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S U M M A R Y

We present an adaptive unstructured triangular grid finite element approach for effectively

simulating plane-wave diffusive electromagnetic fields in 2-D conductivity structures.

The most striking advantage of irregular grids is their potential to incorporate arbitrary

geometries including surface and seafloor topography. Adaptive mesh refinement strategies

using an a posteriori error estimator yield most efficient numerical solutions since meshes are

only refined where required.

We demonstrate the robustness of this approach by comparison with analytical solutions and

previously published numerical simulations. Maximum errors may systematically be reduced

to, for example, 0.8 per cent for the apparent resistivity and 0.2◦ in the phase.

An additional accuracy study of the thickness of the air layer in E-polarization suggests to

keep a minimum thickness depending on lateral conductivity contrasts within the earth.

Furthermore, we point out the new quality and flexibility of our simulation technique by

addressing two marine magnetotelluric applications. In the first case, we discuss topographic

effects associated with a synthetic sinusoidal sea bottom model and in the second case, we

show a close-to-reality scenario using real bathymetry data from the East Pacific Rise at 17◦S.

Key words: adaptive unstructured grids, electromagnetics, electromagnetic modelling, finite

element methods, marine topography.

1 I N T R O D U C T I O N

While the finite element method incorporating adaptive unstructured

grids has been applied to engineering electromagnetics for years

(e.g. Webb 1995; McFee & Giannacopoulos 2001), the numerical

simulation of geo-electromagnetic applications has generally been

carried out using straightforward discretizations of the fundamen-

tal partial differential equations. Most of the classical approaches

such as the finite difference (FD), integral equation (IE) or finite

element (FE) method, have largely applied rectangular grids to nu-

merically compute the desired solutions. Especially, FD techniques

approximate the electromagnetic fields in rectangular cells to which

piecewise constant parameters, namely the electric conductivity σ ,

the magnetic permeability µ and the dielectric permittivity ε, are

assigned. Jones & Price (1970) described an FD algorithm for 2-

D modelling of electromagnetic fields including its application to

a vertical discontinuity in electrical conductivity. Jones & Pascoe

(1971) presented a more general computer program to calculate elec-

tromagnetic fields in an arbitrary 2-D environment. Brewitt-Taylor

& Weaver (1976) provided a revision of the theory for 2-D FD ap-

proximations with respect to an extension towards 3-D modelling

which was later introduced by Mackie et al. (1993). Aprea et al.

(1997) published an improvement to FD approaches regarding arbi-

trary model geometries. They presented a formulation that provides

more flexibility in the parametrization of the discretized region by

dividing rectangular cells into two triangles of possibly different

electrical conductivities. However, FD techniques are severely lim-

ited when curved boundaries are to be discretized (Holland 1993).

The IE method was rapidly developed from 2-D applications

(Hohmann 1971) to the 3-D formulation (Raiche 1974; Hohmann

1975; Weidelt 1975; Wannamaker et al. 1984). However, the IE

method requires the expensive computation of Green’s functions

and is limited to rather simple model classes. Hence nowadays, IE

approaches are mainly applied to verify the results of other numer-

ical modelling techniques.

The application of the FE technique to geo-electromagnetic mod-

elling was first established by Coggon (1971). Using triangular el-

ements in conjunction with non-uniform grids, a much more flexi-

ble mapping of structural boundaries including surface topography

may be achieved. However, for the sake of simplicity, Fox et al.

(1980) as well as Wannamaker et al. (1987) implemented 2-D FE

formulations on regularly structured grids by decomposing rectan-

gles into triangles. To a certain degree, they are applicable for the

treatment of topography Wannamaker et al. (1987) and useful for
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72 A. Franke, R.-U. Börner and K. Spitzer

systematic studies of its effects on data (Fox et al. 1980). Reddy &

Rankin (1975) developed a 2-D algorithm using quadrilateral ele-

ments. Orthogonal hexahedral meshes were applied by Li (2000) and

Mitsuhata & Uchida (2004). Thus, the full power of such dis-

cretization techniques has not unfolded so far in the field of geo-

electromagnetic modelling. There is, however, a wide range of engi-

neering applications demonstrating the potential of the FE method.

We present a 2-D FE algorithm for modelling electromagnetic

fields using adaptive unstructured grids. This discretization tech-

nique allows for arbitrary model geometries including surface to-

pography (Franke et al. 2004). Our approach benefits from many

advantages the FE method offers. Adaptive mesh refinement gener-

ally provides an optimization of both run time and accuracy. Based

on an a posteriori error estimator grid cells are adjusted only where

required.

Our algorithm has proved to yield satisfying results in compari-

son to analytical solutions and numerical computations for the 2-D

comparison of modelling methods for electromagnetic induction

(COMMEMI) models (Weaver & Zhdanov 1997). In this paper, the

results computed by our code are compared with those calculated

by an FE approach by Li (2000) and an FD algorithm by Weaver

(1994) for the 2D-4 COMMEMI model.

We intend to show the advantages of our approach by studying

models with surface and seafloor topography. Initially, several ter-

rain correction methods were proposed to reduce the influence of

surface undulations on data, for example, by Chouteau & Bouchard

(1988) and Jiracek et al. (1989). These methods operate rather ap-

proximative. Their accuracy is hard to assess and they may fail

for complicated terrain. Our approach strictly obeys the physics

and thus gives reliable results for any terrain. In recent publica-

tions, topographic effects were reported to be of special interest in

the emerging field of marine electromagnetic applications. Baba &

Seama (2002) transformed the undulation of the seafloor into an

appropriate change of electrical conductivity and magnetic perme-

ability of a corresponding flat seabottom. The applicability of our

approach to seafloor magnetotellurics will be demonstrated using

a model that was recently described by Schwalenberg & Edwards

(2004) who introduced an analytical formulation to calculate elec-

tromagnetic fields and impedances at sinusoidal interfaces. Finally,

we show the capability of unstructured triangular grids to precisely

parametrize a mid-oceanic ridge model from the Mantle Electro-

magnetic and Tomography (MELT) experiment (Evans et al. 1999)

including real bathymetry data. Our numerical studies demonstrate

severe effects on the data associated with the seafloor topography.

2 E L E C T R O M A G N E T I C I N D U C T I O N

I N 2 - D M E D I A

The behaviour of plane-wave time-harmonic diffusive electromag-

netic fields is governed by Maxwell’s equations. Neglecting dis-

placement currents and assuming an eiωt time dependency with an-

gular frequency ω, time t and the imaginary unit i2 = −1 for the

electric and the magnetic field vectors E and H, respectively, they

are given by:

∇ × H = σE, (1)

∇ × E = −iωµH, (2)

where σ = σ (x, z) denotes the electric conductivity. The magnetic

permeability µ is understood as the free space permeability µ =
µ0 = 4π × 10−7 V s

Am
.

Let y be the strike direction of a 2-D conductivity structure. We

consider a right-handed coordinate system with the z-axis pointing

positive upwards. In the 2-D case, eqs (1) and (2) reduce to

∂ Hx

∂z
−

∂ Hz

∂x
= σ Ey, (3)

−
∂ Ey

∂z
= −iωµHx , (4)

∂ Ey

∂x
= −iωµHz, (5)

−
∂ Hy

∂z
= σ Ex (6)

∂ Hy

∂x
= σ Ez, (7)

∂ Ex

∂z
−

∂ Ez

∂x
= −iωµHy (8)

for a homogeneous region of conductivity σ . The occurrence of the

field components E y , H x and H z in eqs (3)–(5) is referred to as

E-polarization, whereas eqs (6)–(8) hold for the case of

H-polarization.

Once the strike-parallel components E y and H y have been com-

puted, the remaining components H x , H z , E x and E z can be de-

rived from eqs (4) to (7) by numerical differentiation in a subse-

quent procedure which is generally referred to as post-processing.

From the horizontal electric and magnetic fields, the magnetotelluric

impedances

Zxy =
Ex

Hy

and Z yx =
Ey

Hx

(9)

yield the apparent resistivities

ρxy =
1

ωµ
|Zxy |2 and ρyx =

1

ωµ
|Z yx |2 (10)

as well as the phases

φxy = arg(Zxy) and φyx = arg(Z yx ). (11)

Furthermore, the ratio of vertical to horizontal magnetic field com-

ponents provides the magnetic transfer functions.

3 B O U N D A R Y VA L U E P R O B L E M

The combination of eqs (3)–(8) yields two decoupled second-order

partial differential equations for the bounded region 
 ⊂ R
2 which

have the general form

−∇ · (c∇u) + au = 0 in 
 (12)

for the strike-parallel components E y and H y . The parameters c, a

and u have different representations depending on the polarization

of the induced fields:

E-polarization:

u := Ey, c := 1, a := iωµσ, (13)

H-polarization:

u := Hy, c := 1/σ, a := iωµ, (14)

To solve for the desired unknowns, appropriate boundary con-

ditions need to be introduced. At internal boundaries Ŵint repre-

senting jumps between regions of the piecewise constant model
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FE simulation of 2-D MT fields 73

Figure 1. Domain 
 = 
1 ∪
2 with the outer Dirichlet boundary ŴD , the

inner boundary Ŵint, the pde coefficients a i , c i (i=1, 2) and the outward unit

normal vectors ni (i=1, 2) on Ŵint.

parameter σ the tangential field components n × (Hx , 0, Hz)
T and

n × (Ex , 0, Ez)
T are required to be continuous

n1 · c1∇u1 + n2 · c2∇u2 = 0 on Ŵint, (15)

where ni are the outward unit normal vectors and u i is E y,i and H y,i ,

respectively. To the outer boundaries ŴD inhomogeneous Dirichlet

boundary conditions of the form

u = r (x, z) on ŴD (16)

are assigned as a function r of the coordinates x and z. Exact ana-

lytical solutions are available for the horizontally layered half-space

(Wait 1953). Taking into account that the stratification may be dif-

ferent at the left- and the right-hand side model margins, the electro-

magnetic field values at the horizontal upper and lower boundaries

are obtained by a cubic spline interpolation.

Considering the simple model in Fig. 1, the boundary value prob-

lem is

−∇ · (c∇u) + au = 0 in 
1, 
2, (17)

u = r (x, z) on ŴD, (18)

n1 · c1∇u1 + n2 · c2∇u2 = 0 on Ŵint (19)

with u1 and u2 being the limits of u approaching the boundary Ŵint

from 
1 and 
2, respectively.

4 F I N I T E E L E M E N T M E T H O D

We seek for a solution u of the boundary value problem described

by eqs (17)–(19). An equivalent formulation of the boundary value

problem on the domain 
 = 
1 ∪ 
2 requires the validity of

eq. (17) only in the sense of the L2 inner product with an arbitrary

test function v of a function space V , which leads to
∫




(−∇ · (c∇u)v + auv) dx = 0 ∀v ∈ V . (20)

From the finite element analysis that is described in detail in Ap-

pendix A we derive a system of linear equations for the solution

vector U
\ŴD
in the region 
 \ ŴD

(K + M )U
\ŴD
= −(K + M )UŴD

. (21)

UŴD
provides the non-zero Dirichlet boundary values on ŴD .

To determine U
\ŴD
from eq. (21) a direct solver of the Gauss

elimination type is used. The computational effort to solve the sys-

tem for approximately 250 000 degrees of freedom (d.o.f.) is about

40 s on a common personal computer (2.08 GHz, 2 GB RAM). We

note that iterative methods are less expensive in terms of memory

but they lack time efficiency. Since effective convergence requires

an appropriate pre-conditioning of the system matrices, the desired

solution of the discrete system of equations may not be achieved in

reasonable computing time. Solving eq. (21) in connection with the

adaptive mesh refinement based on an a posteriori error estimator

as will be described in Sections 4.1 and 4.2 requires the solution

of the system of equations in each refinement step which further

reduces the efficiency of iterative solvers.

Our code is written in MATLAB®, from where the appropriate

components are called. The finite element discretization is carried

out using a MATLAB® toolbox for solving partial differential equa-

tions.

See Jin (1993) and Monk (2003) for further reading about FE

applications in electromagnetics.

4.1 Error estimation

The quality of an FE solution can be remarkably improved by reduc-

ing the size of the grid elements. Unlike refining a mesh globally,

an adaptive refinement strategy yields an optimal mesh with even

less d.o.f.. The element-wise a posteriori error estimator

E2(ϑ) = α‖ − auh‖2h2
ϑ + β

1

2

∑

τ∈Ŵint

∥

∥ − nτ · c∇uh
∥

∥

2
hτ (22)

based on the work of Johnson (1987) and Johnson & Erikson

(1991) determines the regions for the adaptive mesh refinement. See

Appendix B for a detailed derivation of eq. (22). The error indicator

function depends on the local mesh size hϑ = hϑ (x), the length hτ

of edge τ , the residual −auh on the triangle ϑ and the jump in the

tangential electromagnetic fields nτ · c∇uh across the element edge

τ that is distributed equally to both triangles sharing the edge by the

factor 1

2
. By ‖ · ‖ the L2-norm is denoted. The real coefficients α

and β are independent of the triangulation. Note, that eq. (22) only

contains known quantities including the approximate solution uh .

Hence, the error indicator can be computed without knowledge of

the exact solution u.

4.2 Adaptive mesh refinement

On the basis of the error indicator function (22) an adaptive mesh

refinement is carried out. Triangles for which E2(ϑ) exceeds a cer-

tain value p relative to the largest estimated error are selected to be

refined. Setting p = 0.5 means that all triangles with error indicator

E(ϑi ) > 0.5 max[E(ϑ)] are to be refined. Two main refinement

schemes are applicable: (1) the longest-edge bisection creates two

new triangles from an old one and (2) employing the regular refine-

ment, four new triangles are generated from an old one by bisecting

each edge. Usually, a combination of both is carried out to obtain

meshes of high quality. Both schemes are suitable in the case of a

global mesh refinement as well.

5 A C C U R A C Y A N D E F F I C I E N C Y

S T U D I E S

This section presents accuracy studies with analytical solutions

that are available for the homogeneous and the 1-D layered half-

space and comparisons of our code with other numerical results

for the 2D-4 COMMEMI model. By comparison with analytical

solutions we can quantify the numerical error arising from the FE
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74 A. Franke, R.-U. Börner and K. Spitzer

discretization. On the one hand, it depends on the mesh size and on

the other hand it is imposed by non-exact boundary conditions.

For a fixed mesh, it is shown that the discretization error is mainly

dependent on the electromagnetic skin depth, that is, on the electric

conductivity and the frequency. By reducing the mesh size in certain

regions of a homogeneous half-space it is illustrated how different

adaptive mesh refinement strategies enhance the finite element so-

lution.

Additionally, we have examined the influence of the air layer on

the data at the earth’s surface for E-polarization. For a simple dyke

model, the exactness of the boundary conditions imposed at the

upper horizontal domain boundary has proved to be dependent on

the contrast in electric conductivity and on the thickness of the air

layer.

5.1 Comparison with analytical solutions

Fig. 2 displays the apparent resistivity ρa , the phase angle φ and the

error curves with reference to the analytic solutions on the surface

of a homogeneous half-space of ρ1 = 10 and 100 
 m, respectively.

The error levels indicate spatial grid patterns arising from the coarse

initial mesh.

In the following, error specifications refer to the corresponding

maximum levels.

For the 10 
 m half-space the maximum error is more than 2

per cent for the apparent resistivity and 0.6◦ for the phase. In the

case of the 100 
 m half-space, however, the maximum errors are

approximately 0.8 per cent and 0.2◦, respectively. For a constant fre-

quency of f = 1 Hz, the misfit to the analytical solution decreases

with increasing skin depth δ ∝ √
ρ. The same trend is pointed out

by Fig. 3 that shows sounding curves of the apparent resistivity

ρa and the phase φ for E- and H-polarization for the model of a

ρ1 = 100 
 m half-space with an embedded layer of ρ2 = 10 
 m

between z top = −200 m and zbottom = −300 m. The largest errors of

approximately 13 per cent in apparent resistivity and 3◦ in phase for

E-polarization and −17 per cent and −5◦ for H-polarization occur

at the shortest period T =10−4 s and thus small skin depths. Note,

that the error is almost negligible at the long period end (T = 102 s).

Since the total number of grid nodes is limited by the available com-

puter memory the maximum accuracy may be achieved by adapting

the model size to T and ρ. Furthermore, to satisfy the boundary

conditions the model requires horizontal and vertical extensions of

several skin depths.

5.2 Accuracy enhancement strategies

Adaptive mesh refinement leads to an optimal trade-off between

accuracy and computational effort. In the following, the results for

the uniformly refined mesh used in the previous section (cf. Fig. 2b)

are compared to those obtained by, first, a solely adaptive refine-

ment and, secondly, a combination of both methods. We restrict our

numerical investigations to the case of a 100 
 m half-space.

For both strategies, values of the parameter p (cf. Section 4.2) have

to be defined to select triangles for the adaptive mesh refinement.

First, forcing the algorithm to restrict the refinement to triangles ϑi

which show an estimated error of E(ϑi ) > p ·max(E(ϑ)), p = 0.5,

results in a grid that is fine along the whole air–earth interface (cf.

Fig. 4). Moreover, it gets remarkably coarser in the air layer but not

towards greater depths.

Since computational resources are limited in terms of memory

size, the number of d.o.f. is bounded. A redistribution of grid nodes

according to an error indicator function avoids unnecessarily fine

meshes in regions where the field usually shows small spatial vari-

ations. The second strategy incorporates an additional geometrical

criterion that limits the adaption of the cell size to a certain area of

interest which is determined by the skin depth, the location of lat-

eral conductivity contrasts, and the centre of the model (Fig. 5). The

choice of small p-values, for example, p = 0.001, ensures the very

fine parametrization of the central part in spite of large estimated

errors E(ϑi ) outside of it. To prevent from numerical pollution ef-

fects of the coarse grid at the boundaries, a sequence of uniform

refinement steps has to be performed until a limit for the number of

mesh elements is exceeded.

The results of both strategies are displayed in Fig. 6. When ap-

plying an unrestricted adaptive mesh refinement, a moderate accu-

racy is obtained throughout the whole horizontal model extension

(Fig. 6a). The combination of the adaptive and uniform mesh re-

finement (Fig. 6b) leads to very small errors of 0.2 per cent for the

a) b)

Figure 2. Apparent resistivity ρa (top, solid) and error in percent (top, dashed), phase angle φ (bottom, solid) and error in degrees (bottom, dashed) at the

surface of (a) a 10 
 m and (b) a 100 
 m half-space at a frequency of f =1 Hz, E-polarization, uniform mesh refinement, 219 777 d.o.f., 441 504 triangles.
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FE simulation of 2-D MT fields 75

Figure 3. Soundings of apparent resistivity ρa (top, solid) and error in percent (top, dashed), phase angle φ (bottom, solid) and error in degrees (bottom,

dashed) over a 100 
 m half-space with an embedded 10 
 m layer between −200 and −300 m depth, (a) E-polarization and (b) H-polarization, uniform mesh

refinement, E-Pol.: 248 889 d.o.f., 499 456 triangles, H-Pol.: 279 345 d.o.f., 561 280 triangles.

Figure 4. Adaptively refined mesh for an E-polarization model of a 100 
 m half-space including the air layer. At the earth’s surface, the minimum mesh size

is �xmin = 23.4 m, the maximum �xmax = 46.9 m.

apparent resistivity and 0.05◦ for the phase in the central part of the

model, which represents the area of interest.

Table 1 summarizes the comparison of the mesh refinement strate-

gies in terms of accuracy and computational cost using a direct

equation solver of the Gauss elimination type. Considering a de-

sired error level of approximately 0.8 per cent in apparent resistivity

and 0.2◦ in phase the combined adaptive and uniform mesh refine-

ment appears as the most efficient method in terms of run time (10 s)

and number of d.o.f. (37 793). Both other methods are slower by the

factor five (50 s). In case of uniform mesh refinement the long run

times are due to the large number of d.o.f. (219 777). In the other

case, the solely adaptive refinement indeed leads to a reduced num-

ber of d.o.f. (86 596), however, the evaluation of the error indicator

function (22) requires the numerical solution of the FE problem in

every refinement step which thus leads to the undesirably long run

times.
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76 A. Franke, R.-U. Börner and K. Spitzer

Figure 5. Adaptively and uniformly refined mesh for an E-polarization model of a 100 
 m half-space including the air layer. At the earth’s surface, the

minimum mesh size is �xmin = 23.4 m, the maximum �xmax = 750 m.

a) b)

Figure 6. Apparent resistivity ρa (top, solid) and error in percent (top, dashed), phase angle φ (bottom, solid) and error in degrees (bottom, dashed) at the

surface of a 100 
 m half-space at a frequency of f = 1 Hz, E-polarization, (a) adaptive refinement: 174 746 d.o.f., 350 167 triangles, (b) combined adaptive

and uniform refinement: 226 027 d.o.f., 452 208 triangles.

Table 1. Comparison of mesh refinement strategies with respect to accuracy

and efficiency.

Uniform Adaptive Adaptive & Uniform

d.o.f. 219 777 86 596 37 793

Number of triangles 441 504 173 873 75 722

Run time (s) 50 50 10

Errorρa ,max (per cent) 0.8 0.8 0.8

Errorφ,max (◦) 0.2 0.2 0.2

5.3 Influence of the air layer

Eqs (6) and (7) show that the magnetic field H y is independent

of the coordinates x and z within a non-conducting region. Hence,

for H-polarization the inhomogeneous Dirichlet boundary condi-

tion assigns a constant H y at the air–earth interface and the air

layer need not be introduced explicitly as part of the model. By

contrast, the real component of the electric field within the air is af-

fected by subsurface changes of the conductivity. 2-D conductivity

structures result in anomalous electric field contributions that atten-

uate in the air. Therefore, an air layer has to be introduced into the

E-polarization models. The air layer can be regarded as sufficiently

thick if these anomalous electric fields vanish at the upper hori-

zontal model boundary and the field value approaches the one of

the boundary condition due to the 1-D normal structure. Hence, the

thickness of the air layer needs to be chosen with care in order to

yield accurate results. As an example, we investigate two models

consisting of a 100 
 m half-space with an embedded vertical dyke
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FE simulation of 2-D MT fields 77

Figure 7. Real part of the electric field E y in the air layer of a thickness of 10 km (dot), 100 km (dash–dotted) and 200 km (dash) for a 100 
 m half-space

with an embedded (a) 10 
 m and (b) 0.1 
 m dyke. The solid line indicates the boundary condition (bc) value. The asymptotic behaviour of the electric field

is correct only for the 200 km thick air layer.

Figure 8. Section of the COMMEMI model 2D-4.

of 10 and 0.1 
 m, respectively, at −2000 ≤ × ≤ 2000 m for a

frequency of f = 1 Hz. Fig. 7 displays vertical profiles of the real

part of the electric field in the air layer at x = 0 m with respect to

the air layer thickness (10, 100 and 200 km). The anomalous field

contribution along a vertical profile in the air layer satisfies a ra-

diation condition, hence, it yields a reduced total electric field that

converges asymptotically to the boundary value. This behaviour is

well represented in the case of the 200 km air layer. If the air layer

is not sufficiently thick the graph shows a rather linear behaviour as

for the thickness of 10 km. The effect on the real part of the electric

field E y is considerable up to z = 150 km for the 10 
 m dyke and

z = 200 km for the 0.1 
 m dyke. The imaginary part of the electric

field is unaffected by the thickness of the air layer.

The resulting distortion of the electric field E y and its vertical

gradient near the earth’s surface leads to deviations of the apparent

resistivity ρa of up to 1.5 per cent and of the phase φ of up to 1.2◦ in

case of the 10 
 m dyke. These values increase to 10 per cent and

2◦, respectively, for the 0.1 
 m dyke. Hence, the thickness of the air

layer has to be determined by the magnitude of lateral conductivity

contrasts.

5.4 Comparison with numerical calculations

One of the 2-D COMMEMI models (Weaver & Zhdanov 1997)

serves as an example for comparing our FE approach with an FE

program by Li (2000) and an FD code by Weaver (1986).

Fig. 8 displays the main features of the COMMEMI model 2D-4

which consists of three layers with resistivities ρ1 = 25 
 m, ρ3 =
1000 
 m and ρ4 = 5 
 m. The embedded graben-like structure of

ρ22 = 2.5 
 m tapers off as a layer to the right-hand model bound-

ary. On the left-hand model boundary the stratification is different
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78 A. Franke, R.-U. Börner and K. Spitzer

Figure 9. Apparent resistivitiy ρa computed with our FE code ‘−’, by Li ‘×’ and by Weaver ‘◦’ for the COMMEMI model 2D-4 of Fig. 8 at a frequency of

f = 1 Hz for (a) E-polarization and (b) H-polarization. Deviations are below 1 per cent for E-polarization and below 3 per cent for H-polarization.

Figure 10. (a) Real and (b) imaginary part of current density j y , f = 1 Hz, E-polarization.

because of a semi-infinite layer of ρ21 = 10 
 m. For our computa-

tions, the model extends to ±30 km in the horizontal and to ±50 km

in the vertical direction. Inferred from the studies described in Sec-

tion 5.3 we found an air layer of only 50 km to be sufficiently thick.

This is caused by the overburden which significantly damps out

the anomalous electric fields resulting from the lateral conductivity

contrasts at x = −6 km.

The apparent resistivities computed by our algorithm and the

two reference codes are shown in Fig. 9 for E- and H-polarization

and a frequency of f = 1 Hz. With a maximum deviation below

Figure 11. (a) Real and (b) imaginary part of current density j x , f =1 Hz, H-polarization.
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FE simulation of 2-D MT fields 79

Figure 12. Section of the adaptively and uniformly refined mesh for the COMMEMI model 2D-4, E-polarization. Adaptive refinement has been restricted to

−15 < x < 15 km and −5 < z < 5 km.

Table 2. Frequency f , resistivity ρ and skin depth δ for the models

‘Land 1’, ‘Land 2’ and ‘Sea’.

f (Hz) ρ (
 m) δ (km)

Land 1 0.01 100 (crust) 50.3

Land 2 100 100 (crust) 0.5

Sea 0.01 1/3 (sea water), 100 (crust) 2.9, 50.3

1 per cent for E-polarization and below 3 per cent for H-polarization

the results of the three codes are in good agreement.

Figs 10 and 11 present the horizontal current densities jy = σ Ey

and jx = σ Ex for E- and H-polarization. In both cases, the currents

focus in the upper conductive zones and decay with depth. Current

channelling occurs within the thin 2.5 
 m layer. Note that j y is

discontinuous at horizontal conductivity contrasts (Fig. 10) whereas

j x is continuous (Fig. 11). Large values of the imaginary parts of

the current density j y (Fig. 10b) and j x (Fig. 11b) reflect strong

induction effects in the conductive layers. The FE mesh applied

for the E-polarization case is exemplified in Fig. 12. It has been

generated by adaptive refinements starting from the initial grid for

−15 < x < 15 km and −5 < z < 5 km and two subsequent uniform

refinement steps. The mesh used for H-polarization is different as

the air layer has been omitted.

6 M O D E L S T U D I E S

The efficient and accurate modelling of a realistic air–earth inter-

face whose shape may be derived, for example, by digital elevation

models is feasible only by incorporating very fine triangular grids.

They allow for treating natural slopes more flexibly than rectangular

parametrizations. Triangular FE meshes that result from the decom-

position of rectangular grid cells applied by Fox et al. (1980) and

Figure 13. (a) Real and (b) imaginary part of current density j y for E-polarization, model ‘Sea’: ρ0 = 1014 
 m (air), ρ1 = 1/3 
 m (sea water), ρ2 = 100 
 m

(crust), f = 0.01 Hz.
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80 A. Franke, R.-U. Börner and K. Spitzer

Figure 14. Apparent resistivity ρa (top) and phase φ (bottom) for a frequency of f = 0.01 Hz and models (a) ‘Sea’ and (b) ‘Land 1’, E-polarization, analytical

‘+’ and numerical ‘−’ solution.

Figure 15. Apparent resistivity ρa (top) and phase φ (bottom) for the model ‘Land 2’, f = 100 Hz, (a) E-polarization and (b) H-polarization, analytical ‘+’

and numerical ‘−’ solution.

Wannamaker et al. (1986) are only suited for studying effects of a

geometrically simple topography. Unstructured grids, however, pro-

vide a more precise discretization of arbitrary model geometries that

can be used to include topographic or bathymetric data. To demon-

strate the superiority of our unstructured grid based algorithm, we

investigate two examples from the literature. The first one contains

a sinusoidal surface which exhibits characteristic effects, whereas

the second one is a close-to-reality example with real bathymetry

data.

6.1 Synthetic example

With regard to the application of marine MT, Schwalenberg &

Edwards (2004) introduced an analytical solution for a sinusoidal

land surface and seafloor. Its shape is expressed as

z(x) = −� cos

(

2π

λ
x

)

(23)

with the amplitude � = 100 m and the wave length λ = 1000 m. For

the considered frequency range and resistivity values, the authors

revealed very different topographic effects on the land surface and

the seafloor. To discuss the effects of such a surface in different

environments we investigate three special cases referred to as ‘Land

1’, ‘Land 2’ and ‘Sea’, respectively (see Table 2). Looking closer at

the distribution of the current density j = σE we may gain a better

physical understanding.

In the model ‘Sea’ we assume resistivities of ρ1 = 1

3

 m for

the sea water, ρ2 = 100 
 m for the crust and a seafloor depth of
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FE simulation of 2-D MT fields 81

Figure 16. (a) Real and (b) imaginary part of the current density j y for the model ‘Land 2’, f = 100 Hz, E-polarization.

Figure 17. (a) Real and (b) imaginary part of current density j x for the model ‘Land 2’, f = 100 Hz, H-polarization.

2000 m. Fig. 13 displays the current density component j y for a

frequency of 0.01 Hz and E-polarization. The currents mainly flow

in the conductive sea water. The decay of the electromagnetic fields

with depth (cf. the skin depth δ in Table 2) above the hills differs

from the one in the valleys. This has significant influence on the

apparent resistivity ρa and the phase φ displayed in Fig. 14(a). On

land (model ‘Land 1’, Table 2), the undulations of the air–earth

interface hardly affect the synthetic data (Fig. 14b) due to the large

skin depth. The decay of the electromagnetic fields within 200 m

from the top of the hills to the bottom of the valleys is negligible, that

is, the skin depth is large compared to the amplitude of the seafloor

undulations.

To cause topographic effects in the apparent resistivity ρa and the

phase φ on land, the frequency has to be increased. Fig. 15 shows

ρa and φ for E- and H-polarization and an adjusted frequency of

f = 100 Hz (cf. Table 2, model ‘Land 2’).

In the case of E-polarization and higher frequency, the maximum

values of apparent resistivity and phase are observed at the top of

the hills, which is opposite to the observation made for the seafloor.

We note that in the absence of the conducting sea water the crust

acts as good conductor where the highest current densities occur at

the hills (Fig. 16).

The current density component j y caused by the sinusoidal shape

of the earth’s surface is larger on top of the hills than in the valleys.

The lateral lack of current flow in the air results in a higher apparent

resistivity and larger phase over the hills while the additional current

flow near the valleys yields a decrease in the apparent resistivity and

phase angle for E-polarization.

Considering currents flowing in-plane as is the case in

H-polarization (Fig. 17), one observes large apparent resistivities

and small phases in the valleys due to ‘compressed’ horizontal cur-

rent lines and the associated horizontal magnetic and electric fields.

On top of the hills the ‘expansion’ of the current lines gives rise to

decreasing apparent resistivities and increased phases.

6.2 Real bathymetry model

We complete our numerical experiments with an example that

demonstrates the capability of unstructured triangular grids to cope

with real bathymetry data. We focus on the simulation of the ef-

fects caused by the strong seafloor topography at the East Pacific

Rise at 17◦S. In this region, the MELT experiment strives to map

the distribution of rock melt at a mid-oceanic ridge (Evans et al.

1999). MT data have been collected at 13 ocean-bottom stations ar-

ranged perpendicular to the ridge strike (Fig. 18). Baba et al. (2006)

recently published an interpretation based on a 2-D inversion incor-

porating anisotropy of the electrical conductivity. To account for the

bathymetry, the MT responses have been corrected for 3-D topog-

raphy as described by Baba & Chave (2005).
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82 A. Franke, R.-U. Börner and K. Spitzer

Figure 18. Location of MT sites (circles) on a bathymetric map.

Table 3. Bathymetry data of the data points

on the profile across the mid-oceanic ridge.

No. Dist. from Depth

ridge (km) (m)

1 −102.8 3346

2 −21.9 3084

3 −10.4 3167

4 −5.2 2817

5 −1.0 1636

6 1.0 2738

7 6.6 3022

8 11.2 3020

9 27.9 3126

10 107.7 3588

11 160.3 3538

12 206.8 3427

13 322.3 3610

In the following, we show to what extent apparent resistivity and

phase are affected by the seafloor topography of this region for a

considered period range of 102 < T < 105 s. For this purpose, we

combine the bathymetry data listed in Table 3 and the 1-D layered

earth model in Table 4 used for the terrain correction by Baba et al.

(2006). We assume a 2-D representation of the topography to be suf-

ficient since the rise as the main bathymetric feature can be regarded

as a 2-D structure. Fig. 19 displays the results as pseudo-sections for

E- and H-polarization, respectively. In the case of E-polarization, we

observe decreased apparent resistivities and increased phases at the

rise (sites 4–7) as well as enlarged apparent resistivities and dimin-

ished phases at depressions (sites 3, 8, 9, 11 and 12). These observa-

tions coincide with the results of the previous section. We note that

sites 3 and 8 exhibit phases larger than 90◦. Due to the concentration

Table 4. 1-D layered earth resistivity distribution for the mid-

oceanic ridge model.

Depth (km) Resistivity ρ (
 m)

0 . . . 3.20 0.3125

3.20 . . . 9.39 1000

9.39 . . . 51.49 5000

51.49 . . . 393.29 50

>393.29 1

of the currents in the sea water at the slope, the anomalous magnetic

field dominates the strongly attenuated normal field at the seafloor.

The anomalous field is opposite in sign and yields phases that lie

in the second quadrant. For the H-polarization case, the bathymetry

effect is caused by a static, frequency-independent accumulation of

electric charge at horizontal conductivity contrasts. At the rise, the

amplification of the electric field yields a maximum apparent resis-

tivity, whereas at the depressions the electric field is diminished and

the apparent resistivity decreases. The phase is less affected by the

electric charge accumulation.

Fig. 20 shows the unstructured triangular grid that has been used

in the FE simulation of the electric field for E-polarization at the

period of T = 102 s. The mesh used for the H-polarization differs

from the latter as the air layer has been omitted. Both meshes result

from adaptive mesh refinement. The triangular elements are gener-

ally fine in the layer representing the sea and in the upper crust where

most of the electric field is attenuated. The seafloor undulations are

parametrized very finely. In the deeper crust where the field values

are close to zero the grid is coarse. The dense coverage of grid cells

constricted to regions where the solution requires a good resolution

guarantees a precise parametrization of the bathymetric undulations

as well as accurate and reliable results.
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FE simulation of 2-D MT fields 83

Figure 19. Pseudo-sections of apparent resistivity ρa (top) and phase φ (bottom) for the mid-oceanic ridge model for (a) E-polarization and (b) H-polarization.

Numbers at the top denote MT sites plotted in Fig. 18.

Figure 20. FE mesh parametrizing the model of the mid-oceanic ridge,

f = 0.01 Hz, E-polarization.

7 C O N C L U S I O N S

We have developed an FE approach for modelling plane-wave diffu-

sive time-harmonic electromagnetic fields. The appropriate bound-

ary value problem can be expressed as an elliptical second-order

partial differential equation including inhomogeneous Dirichlet

boundary conditions arising from a 1-D layered half-space. A sys-

tem of linear equations results from applying the FE approximation

with linear basis functions on unstructured triangular grids. For the

considered 2-D problems, direct methods on the basis of classical

Gauss type equation solvers are sufficient to obtain the solutions in

reasonable time.

The comparison with analytical solutions and numerical calcu-

lations has shown that our FE approach is numerically robust. A

posteriori error estimators are the basis for an adaptive mesh gen-

eration that guarantees high accuracy. A combined adaptive and

uniform mesh refinement strategy yields an optimum trade-off be-

tween accuracy and computational effort.

The use of unstructured grids is very suitable for simulating elec-

tromagnetic fields in arbitrary model geometries especially when

surface topography is involved. Model studies have shown, that un-

dulations of the earth’s surface significantly affect the apparent re-

sistivity and phase depending on different skin depths on land and

in the sea. Considering the mid-oceanic ridge model including real

bathymetry data, it becomes obvious to what extent seafloor un-

dulations can influence MT measurements. Hence, it is of great

importance to allow for modelling of any topographic shape.

The utilization of MATLAB®’s pde-toolbox has greatly simpli-

fied our approach to simulate electromagnetic fields in complicated

geological environments. High-level programming languages are

very suitable to takeover tedious administration tasks as is the case

for FE modelling. This leaves more space to deal with the actual

physical phenomena. However, we find it of prime importance to

pervade the theoretical background and control the implementation

of the numerical techniques. Serving as a fast and accurate forward

code it is well suited to be integrated in an inversion scheme ac-

counting for topography. This will be the subject of a forthcoming

publication.
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A P P E N D I X A : F I N I T E E L E M E N T

F O R M U L A T I O N

We seek for a solution u of the boundary value problem described

by eqs (17)–(19). An equivalent formulation of the boundary value

problem on the domain 
 = 
1 ∪ 
2 requires the validity of

eq. (17) only in the sense of the L2 inner product with an arbitrary

test function v of a function space V , which leads to
∫




(−∇ · (c∇u)v + auv) dx = 0 ∀v ∈ V . (A1)

From the vector identity ∇ · (c∇uv) = ∇ · (c∇u)v + c∇u · ∇v and

Green’s Theorem we obtain
∫




(c∇u · ∇v + auv) dx −
∫

∂


n · (c∇u)v dl = 0 ∀v ∈ V . (A2)

The integral over all boundaries ∂
 = ŴD ∪ Ŵint of the region 

∫

∂


n · (c∇u)v dl =
∫

ŴD

n · (c∇u)v dl

+
∫

Ŵint

[n1 · (c1∇u1) + n2 · (c2∇u2)]v dl

(A3)

vanishes if v ≡ 0 on the Dirichlet boundary ŴD . On that condition,

the original problem (17)–(19) can be replaced by the so-called weak

formulation which consists of finding u ∈ U such that:

b(u, v) =
∫




(c∇u · ∇v + auv) dx = 0 ∀v ∈ V, (A4)

where

U := {u ∈ H 1(
) : u = r on ŴD} and (A5)
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FE simulation of 2-D MT fields 85

Figure A1. Linear basis functions φϑ
m (Pn) (m, n = 1, 2, 3) on triangle

t, φϑ
m (Pn) = 1 (m = n) and φϑ

m (Pn) = 0 (m �= n).

V := {v ∈ H 1(
) : v ≡ 0 on ŴD} (A6)

are the trial and the test space, respectively. H1 denotes the finite-

dimensional Hilbert space

H 1(
) := {v ∈ L2(
), ∇v ∈ [L2(
)]2}, (A7)

that is, linear with respect to the scalar product (u, v) =
∫



(uv +

∇u · ∇v) dx. For the solution u of the weak form (A4) and its first

partial derivatives∇u it is sufficient to be square integrable instead of

u ∈ C2(
1, 
2) (cf. eq. 17). The material parameters a, c ∈ L2(
)

are required to be square integrable. Satisfying eqs (17)–(19), the

electromagnetic fields are solutions to eq. (A4) as well.

Subsequently, we seek a discrete formulation of eq. (A4). Pre-

liminary, the solution u and the test function v are both required to

belong to the same infinite-dimensional function space V , that is,

r ≡ 0 in eq. (A5). The inhomogeneous Dirichlet boundary condi-

tions u = r �≡ 0 will be taken into account later. Projection of the

weak form onto an N p-dimensional function subspace VNp
means

requiring u, v ∈ VNp
. Taking N p test functions φi ∈ VNp

that form a

basis of VNp
and uh as a linear combination of these basis functions

and the scalar complex expansion coefficients U j

uh(x) =
Np
∑

j=1

U jφ j (x) (A8)

we obtain the system of equations

Np
∑

j=1

(∫




((c∇φ j ) · ∇φi + aφ jφi )dx

)

U j = 0, i = 1, . . . , Np.

(A9)

It can be rewritten in matrix form

(K + M)U = 0, (A10)

with the stiffness matrix

Ki, j =
∫




(c∇φ j ) · ∇φi dx i, j = 1, . . . , Np (A11)

and the mass matrix

Mi, j =
∫




aφ jφi dx i, j = 1, . . . , Np. (A12)

We simply choose VNp
to be a space of piecewise linear functions.

Linear Lagrange elements are well suited for simulating scalar field

components in source-free regions, for example, in the 2-D MT

case. In the 3-D case, however, the application of curl-conforming

vector elements seems to be more natural due to the conditions of

continuity of the electromagnetic vector fields. Using φi (xi) = 1 in

eq. (A8) leads to

uh(xi) =
Np
∑

j=1

U jφ j (xi) = Ui . (A13)

Hence, solving eq. (A10) yields the nodal values of the approximate

solution uh(x).

The system matrices K and M are assembled from the local ma-

trices Kϑ and Mϑ , respectively, of each triangle ϑ . The integrals in

eqs (A11) and (A12) are computed by the midpoint rule:

K ϑ
m,n = c(Pc)

1

4Aϑ

(

βn

αn

)T (

βm

αm

)

, m, n = 1, 2, 3, (A14)

Mϑ
m,n = a(Pc)

Aϑ

12
(1 + δm,n), m, n = 1, 2, 3, (A15)

where

α1 = x3 − x2, β1 = z2 − z3,

α2 = x1 − x3, β2 = z3 − z1,

α3 = x2 − x1, β3 = z1 − z2.

(A16)

The coefficients a and c are assigned to the centre of mass P c of the

triangle. Aϑ denotes the area of triangle ϑ and δm,n the Kronecker

delta. m, n are the local numbering indices. To illustrate the quadra-

ture formulas, Fig. A1 displays the triangle ϑ and the basis functions

φϑ
m . Every element of the local matrices K ϑ

m,n and Mϑ
m,n is added to

the appropriate element of the system matrices K i, j and M i, j , re-

spectively, taking into account the relationship between local and

global numbering of the grid nodes.

The inhomogeneous Dirichlet boundary conditions with r �≡ 0

still need consideration. So far, the vector U contains N p elements

for the interior points in region 
 \ ŴD and NŴD
elements for the

points on ŴD whose values vanish (cf. eq. A6). Eq. (18) provides

the NŴD
non-zero values on ŴD in UŴD

which comprises N p zero-

elements for all the interior points. Applying

U = U
\ŴD
+ UŴD

(A17)

to eq. (A10), we derive a system of linear equations for U
\ŴD
:

(K + M )U
\ŴD
= −(K + M )UŴD

. (A18)

A P P E N D I X B : E R R O R I N D I C A T O R

F U N C T I O N

The error eh = u − uh of the FE approximation satisfies the varia-

tional formulation

b(eh, v) = b(u, v) − b(uh, v) = −b(uh, v) = Rh(v) ∀v ∈ V,

(B1)

where Rh is called the weak residual. According to eq. (A4), eq. (B1)

can be rewritten as

b(eh, v) = −
∫




(c∇uh · ∇v + auhv) dx ∀v ∈ V . (B2)
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86 A. Franke, R.-U. Börner and K. Spitzer

Splitting the domain integral into contributions of each element ϑ

yields

b(eh, v) =
∑

ϑ∈


(

−
∫

ϑ

(c∇uh · ∇v + auhv) dx

)

∀v ∈ V . (B3)

The vector identity ∇ · (c∇uv) = ∇ · (c∇u)v + (c∇u) · ∇v and

Green’s Theorem lead to

b(eh, v) =
∑

ϑ∈


∫

ϑ

(∇ · (c∇uh) − auh)v dx

−
∑

τ∈Ŵint

∫

τ

nτ c∇uhv dl ∀v ∈ V,
(B4)

where τ ∈ Ŵint includes all interior edges on the domain 
. For

the exterior boundaries v ≡ 0 holds (cf. eq. A6). Since the basis

functions are linear, the term ∇ · (c∇uh) vanishes. According to

interpolation theory (Johnson 1987), the error that arises from pro-

jecting v ∈ V to vh ∈ VNp
can be estimated as ν1hϑ‖v‖ on all

triangles ϑ and ν2

√
hτ‖v‖ on all edges τ with ν1, ν2 ∈ R being

constant for a triangulation. hϑ and hτ denote the local mesh size

and the length of edge τ , respectively. A typical measure for the

local mesh size hϑ is the circumradius of the triangle ϑ . Using these

estimates and the Cauchy-Schwarz inequality we derive

b(eh, v) ≤ ‖v‖

×

(

ν1

∑

ϑ∈


‖ − auh‖2h2
ϑ + ν2

∑

τ∈Ŵint

‖ − nτ c∇uh‖2hτ

)1/2

∀v ∈ V .

(B5)

Employing the inequality κ‖v‖2 ≤ b(v, v)(κ ∈ R, κ = const.) and

substituting eh in place of v an element-wise local error indicator

E(ϑ) can be obtained

‖eh‖2 ≤ E2(ϑ) = α‖ − auh‖2h2
ϑ + β

1

2

∑

τ∈Ŵint

‖ − nτ · c∇uh‖2hτ ,

(B6)

where α = ν2
1/κ

2 and β = ν2
2/κ

2. The error indicator function

depends on the local mesh size hϑ = hϑ (x), the length hτ of edge τ ,

the residual −auh on the triangle ϑ and the jump in the tangential

electromagnetic fields nτ · c∇uh across the element edge τ that is

distributed equally to both triangles sharing the edge by the factor
1

2
. By ‖ · ‖ the L2-norm is denoted. The real coefficients α, β, ν1, ν2

and κ are independent of the triangulation.
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