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Adaptive Variable Structure Control of a Class of Nonlinear
Systems With Unknown Prandtl-Ishlinskii Hysteresis

Chun-Yi Su, Qingqing Wang, Xinkai Chen, and Subhash Rakheja

Abstract—Control of nonlinear systems preceded by unknown hysteresis
nonlinearities is a challenging task and has received increasing attention in
recent years due to growing industrial demands involving varied applica-
tions. In the literature, many mathematical models have been proposed to
describe the hysteresis nonlinearities. The challenge addressed here is how
to fuse those hysteresis models with available robust control techniques to
have the basic requirement of stability of the system. The purpose of the
note is to show such a possibility by using the Prandtl-Ishlinskii (PI) hys-
teresis model. An adaptive variable structure control approach, serving as
an illustration, is fused with the PI model without necessarily constructing a
hysteresis inverse. The global stability of the system and tracking a desired
trajectory to a certain precision are achieved. Simulation results attained
for a nonlinear system are presented to illustrate and further validate the
effectiveness of the proposed approach.

Index Terms—Adaptive control, cascade systems, hysteresis, nonlinear
systems, Prandtl-Ishlinskii (PI) hysteresis model, robust control.

I. INTRODUCTION

The hysteresis phenomenon occurs in all the smart material-based
actuators, such as piezoceramics and shape memory alloys [1]. When
a nonlinear plant is preceded by the hysteresis nonlinearity, the system
usually exhibits undesirable inaccuracies or oscillations and even insta-
bility [14] due to the nondifferentiable and nonmemoryless character
of the hysteresis. The development of control techniques to mitigate the
effects of hystereses has been studied for decades and has recently reat-
tracted significant attention, as can be seen in [10] and the references
therein. Much of this renewed interest is a direct consequence of the
importance of hysteresis in numerous current applications. Interest in
studying dynamic systems with actuator hysteresis is also motivated by
the fact that they are nonlinear systems with nonsmooth nonlinearities
for which traditional control methods are insufficient and thus require
development of alternate effective approaches [15]. Development of a
general frame for control of a system in the presence of unknown hys-
teresis nonlinearities is a quite challenging task.

To address such a challenge, the thorough characterization of these
nonlinearities forms the foremost task. Appropriate hysteresis models
may then be applied to describe the nonsmooth nonlinearities for
their potential usage in formulating the control algorithms. Hysteresis
models can be roughly classified into physics based models and purely
phenomenological models. Physics-based models are built on first
principles of physics. Phenomenological models, on the other hand,
are used to produce behaviors similar to those of the physical systems
without necessarily providing physical insight into the problems [19].
The basic idea consists of the modeling of the real complex hysteresis
nonlinearities by the weighted aggregate effect of all possible so-called
elementary hysteresis operators. Elementary hysteresis operators are
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noncomplex hysteretic nonlinearities with a simple mathematical
structure. Models set up by the composition of operators of play
and stop type are referred to as Prandtl-Ishlinskii (PI) models in the
literature (see, e.g., [6] and [17]). The reader may refer to [9] for a
recent review of the hysteresis models.

With the developments in various hysteresis models, it is by nature
to seek means to fuse these hysteresis models with the available robust
control techniques to mitigate the effects of hysteresis, especially when
the hystereis is unknown, which is a typical case in many practical
applications. However, the discussions on the fusion of the available
hysteresis models with the available control techniques is surprisingly
spare [13], [18] in the literature. The most common approach is to con-
struct an inverse operator, which was pioneered by Tao and Kokotovic
[14], and the reader may refer to, for instance, [3], [4], [7], and the ref-
erences therein.

The challenge addressed here is to fuse those hysteresis models with
the available control techniques to have the basic stability requirements
for the concerned system. As an illustration, this note presents such a
possibility by fusing the PI models with the adaptive variable structure
control approach [18] to mitigate the effects of the hysteresis without
constructing the inverse hysteresis nonlinearity. The proposed control
law ensures the global stability of the adaptive system and achieves
both stabilization and strict tracking precision. Simulations performed
on a nonlinear system illustrate and further validate the effectiveness
of the proposed approach. The proposed method can be observed as
an initial step to fuse the available hysteresis models with the available
control techniques.

II. PROBLEM STATEMENT

Consider a controlled system consisting of a nonlinear plant pre-
ceded by an actuator with hysteresis nonlinearity, that is, the hysteresis
is presented as an input to the nonlinear plant. The hysteresis is denoted
as an operator, such that

w(t) = Pv](t) (D

with v(t) as the input and w(t) as the output. The operator P[v] will be
discussed in detail in the forthcoming section. The nonlinear dynamic
system being preceded by the previous hysteresis is described in the
canonical form as

k
ORI (w(f,),;e(f),...,;Lf"*“(t)) =bw(t) ()
=1

where Y; are known continuous, linear or nonlinear functions. Param-
eters a; and control gain b are unknown constants. It is a common as-
sumption that the sign of b is known. Without losing generality, we
assume b > (. It should be noted that more general classes of non-
linear systems can be transformed into this structure [5].

The control objective is to design a control law for v(¢) in (1), to
force the plant state :(#) to follow a specified desired trajectory, x4 (t),
ie, x(t) = xq(t) ast — oo.

Through the note the following assumption is made.

n—1 T
‘EEI )]

Assumption: The desired trajectory xq = [za, Td, - .-, is
. T
continuous. Furthermore, [xf, ,.I’Eln)] € Q4 C R with Q, being a

compact set.

III. HYSTERESIS MODELS

Although a large number of hysteresis models have been reported,
this note focuses on the PI model to illustrate its fusion with the adap-
tive variable structure control approach to mitigate the effects of the
hysteresis.
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A. Stop and Play Operators

The PI model involves some basic well-known hysteresis operators.
A detailed discussion on this subject can be found in the monographs
[2], [6], and [17]. One of the basic elements of the theory of hysteresis
operators is expressed by a stop operator E.[v] with threshold 7.

Analytically, suppose that C),, [0, t 2] is the space of piecewise mono-
tone continuous functions. For any input v(¢t) € C,,[0,¢x], let e, :
R — R be defined by

er(v) = min (r, max(—r,v)). 3)

Then, for any initial value! w_; € R and » > 0, the stop operator
E.[;w—1] is defined as [2]

B [ozw1](0) =€, (v(0)—w—1)
E. [v;w_1](t) =er(v(t)—v(t:) + Er[v;w_1](t;))
for t; <t<t;41 and 0<i<N -1 “)

where 0 = tg < t < -+ < ty = tg is a partition of [0, £z] such that
the function v is monotone on each of the sub-intervals [¢;, ¢;+1]. The
argument of the operator is written in square brackets to indicate the
functional dependence, since it maps a function to a function. The stop
operator however is mainly characterized by its threshold parameter »
which determines the height of the hysteresis region in the (v, w) plane.

There is another basic hysteresis nonlinearity operator, called
the play operator [2]. For »r > 0, the play operator F,[;w_1] :
Cn[0,tp] X w_1 — C,[0,tx] for a general initial value2 w_; € R,
is defined by

By [ 0-1](0) = £(0(0), wo)
By [u3 w0 ](6) = £ (0(), Fy[os w0 )(8)
for t;<t<t;31 and 0<i<N -1 (5)

with
fr(v,w) = max (v — r,min(v + r, w)) (6)

where the partition 0 = o < ¢ < -+
defined for the stop operator.

From the definitions given in (4) and (5), it can be proved [2] that
the operator F. is the complement of E}., i.e., they are closely related
through the following equation:

< ty = tg is the same as

Eyfoiwa]() + Fofos w1 )(#) = o(#) @)

for any piecewise monotone input function v and » > 0.

In the following sections, both the stop and play operators are de-
noted by E,.[v] or F.[v] instead of E,[v;w_,] or F,[v; w_] so long
as it does not affect the proof. Owing to the nature of the play and stop
operators, above discussions are defined on the space C,, [0, tr] of con-
tinuous and piecewise monotone functions, although they can also be
extended to the space C'[0, tz] of continuous functions.

B. PI Model

We are ready to introduce the PI model defined by the stop or play
hysteresis operators. The PI model [11] was formulated to describe
the elastic-plastic behavior through a weighted superposition of basic
elastic-plastic elements E[v], or stop operator, as follows:

R

w(t) = [pr)ELIar ®)

0

lw_ represent the value of v — w before v(0) is applied at time t = 0.
2w_, represent the initial state before »(0) is applied at time t = 0.
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Fig. 1. Hysteresis curves given by (8).

where p(r) is a given continuous density function, satisfying p(r) > 0
with [7 rp(r)dr < oo, and is expected to be identified from exper-
imental data. With the defined density function, this operator maps
Clto,o0) into Clto, o0), i.e., Lipschitz continuous inputs will yield
Lipschitz continuous outputs [6]. Since the density function p(r) van-
ishes for large values of r, the choice of R = oo as the upper limit of
integration in the literature is just a matter of convenience [2].

It can be seen that the stop operator E,. serves as the building ele-
ment in the PI model (8). Moreover, it needs to be mentioned that the
stop and play operators are rate-independent, and thus the PI model
is also rate-independent. As an illustration, Fig. 1 shows w(t) derived
from the model given in (8), with p(r) = e=°%7=1° ;. ¢ [0, 10],
and input v(t) = 7sin(3t)/(1 + t),t € [0,2x] with w_; = 0. This
numerical result shows that the PI model (8) indeed generates the hys-
teresis curves and can be considered to be well-suited to describe the
rate-independent hysteretic behavior.

Since the operator F. is the complement of ., the Pl model can also
be expressed through the play operator. Using (7) and substituting for
E, in (8) by F, the PI model defined by the play hysteresis operator
is expressed as follows:

R

w(t) = pov(t) — /p(r)Fr[U](t)dr )

0

where po = fOR p(r)dr is a constant which depends on the density
function p(r). It should be noted that (9) decomposes the hysteresis
behavior into two terms. The first term describes the linear reversible
part, while the second term describes the nonlinear hysteretic behavior.
This decomposition is crucial since it facilitates the utilization of the
currently available control techniques for the controller design.

IV. CONTROLLER DESIGN

In this section, instead of constructing the inverse of the hysteresis
model to mimic the hysteresis effects as frequently done in the literature
[31,[4]1,[71, [14], we shall propose, as an illustration, an adaptive variable
structure controller for plants of the form described by (2) preceded by
the hysteresis that is described by the PI model. The proposed controller
will lead to global stability and yield tracking within a desired precision.

Consider the PI model expressed by the play operator given in (9),
the hysteresis output w(¢) can be expressed as

w(t) = pov(t) — d[v](t) (10)
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where

R

del = [ o) B Lty

0

an

. R
with po = [3" p(r)dr.

Using the hysteresis model of (10), the nonlinear system dynamics
described in (2) can be expressed as

PO+ 3 i (a(0) 40, D)
- = b{pov(t) — d[v](¥)}

which yields a linear function of the input signal v(t) together with a
shifting term bd[v].

Remark: Ttis clear that the first term on the right-hand side of (12) is
expressed as a linear function of the control signal v(¢). In this case, it
is possible to fuse the currently available controller design techniques
with the hysteresis model for the controller design. Such a structure
would thus permit for the design of the adaptive variable structure
control algorithm. This particular aspect of the fusion would become
clear with the formulations presented later. Furthermore, the integrated
model in (12) was also our primary motivation behind using the PI
model.

In the following development, we will propose an adaptive variable
structure controller for (12).

Equation (12) can be re-expressed as

12)

&1 =

3‘371—1 =Tn
k
Ty, = — Za,'Yi (z1(t), z2(t), ... xn_1(t))
=1

b {pon(t) — (1)}

=a’Y + byu(t) — dy[v](t) (13)

where x1(t) = a(t),wa(t) = &(t),...,2.(t) = 2"V (),
a=[—a,—as,...,—az]",Y = [V1,Ys,....Y3]", b, = bpo, and
dp[v](t) = _fOR po(r) Fr[0](t)dr, with ps(r) = bp(r).

In presenting the developed adaptive variable structure control law,
the following definitions are required:

at)=a—a(t) (14)
o(t) =¢ — o(t) (15)
po(t,r) =po(r) — pu(t,r), forall r € [0, R] (16)

. . . . S A
a is an estimate of a, ¢ is an estimate of ¢, which is defined as ¢ =
(bp) ™1, P (t,7) is an estimate of the density function p,(r). Let

R
B(v(t) 2 /p,,(r) |F.[](4)| dr (17)
0
and the estimation B( t) is given by
R
B2 [en IRLl]r ()
0
which leads to
R
B(t) = / (Bo(t,7) = po(r)) [F o)1) . (19)
0
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Given the plant and hysteresis model subject to the assumptions de-
scribed above, we propose the following control law:

v(t) = d(t)vr (1) (20)
with
01(t) = —Cnzn —2n 1 —A Y +un + 25 44,y Q21
where
z1(t ) =a1(t) — za(t)
=ri(t) -2~y i=23,...n (22
al(f) = —cn (f)
a;(t) = — cizi(t) — zi—1(t)
+ @i ('771-,---,-771‘71,-7%7 "“11 1)1
i1=2,3,....,n—1 (23)
where uny = b1gn(~n)B and c,,z =1,2,..., n — 1, are positive

design parameters. The parameters ¢, a, and functlon pu(t, ) will be
updated by the following adaptation laws:

a=~Yz, (24)
zf; = —NUi2Zn (25)
D puttr) =g ELAD =l forr 0.7 @6)

where parameters v,  and ¢ are positive constants determining the
rates of the adaptations.
Remarks:

1) The term u v (t) represents the compensation component for
the function d[v](t). Unlike the traditional adaptive variable
structure controller designs, where d[v](t) is either assumed
to be bounded by a constant or a known function [16], d[v](¢)
is presented as an integral equation, and there is no assump-
tion on its boundedness. Considering that the density func-
tion p(r) is not a function in time, it can be treated as a pa-
rameter of the hysteresis model and adaptive law can be de-
veloped to obtain an estimate of it. This is crucial for the
success of the adaptive law design.

2)  The function B(t) = [ py(r.t)|F.[v](t)|dr in the
implementation can be computed using numerical
techniques by replacing the integration with the sum,
B(t) = Y005 po(IAr, )| Fia[v](#)|Ar, where N deter-
mines the size of the intervals of R such that Ar = R/N.
The selection of the size of the intervals depends on the
accuracy requirement. As will be shown in the simulation
example, the size of the intervals may not necessarily be
very small.

The stability of the closed-loop system described in (12), (20) and

(24)—(26) is established in the following theorem.

Theorem: For the plant given in (2) with the hysteresis (9), subject
to Assumption 1, the adaptive variable structure controller specified by
(20) and (24)—(26) ensures that all the closed-loop signals are bounded
and z(t) — xq(t) ast — oc.

Proof: Using the expression (13) and the definition of z,, in (22),
noticing that b,v(t) = bp(/37)1(t) =y (t) — bp(,Bvl(t), one can obtain

25 = — 12+ 2120
;/i;/i:—:i_lzi—c,‘z?+zi:i+1, 1=2.3,...,n—1
fp = — Cnin — e +A'Y
— sign(zn)B — dy[v](t) — byou (1). 27
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To establish global boundedness, we define the following Lyapunov
function candidate:

R
1 1. b, :

Loy Larayboge 1 /ﬁi(t,rwr 28)
P 2 2~ 20

= 0

The derivative V is given by

n

R
1.p: by-~*
Zziz'i+faTa+—%¢>+ /pb(fr) Po(t,r)dr
Y n

=1

V()

0

< - Zmz —|— a Tla4+~Y zn)—i-bn 5((,.5—777'1%)
i=1
R

~ e BB+ [uttr) [P L0 =

0

b, ~
Ha+Yz,)+2 w(é—nmzu)

S - ZCZ/*z :

R
- |zn|B—|—/ﬁb(t, ) | Fr[0](£)] |20 |dr

0
n
2
= — CiZi .
=1

Equations (28) and (29) imply that V' is nonincreasing. Hence,
2z (i = 1,....n), &, ¢, and py(t,r) are bounded. By applying
the Lasalle-Yoshizawa theorem in [8] to (29), it further follows
that z;, — 0 (i = 1,...,n) as ¢ — oo, which implies that
limy oo [z(t) — za(t)] = 0

Remark: 1t is now clear that the proposed control strategy to deal
with the hysteresis nonlinearities can be applied to many systems and
may not necessarily be limited to the system described by (2). However,
we should emphasize that our goal in this note is to illustrate the fusion
of the hysteresis models with available control techniques in a simpler
setting that reveals its essential features.

(29)

V. SIMULATION STUDIES

In this section, we illustrate the methodology presented in the pre-
vious sections using a simple nonlinear system described by

. 1— e

()
where w(t) represents the output of the hysteresis. The actual param-
eter values are b = 1 and @« = 1. The objective is to control the system
state  to follow the desired trajectory x4 = 5sin(2t) + cos(3.2t).
The hysteresis is described by

+ bw(t) (30)

R

w(t) = pov(t) — /p(r)F,»[v](t)dr

0

(3N

where p(r) = ae™ =) forr € [0, 100], with parameters o = 0.5,
8 =0.0014, and ¢ = 1.

As yet, no analytical approach has been developed for the selection
of the control constants. The approach to select their values was through
iterative simulation. In this simulation, the adaptive variable structure
control law (12) and (24)—(26) were used, taking ¢; = 0.9368. In the
adaptation laws, we choose v = 0.13, n = 0.05, ¢ = 0.437, and
the initial parameters @(0) = 0.13, $(0) = 0.431, and py(0,7) = 0.
The initial state is chosen as #(0) = 2.05, sample time is 0.002. We
also assume that the hysteresis internal state was w_; = 0.07 for r €
[0, R] before v(0) was applied. For the calculation of B(#), we replace
the integration by the sum Z(’)\, while N is chosen as N = 6000.
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desired trajactory xd(t)and system output x(t)
with uN & without uN

Vo i x(t) with UN=0

x(t),xd(t)

Fig. 2. Desired trajectory x4(t) = 5sin(2t) + cos(3.2t), system outputs
2(t) with control term uy (-.) and ux = 0 (dotted line).

system error e(t)=x(t)—xd(t) with term uN and without uN

e(t) with uN=0

e(t)

Fig. 3.
line).

Tracking errors of the state with control term u  and vy = 0 (dotted

Also, in the simulation, the function sign(z, ) in u is replaced by the
saturation function sat(z, /¢ withe = 0.01 to avoid the control chatter.
To illustrate the effectiveness of the proposed control scheme, the
simulations were performed with and without controlling the effects
of hysteresis. The analysis without consideration of the effects of hys-
teresis is implemented by setting un (t) = 0 in the controller v(¢),
which implies that the control compensation for the hysteresis nonlin-
earity is ignored. Simulation results obtained for both cases (un () = 0
and un (t) # 0) are shown in Figs. 24 for the system (12) to track the
desired trajectory x:4(t) = 5sin(2t) + cos(3.2t). Figs. 2 and 3 show
the state trajectories and tracking errors for the desired trajectory with
and without considering the effects of hysteresis, where the solid line
is the results with ux (¢) # 0 and the dotted line is with un (t) = 0.
Fig. 4 shows the input control signal v(¢). The proposed robust con-
troller clearly demonstrates excellent tracking performance as evident
from the results presented in Figs. 2 and 3. The developed control al-
gorithm can thus effectively overcome the effects of the hysteresis.
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0 1 2 3 4 5 6 7 8 9 10

Fig. 4. Control signals v(t) with control term vy and without « x (showing
jumps).

VI. CONCLUSION

In practical control systems, hysteresis nonlinearity with unknown
parameters in physical components may severely limit the performance
of control. In this note, an adaptive variable structure control architec-
ture is proposed for a class of continuous-time nonlinear dynamic sys-
tems preceded by a hysteresis nonlinearity with the Prandtl-Ishlinskii
model representation. The control law ensures global stability of the en-
tire system and achieves both stabilization and tracking within a desired
precision. Simulations performed on an unstable nonlinear system il-
lustrate and further validate the effectiveness of the proposed approach.
The primary purpose of exploring new avenues to fuse the model of
hysteresis nonlinearities with the available adaptive controller design
methodology without constructing a hysteresis inverse is achieved with
highly promising results. The results presented in this note can be con-
sidered as a stepping stone to be used toward the development of a
general control framework for the systems with hysteretic behavior.
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A New Solution to the Problem of Range Identification in
Perspective Vision Systems

Dimitrios Karagiannis and Alessandro Astolfi

Abstract—A new solution to the problem of range identification for per-
spective vision systems is proposed. These systems arise in machine vision
problems, where the position of an object moving in the three-dimensional
space has to be identified through two-dimensional images obtained from
a single camera. The proposed identifier yields asymptotic estimates of the
object coordinates and is significantly simpler than existing designs. More-
over, it can be easily tuned to achieve the desired convergence rate. Simu-
lations are provided demonstrating the enhanced performance of the pro-
posed scheme and its robustness to measurement noise.

Index Terms—Machine vision, nonlinear observer, perspective system.

I. INTRODUCTION

A classical problem in machine vision is to determine the position
of an object moving in the three-dimensional space by observing the
motion of its projected feature on the two-dimensional image space of
a charge-coupled device (CCD) camera. The case where the motion of
the object is described by linear (time-varying) dynamics with known
parameters has received particular attention, see e.g. [1]-[4].

The systems that arise in this case are known as perspective dynam-
ical systems and the problem of determining the object space coor-
dinates reduces to the problem of estimating the depth (or range) of
the object. Higher-dimensional perspective systems, but with constant
motion parameters, have also been considered, see e.g. [5]. Alterna-
tively, the (dual) problem of estimating the motion parameters when
the three-dimensional coordinates are available for measurement has
been studied in [6]-[9].
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Fig. 1.

Diagram of the perspective vision system.

In this note, a solution to the range identification problem is proposed
based on a new nonlinear observer design which is inspired by the re-
cently developed immersion and invariance methodology [10] and the
reduced-order observer in [11].

The proposed scheme achieves asymptotic convergence of the obser-
vation error to zero and is considerably simpler than the fourth-order
asymptotic observer proposed in [3], as well as the fifth-order approxi-
mate observer in [2], and the high-gain observer proposed in [1]. More-
over, it can be easily tuned to achieve the desired convergence rate.

II. PROBLEM FORMULATION

The motion of an object undergoing rotation, translation and linear
deformation can be described by the affine system [3]

g ain a2 a3 xy b1
Ty | = | az1 aze  ass x| + | b2 (1
xr3 31 32 a33 xrg b3

where (1,22, 73) € R® are the unmeasurable coordinates of the
object in an inertial reference frame with x3 being perpendicular to
the camera image space, as shown in Fig. 1. The motion parameters
a;j = aij(t), b; = b;(t) are possibly time-varying and are assumed
known.

Using the perspective (or “pinhole””) model for the camera, the mea-
surable coordinates on the image space are given by

1
y=[yi, 2] =e F_l, J—)} 2
where ¢ is the focal length of the camera, i.e. the distance between
the camera and the origin of the image-space axes. Without loss of
generality, we assume that e = 1.

The perspective system (1) must satisfy the following assumption.

Assumption 1: The parameters a;;, b; in (1) and the coordinates y1,
y2 in (2) are bounded functions of time, i.e. a;;(t), b;(t) € Lo, for all
i,j=123andy(t) € L. Moreover, a;;(t) and b;(t) are first-order
differentiable and z3(¢) < ¢ = 1, where € is as in (2).

Remark 1: Assumption 1 is motivated by the physical properties
of the perspective system, see [1] and [3]. Note that in [3] it is fur-
ther assumed that the functions b, (¢) are twice differentiable and that
;L’3(t) € l:,oo

The design objective is to reconstruct the coordinates x1 , x2, '3 from
measurements of the image-space coordinates ¥, y2.
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