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Adaptive TS Fuzzy-Based MPC for DC Microgrids

With Dynamic CPLs: Nonlinear Power

Observer Approach
Navid Vafamand , Shirin Yousefizadeh, Mohammad Hassan Khooban , Senior Member, IEEE,

Jan Dimon Bendtsen, Member, IEEE, and Tomislav Dragičević , Senior Member, IEEE

Abstract—The performance of a DC microgrid (MG) might de-
grade because of the dynamics of constant power loads (CPLs).
In this paper, a novel adaptive controller is proposed to mitigate
the destructive effect of time-varying uncertain CPLs. A nonlinear
disturbance observer is developed to estimate the instantaneous
power of the CPLs. The estimated CPLs powers are then em-
ployed in a Takagi–Sugeno fuzzy-based model predictive control
strategy, aiming to adaptively modify the injecting current of the
energy storage system. The proposed approach is applied to a dc
MG testbed that feeds one CPL. Experimental results show that
the proposed adaptive controller is able to increase the stability
margin and improve the transient response of the dc MG.

Index Terms—DC microgrid (MG), model predictive controller
(MPC), non-ideal constant power load (CPL), nonlinear power
observer, Takagi–Sugeno (TS) fuzzy model.

NOMENCLATURE

CPL Constant power load.

ESS Energy storage system.

MG Microgrid.

MPC Model predictive control.

NDOB Nonlinear disturbance observer.

TS Takagi–Sugeno.

iL,j Current of the inductor in the jth CPL.

vC,j Voltage of the capacitor in the jth CPL.

Pj The power of the jth CPL.

rj Resistance of the jth filter connected to the

jth CPL.

Lj Inductance of the jth filter connected to the

jth CPL.

Cj Capacitance of the jth filter connected to

the jth CPL.

rs Resistance of the filter connected to the dc

source.
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Ls Inductance of the filter connected to the dc

source.

Cs Capacitance of the filter connected to the

dc source.

Vdc Voltage of the dc source.

ies Injecting current of the ESS.

z Internal state vector.

P̂ Estimation of the power of the CPLs.

Lo Gain matrix.

s Auxiliary vector.

X Augmented state vector of the dc MG.

xk State vector in a discrete-time representa-

tion.

yk Output vector in a discrete-time represen-

tation.

hi The ith normalized membership function.

Ai , Bi , Ei , Ci Local TS fuzzy matrices.

Ah , Bh , Eh , Ch Nonlinear TS fuzzy matrices.

ŷk |j Output prediction at sampling instant k

based on the information up to the sam-

pling instant j.

J Cost function.

W Future reference of the system.

Θ, ∆ Adaptive matrices of the MPC.

U Sequence of the future control input

vector.

I. INTRODUCTION

A
N MG is an electrical grid unit that is able to generate

power, distribute it through a network, as well as control

and monitor the distributed power to connected loads. MGs can

operate in both grid-connected and islanded modes [1]–[3]. DC

MGs are more suitable than ac MGs when it comes to provid-

ing power to dc loads, as well as integrating renewable energy

sources and ESSs [4]. The advantages and challenges of dc MGs

are described in [5]. DC MGs usually include several converters

to ensure that the power requirements of the sources and loads

are met. However, experience shows that tightly regulated dc

converters connected to the loads make them behave as CPLs.

The negative incremental impedance characteristics of CPLs

may cause system instability and degradation. Therefore, mini-

mizing the destabilizing effect of the CPLs is a requirement to
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control the dc MG efficiently. The nonlinear nature of dc MGs

with CPLs necessitates using nonlinear control strategies to mit-

igate undesired effects of CPLs [6]–[8], and to determine stabil-

ity requirements [9]. In [6], a linear state-feedback controller is

designed to ensure system stability. Then, the injecting power is

tuned based on the obtained control law. In [7], a linear system

is first obtained by means of a linearizing state feedback. Then, a

proportional-derivative controller is utilized for pole placement.

In [8], a diffeomorphism change of variable is presented to facil-

itate applying a backstepping controller which depends on the

second time derivative of the desired reference. The main draw-

back of [5] and [6] is that derivative terms appear in their control

laws, which amplifies noises. Hence, these approaches are un-

able to completely cancel the CPL dynamics in the presence of

noise [9]. In [10], Lipchitz techniques are deployed to obtain

a quasi-linear system from the nonlinear CPL dynamics. Then,

the obtained system is controlled by a robust linear controller. A

common assumption in the aforementioned approaches is that

they all assume ideal CPLs. However, in practical applications,

the MGs feed uncertain and/or time-varying CPLs, which are

known as non-ideal CPLs. A few research works have studied

the non-ideal CPLs effect in the stability analysis [11]–[13]. In

[11], by constructing a linear fractional transformation of an

uncertain MG, a µ-synthesis is used to calculate the maximum

upper bound of system uncertainties to guarantee system stabil-

ity. In [12], sufficient stability conditions are derived in terms

of linear matrix inequalities (LMIs) under the assumption that

the unknown powers of CPLs are bounded by some pre-given

limits. Authors in [13] have proposed a sliding mode controller

to stabilize an MG containing uncertain CPLs by employing an

energy storage unit. Even though authors in [11]–[13] investi-

gate the stability analysis and provide robust controller designs,

they all assume that the uncertainty in the power load is bounded

by a known limit. In order to overcome the considered limit on

this uncertainty, instantaneous power estimation of the time-

varying uncertain CPLs is necessary. The two main approaches

for unknown parameter estimation are deterministic observers

(DOB) and stochastic estimators. Even though stochastic esti-

mators, such as Kalman filtering and its derivatives, are proved

to be tolerant against process and measurement noises, they do

not guarantee that state estimates actually converge to the true

values. In contrast, DOBs guarantee the convergence of state

estimations to the vicinity of actual states [14]. DOBs treat the

instantaneous power of the CPL as an unknown disturbance. It is

estimated by modifying the estimation using the difference be-

tween the estimated output and the output of a nominal model.

The extension of the DOB for nonlinear systems is a NDOB

[15]. A comprehensive review on DOBs and NDOBs can be

found in [16]. Thereafter, to compensate for the CPL undesired

effect, an online adaptive controller is needed to regulate the

injecting current of the ESS complying with the CPL estimated

power. MPC is an effective control strategy that predicts the

future behavior of a system over a specific prediction horizon

[17], [18]. The MPC’s control law is obtained by optimizing

a cost function over the prediction horizon at each time step.

The online calculation can be carried out by quadratic optimiza-

tion or other numerical techniques such as LMI solvers [19].

Fig. 1. Illustration of the used DC MG in electric aircraft, navy ships,
automotive, etc.

Nonlinear MPC techniques can be formulated in terms of LMIs

by considering TS fuzzy model representations [19]–[21].

In this paper, a novel adaptive controller is employed to stabi-

lize a dc MG connected to an uncertain time-varying CPL. The

proposed approach first utilizes an NDOB to estimate the instan-

taneous power of the CPL. The estimated power is then used

in a TS fuzzy model-based MPC to optimally modify the ESS

injection current. The proposed approach is robust against the

power variations in the non-ideal or time-varying CPLs and it

can effectively stabilize the dc MG within a wide range of varia-

tions of the power. Comparing with the state-of-the-art methods

in which a robust viewpoint to handle the non-ideal CPLs is

utilized, the proposed approach presents an adaptive scheme,

which yields a better transient performance and less battery

power consumption. The merits of the proposed approach are

verified by experiments.

This paper is organized as follows: in Section II, the overall

nonlinear state-space model of the studied dc MG is presented.

In Section II, the proposed nonlinear power observer along with

a proof of convergence is discussed. In Section III, the proposed

adaptive TS-based MPC is provided and the value of the inject-

ing current is systematically designed. Then, in Section IV, the

experimental results are given to illustrate the effectiveness of

the proposed approach in practice. Finally, Section V concludes

this paper.

II. DC MG DYNAMICS

The considered dc MG, which contains several CPLs, is

shown in Fig. 1, and its simplified illustration is shown in Fig. 4.

To derive the overall system dynamic, initially, one CPL and

one source are studied.

The jth CPL subsystem and the source subsystem in Fig. 1

are shown in Figs. 2 and 3, respectively.

The dynamic equation of the jth CPL subsystem is obtained

as [22]

⎧

⎪

⎨

⎪

⎩

i̇L,j = −
rL,j

Lj

iL,j −
1

L
vC,j +

1

Lj

Vdc

v̇C,j =
1

Cj

iL,j −
1

Cj

Pj

vc,j

(1)
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Fig. 2. Simplification of the jth source and power converter load
as a CPL.

Fig. 3. Simplification of the ESS.

Fig. 4. Simplified illustration of the DC MG shown in Fig. 1 with
Q CPLs.

where Pj is the power of the jth CPL. Also, the source dynamics

can be written as [3]

⎧

⎪

⎨

⎪

⎩

i̇L,s = −
rs

Ls

iL,s −
1

Ls

vC,s +
1

Ls

Vdc

v̇C,s =
1

Cs

iL,s −
1

Cs

vC,s −
1

Cs

ies

(2)

where ies is the ESS injection current. The dynamic equations of

the overall MG, which consist of multiple CPLs and energy stor-

ages connected to the source as shown in Fig. 4, can be obtained

by extending the dynamic equations calculation procedure for

the MG with one CPL and one source. As is evident from Fig. 4,

the overall MG system can be decoupled into Q + 1 subsystems

(i.e., Q CPLs and one source).

The state-space equations of the CPLs (1, . . . , Q) are of the

form [23]
{

ẋj = Ajxj + djPj + Ajsxs

yj = xj
(3)

where xj = [iL,j vC,j ]
T is the CPL state vector and

Aj =

⎡

⎢

⎢

⎣

−
rL,j

Lj

−
1

Lj

1

Cj

0

⎤

⎥

⎥

⎦

, dj =

⎡

⎢

⎣

0

−1

Cjvc,j

⎤

⎥

⎦
, Ajs =

⎡

⎣

0
1

Lj

0 0

⎤

⎦ .

(4)

The state-space equations of the source subsystem can be

written as
{

ẋs = Asxs + bsVdc + beies + ΣQ
j=1Acnxj

ys = xs

(5)

where xs = [iL,s vC,s ]
T is the source state vector and

As =

⎡

⎢

⎣

−
rs

Ls

−
1

Ls
1

Cs

0

⎤

⎥

⎦
, Acn =

⎡

⎣

0 0

−1

Cs

0

⎤

⎦ ,

bs =

[

1

Ls

0

]T

, bes =

[

0 −
1

Cs

]T

. (6)

By augmenting the CPLs and the sources state vectors, the

state-space equation of the overall dc MG is obtained [10]

Ẋ = ĀX + D̄P + Besies + BsVdc (7)

where X = [xT
1 xT

2 . . . xT
Q xT

s ]T , P = [P1 , . . . , PQ ]T ,

and

Ā =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

A1 0 . . . 0 A1s

0 A2 · · · 0 A2s

...
...

. . .
...

...

0 0 · · · AQ AQs

Acn Acn · · · Acn As

⎤

⎥

⎥

⎥

⎥

⎥

⎦

,

D̄ =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

d1 0 . . . 0
0 d2 · · · 0
...

...
. . .

...

0 0 · · · dQ

0 0 · · · 0

⎤

⎥

⎥

⎥

⎥

⎥

⎦

, Bes =

⎡

⎢

⎢

⎢

⎣

0
...

0
bes

⎤

⎥

⎥

⎥

⎦

, Bs =

⎡

⎢

⎢

⎢

⎣

0
...

0
bs

⎤

⎥

⎥

⎥

⎦

.

(8)

In the following, the goal is to propose a systematic approach

to estimate the unknown power of the CPLs (i.e., P ).

III. NONLINEAR OBSERVER

In this section, the goal is to design a nonlinear observer to

estimate the instantaneous value of the CPLs powers. To achieve

this, the unknown CPL power vector is treated as a disturbance

and a NDOB for this vector is proposed. Generally, the ratio-

nale behind a disturbance observer is to calculate the unknown

disturbance by comparing the actual value of the system infor-

mation with that of the nominal system. The difference between
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these values is assumed to be caused by the effect of the distur-

bance on the actual system output. Particularly, for the dc MGs,

the variation of the CPLs powers affects the voltage and current

of the MG. Therefore, by evaluating the variations in the MG

states, one can estimate the variations and the exact value of the

CPLs powers.

Consider the dc MG system in (7), which contains the non-

linear term D̄. For such a system, the following power observer

structure is proposed:

ż = −Lo

(

D̄z + ĀX + Besies + BsVdc + D̄s
)

P̂ = z + s (9)

where z is the internal state vector of the power observer, P̂ is

the estimated power of the CPLs, Lo is the observer gain matrix,

and s is an auxiliary vector. The performance of the observer

and the convergence of the estimates to the true values are

highly dependent on the selection of Lo and s. The following

theorem shows how to choose these parameters to guarantee

convergence.

Theorem 1: The unknown power vector in (7) can be esti-

mated by the proposed nonlinear observer (9) with the following

parameters:

s = LoX (10)

Lo = −α
(

D̄T D̄
)−1

D̄T . (11)

Furthermore, these parameters guarantee the stability of the

estimation error.

Proof: Define the power estimation error as e = P̂ − P .

Taking the time derivative of the estimation error and using the

system and observer equations (7) and (9) provides

ė =
˙̂

P − Ṗ

= ż + ṡ − Ṗ

= −Lo

(

D̄z + ĀX + Besies + BsVdc + D̄s
)

+ ṡ − Ṗ .

(12)

Since s = P̂ − z, one has

ė = −Lo

(

D̄z + ĀX + Besies + BsVdc

+ D̄
(

P̂ − z
) )

+ ṡ − Ṗ

= −Lo

(

ĀX + Besies + BsVdc + D̄P̂
)

+ ṡ − Ṗ . (13)

On the other hand, from (7) one has

ĀX + Besies + BsVdc = Ẋ − D̄P. (14)

Consequently,

ė = −Lo

(

Ẋ − D̄P + D̄P̂
)

+ ṡ − Ṗ

= −LoD̄e − LoẊ + ṡ − Ṗ . (15)

Considering (10), (15) is continued as

ė = −LoD̄e − Ṗ . (16)

In the following, the goal is to select the gain matrix, Lo ,

so that the stability of (16) is assured. Consider the following

quadratic Lyapunov candidate:

V =
1

2
eT e. (17)

The time derivate of (17) along the trajectory (16) is

V̇ = ėT e

= −eT D̄T LT
o e − Ṗ T e. (18)

Using (11) then yields

V̇ = −αeT e − Ṗ T e

≤ −α‖e‖2 +
∥

∥

∥
Ṗ

∥

∥

∥
‖e‖

= −‖e‖
(

α ‖e‖ −
∥

∥

∥
Ṗ

∥

∥

∥

)

. (19)

For the region Ω(e) = {e(t)| ‖e‖ >
‖Ṗ ‖
α

}, one concludes that

V̇ < 0. Therefore, for a bounded ‖Ṗ‖, the trajectory of the error

will enter into the bounded region Ω̄(e) = {e(t)| ‖e‖ ≤ ‖Ṗ ‖
α

}
as t → ∞ [24]. Therefore, the error will be bounded. Moreover,

(19) can be continued as

V̇ ≤ −α‖e‖2 +
∥

∥

∥
Ṗ

∥

∥

∥
‖e‖

= −2αV + Γ (t) (20)

where Γ(t) is bounded, because ‖Ṗ‖ and ‖e‖ are bounded.

Solving the dynamic equation (20) provides [25]

V (t) ≤ e−2αtV (0) +

∫ t

0

e−2ατ Γ (t − τ) dτ. (21)

Considering the fact that the estimation error is bounded, (21)

is continued as

V (t) ≤ e−2αtV (0) + ‖Γ (t)‖

∫ t

0

e−2ατ dτ

= e−2αtV (0) +
1

2α
‖Γ (t)‖

(

1 − e−2αt
)

≤ e−2αtV (0) +
1

2α
‖Γ (t)‖ . (22)

Substituting (17) into (22) results in

‖e (t)‖2 ≤ e−2αt‖e (0)‖2 +
1

α
‖Γ (t)‖ (23)

therefore,

‖e (t)‖ ≤ e−αt ‖e (0)‖ +

√

1

α
‖Γ (t)‖. (24)

As can be seen from (24), when t → ∞, the ultimate bound

of the error will be

lim
t→∞

‖e (t)‖ ≤ max
0<t<∞

√

1

α
‖Γ (t)‖. (25)

Consequently, the estimation error is bounded. Note that the

term Γ(t) is dependent on Ṗ . Thus, for the constant loads and

slowly varying load powers, the upper bound of the error is

small, and thereby, the proof is completed.
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IV. NONLINEAR TS-BASED MPC CONTROLLER

This section deals with the design of a nonlinear MPC scheme

based on the TS fuzzy model. The aggregation of the MPC

technique with fuzzy methods [26]–[29] brings about a simple

but effective control strategy. In this section, the designing of a

nonlinear MPC controller based on the TS fuzzy model of the

system is provided. Applying the so-called sector nonlinearity

approach [25] and Euler discretizing method [30], the dynamic

equation (7) can be represented by the following discrete-time

TS fuzzy system [2]:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

xk+1 =
∑r

i=1 hiAixk +
∑r

i=1 hiBiuk +
∑r

i=1 hiEi

= Ahxk + Bhuk + Eh

yk =
∑r

i=1 hiCixk = Chxk .
(26)

The considered cost function is a standard finite-horizon lin-

ear quadratic cost

J (Np , Nu ) =

Np
∑

j=1

[

ŷk+j |k − wk+j

]2
+

Nu
∑

j=1

u2
k+j−1 (27)

where Np and Nu are the prediction and control horizons,

respectively, ŷk+j |k is the maximum likelihood j-step ahead

prediction of the output, and w(k + j) is the future reference.

Output and input vectors are defined as

Y =
[

ŷk+1|k ŷk+2|k . . . ŷk+Np |k

]T

U = [uk uk+1 . . . uk+Nu −1 ]
T . (28)

To obtain the control input, uk+j−1 , it is required to minimize

the cost function J given in (27) with respect to U . This can

be done by substituting the TS fuzzy model (26) in the cost

function. Then, the values of the predicted outputs, ŷk+j |k , are

calculated as a function of past values of the system charac-

teristics and future control signals. The computed predictions

are as

Y =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

ChAh

ChA2
h

...

ChA
Np

h

⎤

⎥

⎥

⎥

⎥

⎥

⎦

xk +

⎡

⎢

⎢

⎢

⎢

⎢

⎣

ChEh

Ch (I + Ah) Eh

...
∑Np −1

i=0 ChAi
hEh

⎤

⎥

⎥

⎥

⎥

⎥

⎦

+

⎡

⎢

⎢

⎢

⎢

⎢

⎣

ChBh . . . 0

ChAhBh . . . 0

...
. . .

...

ChA
Np −1

h Bh . . . ChA
Np −Nu

h Bh

⎤

⎥

⎥

⎥

⎥

⎥

⎦

U. (29)

Then, (29) can be rewritten in the vector form

Y = Ψ + ΘU (30)

where

Ψ =

⎡

⎢

⎢

⎢

⎣

ChAh

ChA2
h

...

ChA
Np

h

⎤

⎥

⎥

⎥

⎦

xk +

⎡

⎢

⎢

⎢

⎣

ChEh

Ch (I + Ah) Eh

...
∑Np −1

i=0 ChAi
hEh

⎤

⎥

⎥

⎥

⎦

Θ =

⎡

⎢

⎢

⎢

⎣

ChBh . . . 0
ChAhBh . . . 0

...
. . .

...

ChA
Np −1

h Bh . . . ChA
Np −Nu

h Bh

⎤

⎥

⎥

⎥

⎦

.

The cost function (27) can similarly be presented in the vector

form as follows:

J (Np , Nu ) = (Y − W )T (Y − W ) + UT U (31)

where

W = [w (k + 1) w (k + 2) . . . w (k + Np)]
T
. (32)

Substituting (30) into (31) yields the quadratic form

J (Np , Nu ) = UT HU + KU + UT KT + G (33)

where

H = ΘT Θ ≥ 0; K = (Ψ − W )T Θ;

G = (Ψ − W )T (Ψ − W ) .

Minimizing J with respect to U is a quadratic problem. Set-

ting the derivative of (33) with respect to the vector U equal to

zero, the analytical solution can be obtained as

U =
(

ΘT Θ
)−1

ΘT (Ψ − W ) . (34)

Remark 1. (Online implementation of the proposed ap-

proach): the proposed adaptive controller comprises two parts:

a nonlinear observer to estimate the instantaneous value of the

power of the uncertain CPLs and an adaptive MPC to optimally

design the value of the injecting current of the energy storage

unit. Although the mathematical derivations of these two parts

are derived independently, they must be performed simultane-

ously to implement the overall controller. In the following, the

detailed algorithm of the proposed controller is summarized.

1) Choose an initial guess for the CPLs powers P̂ (0).
2) Use P̂ = z + s in (9) and (10) to compute z(0).
3) Measure the currents and voltages (i.e., X) of the dc MG.

4) Update the CPL power estimation by (9).

5) Construct Θ, ∆, and Ψ based on the estimations.

6) Compute the injecting current based on (34).

7) Apply the value of the injecting current to the dc MG.

8) Go to line 3.

Steps 1 and 2 are performed offline in order to obtain ini-

tial values for the observer, while Steps 3–8 describe the online

execution of updating the observer and computation of the con-

trol signal.

Remark 2. (Advantages of the proposed approach): the

advantages of the proposed nonlinear controller to control the dc

MGs containing uncertain time-varying CPLs over the existing

controllers is as follows:
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TABLE I
PARAMETERS FOR DC MG WITH ONE CPL

Fig. 5. Actual and estimation of the power of the CPL.

1) Compared to the previously mentioned backstepping [8]

and sliding mode control designs [31], the proposed ap-

proach does not need any time derivatives of states, which

makes it more robust against noises. Also, compared to

the feedback linearization method [7], the proposed ap-

proach is more robust against the system uncertainties,

because no nonlinearity cancelation is needed. Moreover,

compared to the linear controllers [10], the proposed ap-

proach brings about a global stabilization.

2) Although some papers try to handle the non-ideal CPLs

as uncertainties with a pre-given upper bound and employ

a robust scheme [11]–[13], these approaches have some

drawbacks, as follows: a) the design procedure of these

approaches is dependent on priori bounds for the powers

of the CPLs. Therefore, if the upper bound changes, one

needs to redesign the controller; b) if the CPL power ex-

ceeds the upper limits, the existing robust controllers are

unable to stabilize the system, which means that to com-

ply with safety issues, one may need to choose very con-

servative upper limits. On the other hand, since a robust

controller is designed for the worst case, choosing higher

values for the bounds increases the energy consumption

and results in a higher injection current. However, the

proposed adaptive controller avoids the mentioned draw-

backs by estimating the instantaneous values of the powers

instead of considering priori upper bounds. Since the in-

jection current at each instant is designed based on the

estimated instantaneous power, a lower power will, in

general, be injected to the dc MG.

V. EXPERIMENTAL RESULTS

The MG parameters used in the experiments are listed in

Table I. The control algorithm is implemented in a DSpace Mi-

croLabBox with DS1202 Power PC Dual-Core 2 GHz processor

Fig. 6. DC MG states and control input.

board and DS1302 I/O board with the sampling time 100µs. To

investigate the robustness and fast transient performance of the

proposed approach, it is tested on an MG with parameters given

in Table I and the results are compared with [7], [8], and [10].

Scenario 1: consider an MG with only one CPL whose power

is within the stability range. Thereby, the value of the injection

current is set as zero. For such a system, the effectiveness of

the proposed nonlinear power observer is investigated. Also,
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the effect of the parameter α in the observer gain matrix (11) is

studied. The actual value of the CPL power and its estimation

obtained by the observer (9) with parameters (10) and (11) are

depicted in Fig. 5. Three observer gain matrices are considered

by selecting the three values α = 5, 8, 15 and the CPL power is

estimated based on each gain.

As can be seen in Fig. 5, the proposed nonlinear dynamic

observer can effectively estimate the unknown power of the

CPL. By selecting a higher value of α, the convergence speed is

increased by the expense of increasing overshoot in estimations.

For instance, at the starting time of the simulations, since the

initial condition for the observer is far away from the actual

value of the CPL power, an overshoot can be observed in the

estimation when α = 15. Meanwhile, the settling time (using

a 5% criterion) is about 0.35 s. Conversely, if α is chosen too

small, the convergence time may be large. For α = 8 and 5,

the settling time is about 0.57 and 0.73 s, respectively. Thus,

one needs to consider a trade-off between the overshoot and

convergence time.

Scenario 2: in this scenario, the proposed adaptive TS fuzzy-

based MPC is utilized to stabilize an MG with non-ideal CPL

with unknown and varying power. The designs presented in

[7], [8], and [10] cannot stabilize the system when the value

of the power is not known a priori. In addition, the mentioned

approaches cannot modify the value of the injecting current

even if the actual value of the time-varying power of the CPL

is available. Based on the transient performance analysis in

Scenario 1, the value of α in (11) is set as α = 8 and the power

of the CPLs is estimated. Then, the adaptive fuzzy MPC deploys

the information of the MG and the estimated power of the CPL

to optimally design the value of the injecting current to stabilize

the system. The voltages and currents of the CPL’s and source’s

filters are illustrated in Fig. 6. Fig. 6 illustrates the efficiency

of the presented approach in stabilizing the overall system and

compensating for the changes in load power demand.

VI. CONCLUSION

In this paper, a novel TS fuzzy-based adaptive controller is

proposed to modify the ESS current according to the changes in

a CPL power included in a dc MG. The unknown time-varying

CPLs powers are estimated by a modified NDOB. Experimental

results show that the proposed nonlinear observer can effectively

estimate the value of the CPL power with a low overshoot and

a high convergence speed. In addition, the proposed adaptive

controller is robust against CPL power variations; it can stabi-

lize the overall dc MG very fast and avoid oscillations in the

system states. In future work, one might consider modifying the

proposed power observer to simultaneously estimate the CPLs

powers demand and the other system parameters. Also, improv-

ing the convergence speed of the estimations is suggested to

enhance the transient performance of the closed-loop dc MG.

Furthermore, extending the results of this paper to other topolo-

gies of dc MGs with battery charging and discharging and in-

corporating with a droop control are considered to be of great

importance.
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