
Adaptive Update Propagation for Low-Latency
Massively Multi-User Virtual Environments

Richard Sueselbeck, Gregor Schiele, Sebastian Seitz and Christian Becker
University of Mannheim

Mannheim, Germany
{ richard.sueselbeck | gregor.schiele | sebastian.seitz | christian.becker }@uni-mannheim.de

Abstract—Massively Multi-User Virtual Environments
(MMVEs) are highly interactive systems. They require the
propagation of state updates to users with little delay. In
this paper we propose a novel update propagation approach
for MMVEs that enables such low-latency propagation while
offering the scalability needed to support MMVEs with massive
user numbers. Our approach combines peer-based and server-
based update propagation into a hybrid system. It adapts itself
dynamically to the available system resources and the current
situation in the virtual world. We describe our approach in
detail, evaluate it and discuss further steps towards a low-latency
update propagation system.

I. INTRODUCTION

Massively Multi-User Virtual Environments (MMVEs) al-
low thousands of users worldwide to interact with each other
in a common virtual environment in real-time. Such systems
are highly interactive. Users expect the virtual environment to
react to their actions immediately. Thus, updates of the state
of an MMVE must be propagated with little delay. To do
so, a suitable update propagation subsystem is needed, which
ensures that all users receive all updates they require in time.
Current MMVEs are based on client/server-architectures. A
central server cluster collects all user actions and sends update
messages containing an updated state of the virtual world to all
clients. However, this approach introduces an additional delay
for update propagation since updates are first sent to the server
and then back to the clients. Lower delays are possible by
using directly connected peer computers. Peers send updates
directly to each other. Unfortunately, due to the limited upload
bandwidth of the peers, this approach is not scalable enough
to be usable for MMVEs with massive user numbers.

In this paper we propose an update propagation subsystem
for MMVEs that combines both of these approaches into a
hybrid system. Based on a central server we dynamically shift
the responsibility for update propagation between the server
and individual peers such that the resulting propagation delay
is minimized. At the same time we maintain the scalability
of the server-based architecture. Our approach is based on
the notion of so-called Areas of Propagation (AoP). An AoP
determines the area in the virtual world for which a peer can
distribute updates directly. That is, if an update occurs on a
peer, the peer first checks if the update will influence only
peers that are in its own AoP. If so, it delivers the update
to them directly. Otherwise, it notifies the server. The size
of a peer’s AoP is selected dynamically depending on the

peer’s available bandwidth and the density of peers in the
virtual world. This allows to communicating directly with the
maximum possible number of peers in the virtual environment,
while maintaining the scalability of previous approaches.

Our contributions in this paper are as follows: first, we
introduce AoPs, our concept to integrate peer-to-peer-based
and server-based update propagation. Second, we present an
approach to create and maintain AoPs at runtime. Third, we
show how to use AoPs to create a scalable and low delay
update propagation system. Finally, we give a short evaluation
of our approach and compare it to pure P2P-based and pure
server-based update propagation.

Our work is part of the peers@play project [3], a cooperative
project of the Universities of Mannheim, Duisburg-Essen and
Hannover to develop protocols and algorithms for highly
scalable and interactive MMVEs. We build upon existing
functionality from this project to realize our approach. Where
necessary, we describe this functionality briefly.

II. RELATED WORK

There have been a number of proposals for hybrid or P2P-
based MMVE architectures. HYMS [4] is a hybrid approach,
which divides the virtual world into cells. Normally the server
is responsible for update propagation, but when a suitable
client is available, it takes responsibility for update propagation
in the cell. The other clients in this cell then connect to
this client instead of the server. This reduces server load,
but does not decrease latency as updates are still sent via
another system. Rooney et al. [5] is another hybrid approach,
in which server-based Multicast Reflectors provide both update
filtering and propagation for subregions within the virtual
world. The focus of this approach is to move the processing
of the game state to the peers, while update propagation is
still handled by the server. Several fully P2P-based approaches
use a coordinator-based approach, in which a selected peer
forwards update messages to all peers in a subregion of the
virtual world. In Knutsson et al.’s [6] proposal the majority
of updates take between one and six hops to be delivered.
Due to relaying, some updates require more than 50 hops to
reach their destination peer. Iimura et al [7] and the MOPAR
scheme [8] also divide the world into several regions and
send all updates in a region via a coordinator node. For the
purposes of latency, these proposals deliver similar results than
a server-based architecture. In the VON [9] and Solipsis [10]

978-1-4244-4581-3/09/$25.00 ©2009 IEEE

projects a peer communicates directly with its neighbor peers.
Both approaches determine these neighbors by partitioning
the virtual world using Voronoi diagrams. In VON each peer
only communicates directly with a small number of neighbors
called enclosing neighbors. Updates to other peers are sent
via a forwarding model. Depending on the position of the
destination peer, a message may need to be forwarded multiple
times, leading to high delay. Similarly, a peer in Solipsis only
communicates with a small number of neighbors. Messages are
delivered via a greedy routing algorithm. With the addition of
long-range links, Solipsis needs a polylogarithmic number of
hops on average to deliver an update. In contrast, our approach
dynamically adapts the update propagation to the available
system resources and the current situation in the virtual world,
thus minimizing delay.

III. SYSTEM MODEL

Our system consists of a set of end user computers that
are connected via the Internet. We therefore assume that
the system cannot utilize a global multicast. Each computer
executes the MMVE software and acts as a peer in the system.
We also assume the existence of a central MMVE server,
possibly realized using a server cluster. The MMVE software
consists of several subsystems. A user interface presents the
MMVE to the user and allows him to issue commands, e.g.
moving his avatar or chatting with other users. Commands
lead to update messages being created, which in turn are
handed to the update propagation subsystem for distribution
to the correct peers. The propagation subsystem builds upon
a basic network abstraction subsystem, which allows peers to
send messages to other peers, regardless of networking details
like NAT or firewalls. Our project partners at the University
of Duisburg-Essen have developed and implemented such a
subsystem in previous work [12] and integrated it into the
existing peers@play MMVE prototype.

IV. OUR APPROACH

Our goal is to provide an update propagation system for
highly interactive and scalable MMVEs. Such a system has to
perform two functions: first it must determine to which peers a
given update should be propagated (update filtering). Second,
it must deliver the update to these peers with as little delay as
possible (update propagation). Concerning the first function,
a typical concept for determining the target peers of a given
update are so-called Areas of Interest (AoI) [13] [14]. An AoI
is a spatial area around a virtual object in which updates affect
the object. Thus, any update occuring inside an object’s AoI
should be propagated to it. Updates occuring outside the AoI
are discarded. In previous work we have developed an update
filtering mechanism based on this concept [15].

In this paper, we focus on update propagation, i.e., how to
deliver updates with little delay. The easiest way to achieve this
would be a fully connected P2P overlay network in which all
peers are directly connected to each other. Using this network,
each peer sends its updates directly to all other peers. This
approach does not scale however, as the individual peers do

not have sufficient resources to communicate with all other
peers in the system. Therefore many MMVEs are based on a
client/server architecture. All state updates are first sent to the
server, which then forwards them to all peers. However, this
indirect distribution via the server introduces additional delay,
as the update messages must first be send to the server and
then to the peers. In short, the server-based approach induces
additional delay, while the fully connected P2P approach does
not scale for a large number of peers.

We propose to combine these approaches into a flexible
hybrid system, in which updates are distributed either directly
between peers or via a server. The actual weight between
both approaches is determined dynamically for each peer and
adapted at runtime. This allows us to balance scalability and
resulting delay flexibly for each update. In this section we
describe this hybrid approach and show how the P2P overlay
and the server are dynamically integrated. The remainder of
this section is structured as follows: first we describe our
pre-existing update filtering algorithm, i.e. how the set of
peers that should receive a given update is determined. Then
we introduce the main concept of our approach, the so-
called Area of Propagation (AoP). The AoP specifies how the
responsibility for update propagation is distributed between
peers and the server. We also detail how the AoP is determined
at runtime. Finally, we describe how an update is propagated
in the system using the AoP.

A. Update Filtering

The goal of our update filtering algorithm is to determine
which peers are interested in a specific update. This signifi-
cantly reduces the number of updates that are sent to peers
and thus enhances the system’s scalability.

Our algorithm is based on two types of areas in the virtual
world. The Area of Interest (AoI) is defined as the area of
the virtual world, in which a certain peer can perceive events.
This means that the peer is interested in all updates that either
occur within this area or influence it. The size of this area
depends on the peer it is associated with. For example, a peer
standing in a closed room does not perceive anything outside
of the room, thus the room determines its AoI. A peer standing
on a mountain can see far away events, leading to an AoI that
is several miles in diameter. We extend this concept with a
second type of area, called Area of Effect (AoE). We define
an AoE as the area in the virtual world, in which a certain event
affects the world. The size and shape of this area depends on
the event it is associated with. As an example, picking up an
object influences an area that is equivalent to the size of the
object. Both AoI and AoE can have arbitrary shapes. In this
paper we restrict ourselves to circular shapes.

In summary, the AoI is associated with a peer and represents
the part of the virtual world in which the peer can be affected
by events. The AoE is associated with an event and represents
the part of the virtual world in which the event can affect peers.
This means that by delivering an event to all peers who’s AoI
intersects with the event’s AoE, we can ensure that the event is
delivered to all peers that are interested in it. The algorithm to

determine all peers p that a given update u should be delivered
to is thus very simple: it compares the AoE of u with the AoI
of each p. If they intersect, u is delivered to p. Otherwise, it
is not delivered.

A

E1

B

E2

C

D

Fig. 1. AoI/AoE Example

Figure 1 illustrates this with an example. Peer A is gener-
ating events E1 and E2. The circular areas around the events
represent their AoEs, while the circular areas around peers A,
B, C and D represent their AoIs. As can be seen, event E1’s
AoE does not intersect with any peer’s AoI. This means there
is no peer which has interest in it. Therefore no update needs
to be sent for this event at all, conserving bandwidth. The AoE
of event E2 intersects with the AoI of both Peer B and Peer
C. This means that both peers are affected by the event and
need to receive its corresponding update. Peer D however is
not interested in the event. Peer A therefore delivers the update
to peers B and C.

Using this update filtering algorithm we can determine the
target set of peers that should receive a given update. With
this information, we now need to deliver the update to these
peers.

B. Area of Propagation

We begin the presentation of our update propagation ap-
proach by introducing our main novel concept, the so-called
Area of Propagation (AoP). Afterwards we describe how to
use AoPs for achieving low delay update delivery.

In our approach, each peer is associated with its own
surrounding AoP. A peer’s AoP is the spatial area in the
MMVE for which the peer has all necessary knowledge to
perform both update filtering and propagation on its own.
More specifically, this means that the peer knows the current
location and AoI of all peers in the AoP. The peer uses
this knowledge to filter updates and deliver them to peers
in the AoP directly. Updates affecting the MMVE outside
the AoP are forwarded to the server and processed there.
The size of the AoP is determined by two factors: its peer’s
maximum available upstream bandwidth and the location of
its neighboring peers. The available upstream determines the
number of neighbors n to which the peer can send updates

simultaneously. Given this upper limit, we choose the peer’s
AoP as a circular area whose diameter is set such that the AoP
contains at most n neighbors.

A

E1

G

E2

B

FC

E

K

I

H

J

D

AoP

AoI AoE

AoE

L

E3

AoI

Fig. 2. AoP Example

Figure 2 illustrates this concept. Peer A has sufficient band-
width to send updates to six neighbors. Its AoP is therefore set
to contain its six closest neighbors B to G. Updates affecting
these peers are sent to them directly, resulting in little delay.
This is the case for update E1. However, there is not enough
bandwidth to communicate directly with peers H to L, as they
are outside A’s AoP. To deliver an update to them, A sends
the update to the server which determines the target peers and
forwards the update to them. An example for this is update
E2. A special case occurs if the event is relevant both for
peers inside and outside the AoP, e.g. event E3. In this case A
delivers the update to all relevant peers in its AoP, while the
server delivers it to all relevant peers outside the AoP.

A more detailed description of this algorithm – including
several additional special cases – is given in Section IV-D.

C. AoP Generation

In this section we describe how the AoP is created and main-
tained. As discussed previously, a peer’s AoP is determined
dynamically depending on its available upstream bandwidth
and the location of peers in the virtual world. In this section
we present the algorithm to do so. This algorithm determines
the list of neighbors that are included in a certain peer’s AoP. It
is executed regularly by the server for all peers. If the members
of a peer’s AoP have changed, the server sends the peer an
updated list of the members of its AoP. The server also sends
all movement updates of the AoP members to the peer. This
algorithm is given in Algorithm 1. The algorithm has one input
parameter, the peer p for which to determine the AoP. It uses
the set of all peers (peers) to return the updated AoP for p
(p.aop).

First, the algorithm calculates p’s available upstream band-
width by taking its maximum upstream bandwidth of p and
subtracting the maximum bandwidth that is required by p’s
events. This subtraction is done because the peer needs band-
width reserves to send updates to the server, as the server
needs to know the location of all peers in order to execute

this algorithm. This means that at a minimum each peer needs
to send position updates to the server regularly. In addition p
needs bandwidth to send event updates to the server, in case
they occur outside its AoP. In some instances the AoP can be
so small that all events occur outside the AoP. Therefore we
reserve enough bandwidth to send all updates to the server.
The algorithm then takes p’s available upstream bandwidth
and divides it by the maximum bandwidth that is required
by p’s events. This gives us the maximum number of direct
communications that the peer can support (maxComm).

Input: a peer (p)
Data: an array of all peers (peers)
Result: the updated AoP of p (aop)
begin

p.aop = {};
usedBw = maxEventBw + maxPosUpdateBw;
availBw = p.upstream - usedBw;
maxComm = round(availBw / p.maxEventBandwidth);
peers.sortByDistanceTo(p);
for int i = 0; i < maxComm; i++ do

p.aop.add(peers[i]);
end
return p.aop;

end
Algorithm 1: AoP Generation Algorithm

The algorithm then sorts all peers by their distance to the
input peer and calculates the AoP. To do so, it iterates through
the sorted list of peers, beginning with the closest neighbor
peer. As long as maxComm is not reached, it adds neighbors
to the AoP. Based on the output of the algorithm, the server
constructs a list of the members of the AoP and sends it to
the peer. When the peer has received this list, it determines
the radius of its AoP by measuring the distance to the most
distant peer in the AoP. It sets the radius of the AoP to this
distance. Note that a special case occurs if some peers have
exactly the same distance to p, e.g. peers H and J in Figure 1.
This can lead to a non-circular AoP if the first peer not in
the AoP has the same distance as the last peer in the AoP. To
solve this case, the server reduces the size of the AoP before
sending the information to the peer by iteratively removing
the last peer from the AoP until the problem is solved.

D. AoP-based Update Propagation

After detailing how the AoP of each peer is determined, we
specify our approach for update propagation in more detail.
We assume that the server executes Algorithm 1 regularly
and that each peer knows the size and members of its current
AoP. When an event occurs on one of the peers, it initiates
the Update Propagation Algorithm given in Algorithm 2. The
algorithm first compares the event’s AoI with the peer’s AoP.
There are three possible cases: (1) the AoI can be completely
within the AoP, (2) completely outside of the AoP, or (3)
overlap its border and thus be partially inside and partially
outside the AoP. If the AoI is completely within the AoP (Case
1), then the peer can determine the update’s recipients and
deliver the update without the assistance of the server. This is
the case, because the peer has all relevant information to do so
and has enough bandwidth to send the update directly. If the

event’s AoI is completely outside of the AoP (Case 2), then
the peer cannot deliver the event itself, since it does not know
any of the potential recipients. Therefore, the peer sends the
update to the server. The server then determines the update’s
recipients and delivers it to them. Finally, if the event’s AoI
overlaps the edge of the AoP (Case 3), some of the event’s
potential recipients are members of the AoP, while others are
not. Thus, the update needs to be delivered both by the peer
and the server. First, the peer determines all target peers inside
its AoP and sends the update to them. In addition, the peer
sends the update to the server. The server then determines all
target peers outside the AoP and sends the update to them.

Input: an update (u) and its AoE (aoe)
if u.AoE is inside (p.AoP - max radius of AoI) then

local peer executes Algorithm 1;
else if AoE is outside AoP then

deliver update to coordinator;
coordinator executes Algorithm 1;

else
local peer executes Algorithm 1;
deliver update do coordinator;
coordinator executes Algorithm 1;

end
Algorithm 2: Update Propagation Algorithm

There are two special situations to consider, both shown in
Figure 3. The first one (see Figure 3a) can occur in Case 1. If
a peer A is located just outside of another peer B’s AoP, A’s
AoI may intersect with B’s AoP. Thus, A may be interested
in events that occur near the border of B’s AoP, even if the
event’s AoE is completely inside the AoP. For example, this is
the case for event E1 in the figure. To solve this situation, we
modify the check for Case 1 as follows. Instead of checking
whether the event’s AoE is completely within the AoP, we
also check if the event’s AoE is close enough to the edge of
the AoP to potentially intersect with another peer’s AoI (using
a predefined maximum AoI size). If this is the case, then the
peer can not deliver this update completely by itself. Instead,
the event is treated as if it belongs to Case 3.

B

E1

A

AoP

AoI
AoE

(a) Case I

B

E2
A

AoP

AoI

AoE

(b) Case II

Fig. 3. Special Situations for Propagation

The second special situation (see Figure 3b) can occur in
Cases 2 and 3. If a peer A is located just inside another peer
B’s AoP, A’s AoI may be partially outside the AoP. In this
case it is interested in some events that are completely outside
of the AoP. To solve this, while checking which peers are
target peers for an event, the server not just considers all peers
outside the AoP, but also those peers whose AoI is partially

outside of the AoP.

V. EVALUATION

In this section we evaluate our approach and show that it
achieves low average update message delay while maintaining
scalability even under heavy load. We also take a look at
the influence of event locality on the average delay. We first
describe our evaluation setup, then present our results and
discuss them briefly.

A. Evaluation Setup

For our evaluation we implemented our approach prototypi-
cally and integrated it into our existing peers@play prototype,
which provides us with a suitable communication layer as
discussed in Section III. Our evaluation requires both a large
number of peers in the system as well as the ability to get
realistic delay measurements. Our experimental setup was
designed to satisfy both criteria. To achieve a large number
of peers we ran up to 400 instances of our prototype on an
IBM Blade Center with 6 Blades (each with 2 Intel Xeon
QuadCore CPUs with 2.33 GHz and 6 GB RAM). Clearly,
the delay between these instances is unrealistically low, as
they all run on the same local network or even system.
Thus, to perform realistic delay measurements, we set up two
additional peers at two separate off-site locations. The first
peer was located at another university connected to the Internet
with a high-speed broadband connection. This peer served as
our server. The second peer was connected to the Internet
through a standard home cable Internet connection. This peer
served as our measuring node. We measured the delay of
all incoming updates at this measuring node. This gives us
update delays as experienced by an individual participant in
the virtual environment. Any update sent directly to or from
the measuring node has to traverse an Internet connection,
thus taking a realistic amount of time to reach its destination.
The same is true for any message sent to or from the server.
Note that since all updates always traverse the same two
Internet connections, our setup does reduce jitter compared to
a real-world scenario, where the updates would traverse several
different connections. As this does not affect the evaluation
results regarding scalability and average delay, we found this
to be acceptable.

For selecting our evaluation parameters, we assume that
only a small fraction of a peer’s upstream bandwidth is
available for update propagation, as users often run other
Internet applications in parallel with the MMVE and the
MMVE itself may need significant bandwidth for other fea-
tures, e.g. content streaming. Thus we restricted the available
upstream for update propagation to 32Kbps per peer. We set
the maximum event bandwidth (maxEventBw) used by each
peer to 2 Kbps. This is identical to the event bandwidth used
by the popular MMVE World of Warcraft [16]. For simplicity
we set the maximum bandwidth used by a peer to send position
updates to the server (maxPosBw) to 2 Kbps as well. Our
virtual environment is 5000x5000m in size. Peers are placed
statically and randomly in this area and have a circular AoI

with a radius of 200m. Each peer regularly generates events
with an AoE radius of 100m. This ensures that updates are
propagated even for scenarios with few peers. Clearly, the
performance of our approach depends highly on the percentage
of events that occur inside the peer’s AoP. Therefore we
introduced a parameter into our test system which allows
controlling this percentage.

We compared our approach to both a fully connected
P2P-based system and a purely server-based architecture. To
achieve the P2P-based system, we set the AoP of each peer
to include all other peers, leading to a fully connected overlay
network. Similarly, to turn our approach into a server-based
system, we set the AoP of each peer to include no neighbors
at all, thus sending all updates via the server.

B. Evaluation Results

We performed two series of measurements. In the first series
we measured the average update propagation delay depending
on the number of peers in the system. To do so, we increased
the number of peers from 10 to 400. For these measurements
we generated 20 percent of all events outside the peers’ AoPs,
thus accounting for the fact that most events are generated
close to the originating peer.

0

50

100

150

200

250

300

350

0 50 100 150 200 250 300 350 400 450

Peers

Ti
m

e
in

 m
s

P2P-based
Server-based
AoP-based

Fig. 4. Comparison of Average Delay

The resulting latencies are shown in Figure 4. The con-
tinuous line shows our AoP-based approach, the dotted line
shows the P2P-based and the dashed line the server-based
approach. As can be expected, the average update propagation
delay increases with the number of peers in the system for
all three approaches due to higher load on the blades. For
less than 50 peers, the P2P-based approach delivers slightly
lower delays than our approach. However, its delay quickly
increases as more peers are added to the system and the peers
start getting overloaded. With 120 peers, the average delay is
already above 300ms. We omitted results for more peers, as
these are above multiple seconds and thus off the chart.

Compared to the server-based approach, our approach de-
livers significantly lower delays in all cases. As only 20% of
the updates are generated outside of the AoP and thus sent via
the server, average delay is significantly reduced. Due to our
test environment, the server was not able to handle more than
250 peers, resulting in delays of several seconds. We omitted

these results as we think they are not representative of server
performance in a real system. Using our AoP-based approach
the server still performed well with 400 connected nodes, as
the peers relieve the server of a considerable amount of load.

0

50

100

150

200

250

0 20 40 60 80 100

% of Events in AoP

Ti
m

e
in

 m
s

AoP-based
Server-based

Fig. 5. Dynamic Adaptation with AoP

In our second measurement series, we evaluated the effect
of event locations on the system’s performance. To do so, we
increased the percentage of events generated inside a peer’s
AoP from 0% to 100%. The number of peers in the system
was set to 250, the largest amount of peers that our server
hardware supports. This accounts for the worst case, in which
all messages are sent via the server. As Figure 5 shows, our
approach adapts itself dynamically to the locality of the events.
If 0% of the events are generated outside of the AoP, all
updates are sent via the server. Consequently, our approach
shows the same delay as the server-based approach. With
an increasing percentage of updates being sent directly, the
average delay decreases continuously until 100% of the events
are generated inside the AoP.

Our approach introduces an additional overhead for the
server. The main computational overhead is the computation
of the peers’ AoPs. Since the server has to compare all peer
positions in a zone this algorithm has a complexity of O(n2)
for n peers per zone. In our evaluation this resulted in an
increased CPU load of approximately 5% on the server. In
practice we do not expect this to be a major issue as the
calculation can be distributed across the server cluster and the
zone size can be dynamically adjusted. Nevertheless, we are
currently looking at ways to optimize this part of our approach

C. Summary

In conclusion, our approach performs as expected. It pro-
vides delays that are close to those of a fully connected P2P-
based approach for scenarios with few peers. These delays
are significantly lower than those of a server-based system. At
the same time our approach is able to deliver updates with the
same delay as a server-based approach for scenarios with many
peers, which a P2P-based system cannot handle. In addition to
the number of peers, the performance of our approach depends
on the location of updates relative to their originating peer.
If all events are created outside a peer’s AoP our approach
effectively falls back to a pure server-based approach, leading

to the same delays. In practice most MMVEs generate the
majority of their events near the originating peer. This leads
to significantly lower average delays.

VI. CONCLUSION AND FUTURE WORK

In this paper we presented a novel update propagation
approach for low latency MMVEs. Our approach dynamically
adapts itself to the available upload bandwidth of the partici-
pating peers and the current situation in the virtual world. By
shifting the responsibility for update propagation dynamically
between peers and the server, we are able to combine the low
latency of P2P-based propagation systems with the scalability
of server-based approaches. To do so, we introduce a special
area in the virtual world, the AoP. Inside its AoP, a peer
is able to handle update propagation on its own. Outside
the AoP, the server is responsible for update propagation. To
adapt itself to changing scenarios, the system can dynamically
change the size of a peer’s AoP. Currently we are extending
our existing prototype to include a more sophisticated update
filtering algorithm based on non-circular AoIs and AoEs. In
the future we want to integrate our approach with zone-
based MMVEs without a central server. In such systems, the
server functionality is divided between dynamically elected
superpeers who each manage a single zone.

ACKNOWLEDGMENT

The authors would like to thank Torben Weis, Arno Wacker
and Sebastian Holzapfel for their support during the develop-
ment of the prototype and the evaluation.

REFERENCES

[1] Blizzard Entertainment, “http://www.worldofwarcraft.com.”
[2] Linden Lab, “http://www.secondlife.com/.”
[3] Peers@Play Project, “http://www.peers-at-play.org.”
[4] K.-c. Kim, I. Yeom, and J. Lee, “Hyms : A hybrid mmog server

architecture,” IEICE Transactions on Information and Systems, 2004.
[5] S. Rooney, D. Bauer, and R. Deydier, “A federated peer-to-peer network

game architecture,” IEEE Communications, 2004.
[6] B. Knutsson, H. Lu, W. Xu, and B. Hopkins, “Peer-to-peer support for

massively multiplayer games,” INFOCOM ’04.
[7] T. Iimura, H. Hazeyama, and Y. Kadobayashi, “Zoned federation of

game servers: a peer-to-peer approach to scalable multi-player online
games,” in NetGames ’04.

[8] A. P. Yu and S. T. Vuong, “Mopar: a mobile peer-to-peer overlay
architecture for interest management of massively multiplayer online
games,” in NOSSDAV ’05.

[9] S.-Y. Hu, J.-F. Chen, and T.-H. Chen, “Von: A scalable peer-to-peer
network for virtual environments,” IEEE Network, 2006.

[10] D. Frey, J. Royan, R. Piegay, A. Kermarrec, E. Anceaume, and F. L. Fes-
sant, “Solipsis: A decentralized architecture for virtual environments,”
in MMVE ’08.

[11] J.-F. Chen, W.-C. Lin, T.-H. Chen, and S.-Y. Hu, “A forwarding model
for voronoi-based overlay network,” ICPADS ’07.

[12] A. Wacker, G. Schiele, S. Holzapfel, and T. Weis, “A NAT traversal
mechanism for peer-to-peer networks,” in MMVE ’08.

[13] S. Singhal and M. Zyda, Networked Virtual Environments: Design and
Implementation. ACM Press, 1999.

[14] K. L. Morse, L. Bic, and M. Dillencourt, “Interest management in
large-scale virtual environments,” Presence: Teleoperators & Virtual
Environments, 2000.

[15] F. Heger, G. Schiele, R. Süselbeck, and C. Becker, “Towards an interest
management scheme for peer-based virtual environments,” in CoMMVE
’09.

[16] P. Svoboda, W. Karner, and M. Rupp, “Traffic analysis and modeling
for world of warcraft,” in IEEE ICC ’07.

