It is also observed
in [4] that S is finite such that 1

S
�= 0.

ThC7.2

2608



where

Mη =

[
1
m 0
0 1

m+
IG
S2

]
.

III. CONTROL SYSTEM DESIGN

Given the dynamic model of the skid-steered mobile
robot (19a) and (20), we can design a dynamic feedback
linearization based controller system [9]. We can first use
the following input transformation for Eq. (20).

v =
(
E1 + gT

1 e2

)−1
(

4
mg

M−1
η τ −

[
2σP

WσΔ
S

])
, (21)

where τ = [τ1 τ2]T is the new control input. Under such a
transformation, Eq. (20) becomes{

η̇1 = Kτ1

η̇2 = Kτ2.

Consider the new output function z(t) as the coordinates (in a
fixed frame) of the ICR projection point on the x-axis (point
D in Fig. 2).

z(t) =
[
X + S cos φ
Y + S sin φ

]
. (22)

Defining τ1 = ζ, ζ̇ = w1 (dynamic extension), τ2 = w2, and
w = [w1 w2]T , then we obtain

...
z = Kα(q,η)w + Kβ(q,η) + γ(q,η), (23)

where

α(q,η) =
[
cos φ η1

S sin φ
sin φ −η1

S cos φ

]
, β(q,η) =

[
2ζη2

S sin φ

− 2ζη2
S cos φ

]
,

and γ(q,η) =
[
−η1η2

2
S2 cos φ −η1η2

2
S2 sin φ

]T
. Let zd(t)

denote the desired trajectory of the mobile robot. Then we
can define the tracking error ε = z(t)−zd(t) and the sliding
surface s as s =

(
d
dt + a

)2
ε = ε̈+k1ε̇+k2ε, where k1 = 2a,

k2 = a2, and a > 0. Define θ = 1
K . From the friction model

discussed in the previous section, we know that 0 < θ < ∞.
Taking the time derivative of s, we have

ṡ =
...
z − ...

zd + k1ε̈ + k2ε̇.

Using the dynamics given by Eq. (23), the above equation
becomes

ṡ =
1
θ
αw +

1
θ
β + γ + f(z, ε), (24)

where f(z, ε) = −...
zd + k1ε̈ + k2ε̇. Denote θ̃ = θ − θ̂, where

θ̂ is an estimate of the true parameter θ. We consider the
following Lyapunov function candidate

V =
1
2
sT s +

1
2θρ

θ̃2,

where ρ > 0 is the adaptation gain. Let the control input w
be

w = θ̂α−1

(
−γ − f(z, ε) − ξs − 1

θ̂
β

)
, (25)

where r = −γ − f(z, ε) − ξs and ξ > 0 is a constant.
Combining the above control design with Eq. (24) and taking
the derivative of the Lyapunov function V , we have

V̇ = sT ṡ +
1
ρθ

θ̃
˙̃
θ = −ξsT s − θ̃

θ

( ˙̂
θ

ρ
+ sT r

)
.

We can design the adaptation law for the estimate θ̂ as

˙̂
θ = −ρsT r. (26)

Then the stability of the adaptive control system follows
from V̇ = −ξsT s ≤ 0 and Barbalat’s Lemma [20]. Note
that the convergence of the estimated parameter θ̂ to its true
value depends on the persistent excitation conditions for the
adaptation law by Eq. (26).

IV. SIMULATION AND EXPERIMENTAL RESULTS

In this section, we present some simulation and exper-
imental results based on the skid-steered four-wheel robot
platform shown in Fig. 1. For this robot, we have: W = 0.43
m, L = 0.28 m, r = 0.08 m, m = 5 kg, and Ig = 0.45 kgm2.

Fig. 5 shows one test which compares the experiments
with the simulation results. The robot was run under constant
angular velocities ω1 = ω2 = 60 rpm and ω3 = ω4 = 120
rpm on a concrete surface. Fig. 5(a) shows the PID-controlled
angular wheel speeds and Fig. 5(b) shows the real trajectory
of the robot’s center with a simulated circular trajectory
under the same wheel speeds. Considering the mechanical
alignment and geometric variations on the real system, the
actual robot trajectory fits well with the simulated trajectory.
A comparison of the results clearly shows that the dynamic
model can predict the robot dynamics.
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Fig. 5. Experimental results for a circular motion with ω1 = 60 rpm
and ω3 = 120 rpm. (a) Angular wheel speed, and (b) experimental and
simulated trajectory.

In the simulation studying trajectory tracking control per-
formance, the robot is designed to track a circle given by
xd(t) = 6 sin

(
t
10

)
m and yd(t) = 6 cos

(
t
10

)
m. The location

of the ICR of the robot is chosen as S = 0.167 m. For
simplicity, the slope of the wheel/ground friction coefficient
μ-λ curve is kept constant at K = 5 during the entire
maneuver. The other parameters in the μ-λ curve are α = 0.8
and λm = 0.2. The controller parameters are chosen as
follows: k1 = 2, k2 = 1, ξ = 0.1, and ρ = 1. The
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robot starts at location (0, 3) with yaw angle φ(0) = 0 and
horizontal velocity ẋ = 0.3 m/s. The initial wheel velocities
are ω1(0) = ω2(0) = 20π rpm and the initial condition for
the estimated parameter is θ̂(0) = 1. Figure 6(a) shows the
robot trajectory, and Fig. 6(b) shows the tracking error in the
fixed frame. It can be clearly seen from these plots that the
robot trajectory quickly converges to the desired trajectory.
Figure 7(a) shows the robot velocities in the body-fixed
frame. It can be seen that since S �= 0, the lateral velocity
of the robot is non-zero, i.e. ẏ �= 0, and the robot is indeed
skidding on the ground. The estimated parameter θ̂ is shown
in Fig. 7(b). Although the estimated parameter θ̂ converges,
it does not converge to the true value θ = 1

K = 0.2.
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Fig. 6. Simulation tracking results. (a) Robot trajectory, and (b) tracking
error.
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Fig. 7. Simulation results. (a) Robot velocity in the body-fixed frame, and
(b) the estimated friction parameter.

V. CONCLUSION

We presented an adaptive trajectory control design of a
skid-steered wheeled mobile robot. An approximation of
the wheel/ground friction forces was used to capture the
dynamic relationships of the robot. The relationship between
the longitudinal and lateral friction forces at each wheel
was obtained through the rigid body kinematics of the robot
frame and wheels on each side. An adaptive control algorithm
was designed to simultaneously estimate the wheel/ground
contact friction information and control the mobile robot
to follow a desired trajectory. The stability of the adaptive
controller was guaranteed by a Lyapunov stability analysis.
However, the convergence of the estimated friction parameter

to its true value depends on the richness of the adaptation
signals. Some experimental and simulation results were pre-
sented to demonstrate the effectiveness and efficiency of the
proposed modeling and control scheme. In the future, we
will report the experimental testing results of the proposed
control mechanism on various road conditions.
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