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Adaptive Trajectory Tracking for Quadrotor

MAVs in Presence of Parameter Uncertainties

and External Disturbances

Gianluca Antonelli†, Elisabetta Cataldi†, Filippo Arrichiello†,

Paolo Robuffo Giordano‡, Stefano Chiaverini†, and Antonio

Franchi≀

Abstract—The paper presents an adaptive trajectory tracking
control strategy for quadrotor Micro Aerial Vehicles (MAVs). The
proposed approach, while maintaining the common assumption
of an orientation dynamics faster than the translational one,
removes the assumption of absence of external disturbances and
of Geometric Center coincident with the Center of Mass. In
particular, the trajectory tracking control law is made adaptive
with respect to the presence of external forces and moments
(e.g., due to wind) and to the uncertainty of parameters of the
dynamic model, such as the position of the center of mass. A
stability analysis is presented to analytically support the proposed
controller, while numerical simulations are provided in order to
validate its performance.

I. INTRODUCTION

Over the last years the robotics community experienced a

substantial increase of interest in the Micro Aerial Vehicles

(MAVs) field. In particular, quadrotor MAVs have become

more and more widespread in the community as experimental

platform for testing novel 3D planning, control and estimation

schemes in real-world indoor and outdoor conditions. Indeed,

in addition to being able to take-off and land vertically,

quadrotors can reach high angular accelerations thanks to the

relatively long lever arm between opposing motors.

The development of effective flight controllers and motion

planning strategies has been one of the primary objectives in

MAV research over the last decade, see e.g. [1]–[3]. Together

with the constant improvements in the miniaturization of

Micro Electro-Mechanical Systems and sensors (MEMS) and

in the computational power of microcontrollers, this has led

to impressive achievements by employing quadrotor MAVs as

robotics platforms: planning and control for aggressive flight

maneuvers [4] and collective control of multiple small- and

micro-quadrotors [5], [6] are just a few examples.

Being the quadrotor an underactuated mechanical system

(indeed, only four control inputs are available despite the

six dimensions of its configuration), a common strategy is to

control its 3D position and yaw angle, i.e., the so-called flat

outputs for the system [7]. The addition of tilting propellers to

the classical quadrotor model has nevertheless been recently

explored in [8] in order to increase actuation capabilities and

to gain full controllability of the 6-Degrees Of Freedom (DOF)

of the quadrotor pose in space.
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Robustness of the flight controller performance is a funda-

mental feature for any MAV application. Integral-based actions

can be used to counteract external disturbances, such as wind

and presence of small loads. Nevertheless, an adaptive/integral

action may result in an additional disturbance when the

nonlinearities of the model are not properly taken into account,

see, e.g., [9] for analogous problems in the marine context. In

this sense, at the best of our knowledge the only adaptive

control for MAVs has been proposed in [10], [11].

The goal of this paper is to present a novel adaptive control

scheme for quadrotor MAVs able to take into account the

effects of constant exogenous forces and moments, as well

as to cope with the presence of unknown dynamic parameters

(e.g., the position of the CoM). Preliminary results of this

work were presented in the papers [12] and [13]; in particular,

the work [12] contains the stability analysis and numerical

validation of the proposed adaptive control law, while [13]

reports the experimental results. In this paper we extend

these works by elaborating and discussing on the effects

obtained when placing the origin of the body-fixed frame at the

center of mass rather then at other more convenient locations,

such as the quadrotor geometrical center. Moreover, here we

present a more complete simulative case study considering

both the cases of changing payload mass (such as during a

transportation mission) and the presence of wind.

II. MODELING

A. Kinematics

Let us define a frame Σb, Ob − xbybzb fixed to the MAV

rigid body, from now on the body-fixed frame. The rigid body

pose is described by its position and orientation with respect

to a reference frame ΣI , OI − xyz that here is assumed as

an inertial, North-East-Down, earth-fixed reference frame.

Let η1 =
[

x y z
]T

∈ R
3 be the position of Ob expressed

in ΣI , and η2 ∈ R
3 be the vector collecting the set of body

Euler-angle coordinates in ΣI η2 =
[

φ θ ψ
]T

. Among

the possible combinations, the roll, pitch and yaw angles

are selected, i.e., the set of successive elementary rotations

around x, y and z in ΣI [14]. The two vectors can be collected

as η =
[

ηT
1 ηT

2

]T
representing the overall six-dimensional

position vector of the MAV.

The vectors η̇1 and η̇2 are time derivatives of η1 and η2

respectively (i.e., η̇1 is the velocity of Ob expressed in ΣI and

η̇2 is the derivative of the Euler-angles expressed in ΣI ).

Let’s define ν1 =
[

u v w
]T

as the linear velocity of Ob

with respect to OI , expressed in Σb, then it holds:

ν1 = Rb
I η̇1, (1)

where Rb
I(η2) is the rotation matrix expressing the transfor-

mation from the ΣI to Σb.

Let’s define ν2 =
[

p q r
]T

as the angular velocity of

Σb with respect to ΣI expressed in Σb. Following [14], the

relation between the vectors η̇2 and ν2 can be expressed by

the transformation matrix T ∈ R
3×3 , i.e. :

ν2 = T (η2)η̇2. (2)

The two velocity vectors can be collected in the six-

dimensional velocity vector ν defined as ν =
[

νT
1 νT

2

]T
.

mailto:afranchi@laas.fr
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Fig. 1. Variables related to the actuation system with, in particular, the
two possible placements for the origin of the body-fixed reference frame
(Geometric Center (GC) or Center of Mass (CoM))

B. Dynamics

As done, among the others, in [1]–[5], we model the

quadrotor dynamics using the equations of motion for a single

6-DOF rigid body, i.e. we do not consider here the effects of

the spinning propellers on the main body dynamics. When

placing the origin Ob of the body-fixed reference frame, two

choices are naturally possible: the Geometric Center (GC) of

the quadrotor, i.e., the intersection between the two thrusters

axes, or the Center of Mass (CoM) of the quadrotor structure

(in Fig. 1 we mark as OGC as OCoM the respective two

possible placements of Ob).

The rigid body dynamics of a quadrotor w.r.t. the body-fixed

frame placed in the GC is given, in matrix form, by:

Mν̇ +C(ν)ν + g(η2) = τ + τW , (3)

where τ ∈ R
6 represents the generalized input forces acting

on the vehicle. In detail, let us partition τ as τ =
[

τT
1 τT

2

]T
,

where the vector τ 1 =
[

X Y Z
]T

collects the linear forces

acting on the rigid body expressed in the body-fixed frame,

and the vector τ 2 =
[

K M N
]T

collects the moments

acting on the rigid body expressed in the body-fixed frame.

The system inertia matrix M ∈ R
6×6 is constant, symmet-

ric and positive definite, i.e., Ṁ = O, M = MT > O. Its

unique parametrization takes the form:

M =

[

mI3 −mS(rb
C)

mS(rb
C) IOb

]

, (4)

where rbC =
[

rC,x rC,y rC,z

]T
∈ R

3 is the center-of-

mass position expressed in body-fixed frame, I3 is the (3×3)
identity matrix, IOb

is the inertia tensor expressed in the body-

fixed frame, S(·) is the skew-symmetric matrix representing

the cross product operator [14], and m ∈ R
+ is the total mass

of the vehicle.

Explicit expressions for C can be found in, e.g., [15].

The gravity generalized force g ∈ R
6, acting at the center

of mass rb
C , is represented in body-fixed frame by:

g(η2) = −

[

mRb
Ig

I

mS(rb
C)R

b
Ig

I

]

, (5)

where gI =
[

0 0 g
]T

m/s2 and g = 9.81. When placing the

body-fixed frame at the CoM, this expression results simplified

since the last three terms of the vector (i.e., the moment

components) are null.

The term τW ∈ R
6 represents external forces/moments

acting on the vehicle due to disturbances such as wind. To

this purpose, let define as γW ∈ R
6 a vector of constant

parameters; within a time interval in which the external

disturbances can be considered as constant, their effect can

be modeled in the vehicle-fixed frame as

τW = ΦW (η2)γW =

[

Rb
I O3×3

O3×3 Rb
I

]

γW (6)

where the (6×6) regressor matrix ΦW expresses the force and

moment coordinate transformation between the two frames.

By exploiting the linearity in the parameters, it is possible

to rewrite (3) as:

Φ(ν̇,ν,η2)γ = τ (7)

where γ ∈ R
16 collects the following dynamic parameters: the

mass (1 param.), the first moment of inertia (3 param.), the

inertia tensor (6 param.) and the disturbance γW (6 param.).

The first three rows of equation (7) can be rewritten with

respect to the variables expressed in the inertial frame η̇, η̈
by exploiting (1)–(2) and the corresponding time derivatives,

according to the guidelines of robotics textbooks, e.g., [14]-

[15]. In particular, on the base of the diagonal structure of the

M1,1 block of eq. (4), they can be decomposed in the terms

Φxy ∈ R
2×16 and φz ∈ R

1×16 denoting respectively the first

two rows and third row of Φ in (7) expressed in the inertial

frame, i.e.,:




Φxy(

[

ẍ
ÿ

]

, η̈2, η̇,η2)

φz(z̈, η̈2, η̇,η2)



γ = RI
bτ 1. (8)

For the sake of space, in this work we will omit further

details on the system dynamics. However, the controller pre-

sented in the following will intentionally only consider the

parameters affecting the steady-state error; these will be listed

case-by-case during the next developments.

C. Thrusters

Quadrotors are equipped with four thrusters aligned along

the zb axis placed at position pb
t,i ∈ R

3, for i = 1, . . . , 4.

Each thruster provides a force and a moment according to

fi = bω2
t,i, τt,i = dω2

t,i for i = 1, . . . , 4 where ωt,i is the

angular velocity of the i-th rotor, b and d are the thrust and

drag coefficients. Figure 1 reports the common motor position,

positive rotation directions and relevant variables. In this figure

both the GC and CoM body-fixed frames are highlighted.

When calculating the input forces acting on the vehicle, for

both GC- and CoM-centered models it holds

τ 1 =
[

0 0 Zc

]T
=

[

0 0
4

∑

i=1

−fi

]T

. (9)

The moment components τ2, on the other side, differ between

the GC- and CoM-centered models since they are computed

with respect to different axes. With a proper numbering of the

thrusters, for the GC-centered model it holds:

τ 2=
[

l(f2−f4) l(f1−f3) τt,1−τt,2+τt,3−τt,4
]T

(10)
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where l is the arm length.

For the CoM-centered model, assuming rb
C =

[

rC,x rC,y rC,z

]T
6= 0

T, the computation of the

moments is not anymore as symmetric as in (10). Indeed, a

value rC,x 6= 0 and rC,y 6= 0 introduces distortion effects

along the pitch and roll directions, respectively. After few

computations one has

K = l(f2 − f4) + rC,y(f1 + f2 + f3 + f4), (11)

M = l(f1 − f3)− rC,x(f1 + f2 + f3 + f4), (12)

while the yaw torque (N) is not affected by the CoM position.

Due to the distributive property over the addition of the cross

product, it is then easy to verify that


pb
t,i −





0
0
rC,z







×





0
0

−fi



 = pb
t,i ×





0
0

−fi



 ∀ i (13)

and thus the displacement along zb of the center of gravity

does not modify the moment contribution.

Since the dynamics of the low-level motor controller can

be typically neglected with respect to the vehicle motion time

scale, it is possible to express the mapping from the angular

velocities to the force-torque acting on the vehicle as:









Z
K
M
N









= B









ω2
t,1

ω2
t,2

ω2
t,3

ω2
t,4









= Bu (14)

where B can assume the forms

BGC=







−b −b −b −b

0 bl 0 −bl

bl 0 −bl 0
d −d d −d






, or (15)

BCoM=







−b −b −b −b

brC,y b(l + rC,y) brC,y −b(l − rC,y)
b(l − rC,x) −brC,x −b(l + rC,x) −rC,x

d −d d −d






(16)

depending on the choice of a GC or CoM-centered model,

respectively. It is worth noting that, for the GC-centered

model, matrix B does not depend on the CoM coordinates

also in presence of a non-zero offset of the CoM with respect

to the GC, i.e., when rb
C 6= 0.

D. Discussion

The reported analysis shows that the selection of where to

place the origin of the body-fixed frame should be properly

assessed when considering quadrotors with the CoM and

the GC placed at different locations (as, e.g., when carrying

external loads or because of imprecise calibration). Indeed,

when opting for a CoM-centered model, the inertia matrix

and gravity terms result simplified but, on the other hand,

the computation of the thrust-generated moments shows a

dependence on the (typically unknown) rC .

Conversely, the opposite choice of resorting to a

GC-centered model solves the sensing part and simplifies the

computation of the thrust-related moments but, on the other

hand, introduces both an undesired coupling in the inertia

matrix, and a moment contribution in the gravitational term.

However, again, these effects cannot be compensated in the

controller as they would require the knowledge of rC that, on

the contrary, is in most cases unknown.

Neglecting the displacement among the GC and the CoM

in the feedback control law introduces a perturbation effect

that can be evaluated as follows. Denoting with the subscript

c the force components elaborated by the feedback control

assuming a GC-centered model, the actual forces components

applied on the quadrotor in a CoM-centered model are








Z
K
M
N









=BCoMB−1

GC









Zc

Kc

Mc

Nc









=









1 0 0 0
−rC,y 1 0 0
rC,x 0 1 0
0 0 0 1

















Zc

Kc

Mc

Nc









; (17)

thus, a perturbation effect proportional to the offset is intro-

duced in the K and M components; such perturbation might

become significant for MAVs carrying a payload.

Therefore, the ability of being robust w.r.t. the CoM position

by means of an online adaptive scheme is clearly beneficial

for an effective flight control. The next section discusses a

possible solution.

III. QUADROTOR ADAPTIVE CONTROL

We present here an adaptive control law for quadrotor

position and yaw tracking based on the GC-centered model.

The proposed solution consists of a set of interconnected

control algorithms that allow to separately deal with hori-

zontal/vertical position and yaw tracking, while managing the

underactuated nature of the quadrotor structure exploiting the

common assumption of an orientation dynamics significantly

faster than the translational one. Desired force and torque are

then used to compute the motors’ square velocities u as

u = B−1
[

Zc Kc Mc Nc

]T
(18)

where B = BGC as defined in (15).

A. Altitude control

By denoting zd as the desired altitude, let us define the error

variables z̃ = zd − z ∈ R, sz = ˙̃z + λz z̃ ∈ R with λz > 0,

and γ̃z = γ− γ̂z ∈ R
16, where γz represents the combined

contribution of the gravity and the vertical wind effects. The

Lyapunov candidate function Vz > 0 is

Vz(sz , γ̃z) =
m

2
s2z +

1

2
γ̃T
z Kγ,zγ̃z (19)

with Kγ,z > O being the adaptive gain.

The time derivative of V (sz , γ̃z) is given by

V̇ (sz , γ̃z) = sz
(

mz̈d −mz̈ +mλz ˙̃z
)

− γ̃T
z Kγ,z

˙̂γz (20)

that, making mz̈ explicit from eq. (8), can be rewritten as

V̇ (sz , γ̃) = sz

(

φzd
γ −

[

0 0 1
]

RI
bτ 1

)

− γ̃T
z Kγ,z

˙̂γz (21)

in which φzd
=φz(z̈d + λz ˙̃z, η̈2, η̇,η2) and where φz is as

defined in eq. (8).
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Assuming φ, θ 6= ±π/2, the scalar function V̇ is made

negative semidefinite by selecting

Zc =
1

cosφ cos θ

(

φzd
γ̂z + kv,zsz

)

˙̂γz = K−1
γ,zφ

T

zd
sz (22)

yielding, after some algebra,

V̇z(sz, γ̃z) = −kv,zs
2
z. (23)

We can now prove the system stability in a Lyapunov-like

sense using Barbălat’s Lemma [16]. Since

• Vz(sz, γ̃z) is lower bounded;

• V̇z(sz, γ̃z) ≤ 0;

• V̇z(sz, γ̃z) is uniformly continuous;

then V̇z(sz, γ̃z) → 0 as t→ ∞ and thus sz → 0. In particular,

as usual when resorting to adaptive control techniques, one

cannot prove asymptotic stability of the whole state since only

boundedness of γ̃z can be guaranteed.

It is interesting to implement a simpler version of the

controller aimed at compensating the sole persistent dynamic

terms, i.e., those terms preventing a null steady-state error [9]:

Zc =
1

cosφ cos θ
(γ̂z + kvzsz)

˙̂γz = k−1
γ,zsz (24)

in which γz ∈ R embeds the combined contribution of the

gravity and the vertical wind effects.

B. Horizontal position control

By denoting xd, yd the desired horizontal position, let us

define η̃xy=
[

xd−x yd−y
]T
∈ R

2, sxy= ˙̃ηxy+λxyη̃xy ∈ R
2

with λxy > 0, and γ̃xy = γ− γ̂xy ∈ R
16, where γxy repre-

sents the wind horizontal effect. We consider the Lyapunov

candidate function Vxy > 0

Vxy(sxy, γ̃xy) =
1

2
msTxysxy +

1

2
γ̃T
xyKγ,xyγ̃xy (25)

where Kγ,xy > O is the adaptive gain. The time derivative

of Vxy(sxy, γ̃xy) is given by

V̇xy = sTxy

(

Φxyd
γ −RT

z

[

cφsθ
−sφ

]

Zc

)

−γ̃T
xyKγ,xyγ̂xy (26)

with Φxyd
= Φxy(η̈d,xy + λxy ˙̃ηxy, η̈2, η̇,η2) ∈ R

2×16 and

and where Φxy is as defined in eq. (8). Similarly to the analysis

performed in the altitude control case, according to (9) the

sole Zc component is considered as possible body-fixed force

provided by the actuators. The scalar function V̇xy can be made

negative semidefinite by selecting the virtual inputs φd and θd,

for the orientation control so as to solve
[

cφd
sθd

−sφd

]

=
1

Zc

Rz

(

Φxyd
γ̂xy + kv,xysxy

)

,

˙̂γxy = K−1
γ,xyΦ

T
xyd

sxy. (27)

In this case too, by considering only the persistent dynamic

terms as in [9], the controller reduces to:
[

cφd
sθd

−sφd

]

=
1

Zc

Rz

(

γ̂xy + kv,xysxy
)

˙̂γxy = k−1
γ,xysxy (28)

where γ̂xy ∈ R
2 represents the sole wind effect (supposed

constant in the inertial frame), and φd and θd are sent to the

orientation controller as the desired angles.

C. Orientation control

The orientation control receives as input the desired roll

and pitch φd, θd from the horizontal position control (see

Section III-B) and the desired yaw ψd, and it outputs the torque

components
[

Kc Mc Nc

]T
.

When resorting to a GC-centered model, see (14)–(15), the

moments generated by the controller can be transformed into

the thruster angular velocities without the need of a known

CoM position. On the other hand, at hovering, the vehicle is

experiencing the moments from (5) computed for null roll

and pitch, i.e., g|φ=0,θ=0 = mg
[

rC,y −rC,x 0
]T
. This

effect needs to be properly compensated and, thus, an integral

or adaptive action is required to estimate the CoM position

r̂C in order to achieve null error at steady-state. The yaw

dynamics, instead, appears to be decoupled from the remaining

DOFs and it is not affected by the CoM displacement. The

orientation control can be structured, as an example, as a set

of independent Proportional-Derivative (PD) controllers of the

different orientation components with gravity compensation:

Kc = PD(φ) + r̂C,yZc,

Mc = PD(θ) − r̂C,xZc,

Nc = PD(ψ)

with

[

˙̂rC,x

˙̂rC,y

]

= krC

[

θd − θ
φ− φd

]

.

It is worth remarking that neither the altitude nor the yaw

control loops are affected by the offset between CoM and GC;

the convergence to a steady-state value for Zc can thus be

assumed. In any case, roll and pitch control can be designed

by considering the estimation error as an external, constant,

disturbance and several adaptive control laws for attitude

control may thus be used to the purpose.

IV. SIMULATIONS

Numerical simulations in a wide range of operative con-

ditions have been run in order to verify the effectiveness of

the proposed adaptive controller. Here we report the results

of numerical simulation in Matlab [17] environment gained

with the sole reduced controller (i.e., the one ensuring a null

steady-state error detailed in (24) and (28)) in order to prove

that the persistent terms have been effectively compensated

by resorting to a minimal set of five dynamic parameters;

namely, {γz, γxy, rC,x, rC,y}, where γz ∈ R represents

the combined contribution of the gravity and the vertical wind

effects, γxy ∈ R
2 the wind horizontal effect, and rC the

center-of-mass position expressed in body-fixed frame.

In order to properly test the proposed adaptive control

strategy, we consider the case of a quadrotor picking up and

transporting an unknown object while being affected by a

non-constant disturbance term due to wind. Table I reports

the dynamic parameters of the simulated quadrotor (without

considering the possibly transported object) and, when appli-

cable, the initial values used by the adaptive controller. Table II
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simulated initial estimate

mass m 1.50 kg 1.49 kg

inertia IOb .025I3 kg m2 not used in the
reduced controller

length l 30 cm known

drag coeff. b 1Ns2/rad2 known

thrust coeff. d 1Nms2/rad2 known

center of mass rC,b
[

5 3 0
]

T
cm

[

0 0 0
]

T
cm

TABLE I
DATA USED IN THE SIMULATION

λz 1.1 λxy 1.5
kv,z 3.0 kv,xy 2.0
kγ,z 1.3 kγ,xy 1.0

kv,φθψ 10.0
kp,φθψ 40.0
krC 5.0

TABLE II
GAINS USED IN THE SIMULATION

mass kg rC,x m rC,y m

0.5 0.070 0.050
0.8 0.077 0.057
1.0 0.082 0.062
1.2 0.085 0.065

TABLE III
MASSES OF THE ADDED OBJECT

AND THE COM DISPLACEMENT.

reports the control gains. The sampling time of the sensors and

the controller have been set to T = 1ms.

We assume that the grasped object is a point mass of

0.5 kg and that the grasping point in the OGC frame is
[

0.13 0.11 0.00
]T
m; thus, when the object is grasped, the

position of the CoM of the system in the OGC frame becomes

rC =
[

0.07 0.05 0.00
]T
m.

The mission has been decomposed in the following time

stages: [0 − 10] s: keep a hovering position in order to let

the adaptive controller extinguish the initial transient; [10 −
20] s: move toward the object position; [20− 40] s: remain in

hovering without carrying the object; 40 s: grasp the object;

[40−80] s: remain in hovering while carrying the object; [80−
90] s: go back to the initial position; 90 s: release the object;

[90−100] s: remain in hovering. Please notice that the system

is wind affected in the time intervals [30−40] s and [50−70] s.

Figure 2.a shows the components of the quadrotor position

(x-magenta, y-black, z-red) and its desired values (in gray).

For sake of comparison, we performed the same mission

using in one case the adaptive controller and in another case

a non-adaptive controller that, instead, it is composed of a

PID controller for both the vertical and horizontal control.

Figure 2.b shows the norm of the position error for both the

cases (the adaptive case in blue and the non-adaptive case in

green) from which one can note the better performance of the

proposed adaptive controller. It is worth noticing that the large

errors in the z-direction around the time 40 s and 90 s are due

respectively to the grasp and the release of the transported

object that is simulated via an instantaneous change of the

weight and of the position of the CoM.

Figures 2.c-d show in blue the roll and pitch angles and in

gray the desired values obtained as outputs of the horizontal

position control, see Sec. III-B; it can be noticed how the roll

and pitch angles computed by the horizontal position control,

in presence of constant input, converge to constant non-zero

values in order to counteract for the external wind.

Figure 2.e shows the simulated and the estimated force

along z-axis; as expected, when the quadrotor grasps the
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Fig. 2. Simulation results – (a) Quadrotor position along the different axis
x-magenta, y-black, z-red; (b) Norm of the position error adaptive control
(in blue) and the no-adaptive control (in green); (c) Desired (gray) and the
effective values of the quadrotor roll; (d) desired (gray) and the effective value
of the quadrotor pitch; (e) effective (gray) and estimated (blue) force along
the z-axis; (f) effective (gray) and estimated (blue) forces along the x, y-axis,
the solid line the x-axis and the dashed line the y-axis; (g) effective (gray)
and estimated (blue) position of the CoM, the solid line the x-axis and the
dashed line the y-axis.

object, the force along the z-axis changes due to the change

of the total weight. One can also appreciate how the controller

correctly estimates the total force.

The effective (gray) and estimated (blue) forces along

the x-axis (solid-line) and y-axis (dashed-line) are shown in

Figure 2.f; in this case, the controller ensures a null position

error at steady-state. One can also appreciate that during the

perturbation the z-axis remains almost constant.

Figure 2.g shows the effective (gray) and the estimated

(blue) position of the CoM, where the x-axis components are

the solid-lines and the y-axis components are the dashed-lines.

It is possible to appreciate that the estimation of the CoM

position is quite accurate even if the CoM position changes

during the mission due to the grasp/release of the object.
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Fig. 3. Simulation results – Norm of the position error of the proposed
control for four simulations with different mass attached, in blue 0.5 kg,
green 0.8 kg, red 1.0 kg and cyan 1.2 kg.
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Fig. 4. Simulation results - In figure the position error for the adaptive
control (blue) and the PID control (green) are reported, where the solid-line
for the x-axes dot-line for the y-axis and the dot-point-line for the z-axis.

In order to evaluate the effectiveness of the proposed control

law in different conditions, we repeated the simulations by

considering different weights of the transported object. Ta-

ble III reports, for the considered cases, the weights of the

objects and the position of the CoM expressed in body-fixed

frame. Figure 3 reports the norms of the position errors and

it shows that, during the transient, the errors increase with

the weight of the object, while in the state steady the errors

converge to zero in all the cases.

In Figure 4 to better appreciate the performances of the

proposed control the error of the proposed control (blue) and

the PID control (green) are reported.

Results of an experimental validation of the proposed

method can be found in [13] (details are here omitted for lack

of space).

V. CONCLUSION

In this paper, an adaptive control scheme for quadrotor

MAVs has been presented. By first discussing some modeling

insights, we have shown how most of the literature resorts

to a dynamic model, here labelled as CoM-centered model,

that assumes the CoM coincident with the GC; when this

assumption is not true, e.g. for MAVs carrying payloads or

manipulators, neglecting the offset between CoM and GC

implies some errors in the assumed placement of the onboard

sensing and actuation system with respect to the CoM. This

may cause unpredicted disturbance terms that are not easy

to compensate since the exact CoM position is typically

unknown. The adaptive control approach proposed in this

paper is able to cope with an unknown CoM location, with

uncertainties in MAV mass and with the possible presence of

external disturbances. The proposed control approach is ana-

lytically supported by a stability analysis and its performance

are validated via extensive numerical simulation results.
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