
Available on CMS information server CMS NOTE 2007/008

The Compact Muon Solenoid Experiment

Mailing address: CMS CERN, CH-1211 GENEVA 23, Switzerland

CMS Note
26 March 2007

Adaptive Vertex Fitting

R. Frühwirth, W. Waltenberger

Institute of High Energy Physics of the Academy of Sciences, Vienna, Austria

P. Vanlaer

IIHE (ULB-VUB), Pleinlaan 2, B-1000 Brussels, Belgium

Abstract

Vertex fitting frequently has to deal with both mis-associated tracks and mis-measured track errors.

A robust, adaptive method is presented that is able to cope with contaminated data. The method is

formulated as an iterative re-weighted Kalman filter. Annealing is introduced to avoid local minima in

the optimization. For the initialization of the adaptive filter a robust algorithm is presented that turns

out to perform well in a wide range of applications. The tuning of the annealing schedule and of the

cut-off parameter is described, using simulated data from the CMS experiment. Finally, the adaptive

property of the method is illustrated in two examples.

1 Introduction

The method of Least Squares is seen to be our best course when we have thrown overboard a certain portion of

our data – a sort of sacrifice which has often to be made by those who sail the stormy seas of Probability.

F. Y. Edgeworth, 1887

Vertex fitting is the task of computing the location and the error of an interaction vertex from a given set of

reconstructed tracks. A widely used method for this purpose is the Kalman filter [1, 2] which was implemented in

the CMS reconstruction program ORCA [3] and is now available in the new framework CMSSW [4]. The Kalman

filter is a least-squares estimator which minimizes the sum of the squared standardized distances of all tracks from

the vertex position v:

v̂LS = argmin
v

L(v), with L(v) =
1

2

n
∑

i=1

χ2
i
(v) =

1

2

n
∑

i=1

d2
i
(v)/σ2

i
. (1)

Differentiation with respect to v gives the following equation for v̂:

∂L(v)

∂v
=

n
∑

i=1

χi(v)
∂χi

∂v
= 0. (2)

Usually the distance di is approximated by an affine function of v, using a first-order Taylor expansion:

di(v) ≈ ci + aT

i
v. (3)

Equation (2) then becomes a linear equation for v̂ and can be solved explicitely, either globally or iteratively with

the Kalman filter.

Least-squares estimators are known not to be robust, which means that they are sensitive to contaminated data, such

as mis-associated tracks or mis-measured track errors. In one of the authors’ PhD thesis [5] a few robustifications

of the standard Kalman filter have been suggested, one of which has turned out to be a very powerful general-

purpose technique: the adaptive vertex fitter (AVF). This paper deals almost exclusively with this most successful

method. Techniques which have turned out to be less powerful are only hinted at; the more interested reader is

referred to the aforementioned thesis. While this paper is intended to describe the method and motivate its default

values, another CMS note [6] systematically compares the AVF against the classical methods.

2 The adaptive vertex fitter

The adaptive vertex fitter does not reject an outlying track; rather it down-weights the outlier with a weightwi [7, 8].

The weight wi depends on the compatibility of track i with the vertex, as measured by χ2
i
:

wi

(

χ2
i

)

=
exp(−χ2

i
/2T)

exp(−χ2
i
/2T) + exp(−χ2

c/2T)
. (4)

The weightwi can be interpreted as the probability that track i belongs to a vertex at v. The constant χ2
c defines the

threshold where the weight is equal to 1/2; beyond this threshold a track is considered to be more likely an outlier

than an inlier. The temperature T is a parameter that controls the shape of the functional dependence in Eq. (4).

A zero temperature results in a step function and is equivalent to a hard cut at χ2
c . Figure 1 shows the weight as a

function of χ, with a cutoff at χc = 3, for three different temperatures.

After including the weights the fit equation (Eq. (2)) reads

n
∑

i=1

wi(χ
2
i
(v))χi(v)

∂χi

∂v
= 0. (5)

The weight of track i is now reduced by a factor wi(χ
2
i
). As the weights depend on the vertex position v, an

iterative procedure is required to solve Eq. (5). The weights are computed for an initial vertex position, and the

vertex is estimated using these weights. These two steps are repeated until convergence. The resulting estimator

can be regarded as an M-estimator [9], the result of minimizing an objective function of the form

M(v) =
n

∑

i=1

ρ(χi(v)). (6)

2

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

Standardized distance χ

W
ei

g
h
t

w
(χ

)

T=10

T=1

T=0.1

Figure 1: The weight function of Eq.(4) at three different temperatures.

In the special case ρ(χi) = χ2
i
, the least-squares estimator is recovered. Obviously the M-estimator is a solution

of the equation

∂M(v)

∂v
=

n
∑

i=1

ψ(χi(v))
∂χi

∂v
= 0, with ψ(t) = ρ′(t). (7)

A comparison with Eq. (5) shows that with our choice of weights

ψ(χ) = χ
exp(−χ2/2T)

exp(−χ2/2T) + exp(−χ2
c/2T)

. (8)

As ψ vanishes for the limit of large χ, the M-estimator is of the redescending type [9]. Integrating ψ over χ yields

the ρ-function of the adaptive estimator:

ρ(χ) =
1

2
χ2 − T ln

(

exp(χ2/2T) + exp(χ2
c/2T)

)

+ T ln
(

1 + exp(χ2
c/2T)

)

. (9)

The constant of integration has been chosen such that min ρ = 0. Figure 2 shows the shape of the function ρ(χ)
for three different values of the temperature T , with the same cut (χc = 3) as in Fig. 1. If the temperature is

at T = 1, the M-estimator is very close to a least-squares estimator for tracks within the cut, whereas for tracks

beyond the cut, the contribution to the objective function is nearly constant. As a consequence, the vertex position

is influenced very little by the outliers.

−5 −4 −3 −2 −1 0 1 2 3 4 5
0

1

2

3

4

5

6

Standardized distance χ

ρ
(χ

)

T=10

T=1

T=0.1

Figure 2: The function ρ of Eq. (9) at three different temperatures.

3

As mentioned before, the definition of the weights in Eq. (4) introduces the notion of a temperature T . This

temperature can be used to employ a deterministic annealing schema that helps to avoid falling into local minima.

The estimation starts at a user-defined initial temperature Tini > 1. The temperature is then lowered in each step

in a well-defined sequence that converges to 1. The iteration is stopped as soon as:

• the temperature is equal to 1, and

• the vertex candidate position has not changed by more than one micron.

The implementation of the adaptive vertex fitter method is straightforward, given a Kalman filter implementation

that accounts for the notion of track weights. Details of the implementation are given in the appendix. An example

of an adaptive vertex fit is visualized in Fig. 3.

Figure 3: Result of an adaptive fit. The fitter was supplied with four tracks (K+K−µ+µ−), one of which is

incompatible with the other three. Two tracks are highly collimated and appear as one in the plot. The fitter

completely ignores the outlying track. The size of the ellipsoid has been multiplied by a factor of ten. The three

arrows behind the vertex have a length of 100 µm in the “ellipsoid scale”, and a length of 1 mm in the “track

scale”.

3 Test samples

All case studies described in this paper have been performed with ORCA version 8.2.0. All events are without

any simulated pile-up. If not stated otherwise, the default parameters of the adaptive fitter are used. Track recon-

struction is performed by ORCA’s default track reconstruction method. Four different kinds of event topologies

are considered:

• cc̄ jets: high multiplicity events. This topology implements a benchmark for fitting primary vertices with

secondary vertices as a “background”. The transverse jet energy is 100 GeV, and the jets are in the tracker

barrel region (|η| < 1.4). The primary vertex is fitted using all tracks within the jet cone found by the

PersistentJetFinder (with default values).

• qq̄ jets: similar to the cc̄ case, but there are fewer secondary vertices with fewer tracks and a higher average

distance to the primary vertex. Also, the primary vertices tend to contain more tracks. Again, the jet

transverse energy is 100 GeV, in the barrel region only. The primary vertex is, again, fitted using all tracks

within the jet cone.

• τ → π±π±π∓: a 3-prong vertex that will be a good benchmark for fitting highly collimated low-multiplicity

secondary vertices. Contamination comes from mis-measured tracks. Tracks matching the simulated pions

from the τ -decay have been selected. The events have been obtained by producing a light MSSM Higgs

h0 → τ+τ− → 6 π, and selecting three-prong τ decays.

• Bs → J/ψ ϕ → KKµµ: a 4-prong vertex (if reconstructed correctly) that will serve as another secondary

vertex fitting test case. The simulated events were preselected such that both muons have a pT > 2 GeV/c.

Again, the data contains mis-measured tracks. It does not contain mis-associated tracks.

4

The rest of this section will give a few details of the event characteristics in the four test samples. For the remainder

of this section, the following applies: When counting tracks, all reconstructed tracks are considered, no special

filter is applied. For the vertices, the simulated vertices are counted, again with no special cut applied.

3.1 Event topology of cc̄ jets

8903 events have been analysed. Fig. 16 shows one such event. Association between the simulated and the

reconstructed vertices has been performed on a by-tracks basis. This means that a reconstructed vertex is associated

to the simulated vertex with which most tracks are in common. The simulated and reconstructed tracks are, in turn,

associated “by hits”, using the framework’s default TrackAssociatorByHits. So, in order for a reconstructed track

to be assigned properly, it has to share more hits with the correct simulated track than with any other track in the

sample, independent of the absolute number of shared hits. The multiplicities of reconstructed tracks of primary

and secondary vertices are shown in Fig. 4, the distances between primary vertices and secondary vertices in

Fig. 5, and the number of reconstructible secondary vertices per event in Fig. 6. A reconstructible vertex is defined

as having at least two associated reconstructed tracks. The Monte Carlo index has been used to distinguish between

primary and secondary vertices. Only tracks within the reconstructed jet cones have been considered.

Note that the track multiplicities of the secondary vertices are the multiplicities of the sum of all secondary vertices

in all reconstructed jets. The track multiplicity of a charmed meson is between two and three.

Stats
Entries 8903

Mean 13.93

RMS 6.191

tracks
10 20 30 40 50

0

100

200

300

400

500

600

Stats
Entries 8903

Mean 13.93

RMS 6.191

, track multiplicities, primary vertexcc Stats
Entries 8903

Mean 5.571

RMS 2.353

tracks
0 5 10 15 20 25

0

200

400

600

800

1000

1200

1400

1600

Stats
Entries 8903

Mean 5.571

RMS 2.353

, track multiplicities, secondary verticescc

Figure 4: Reconstructed track multiplicities in the cc̄ sample — primary vertex (left) and secondary vertices (right).

Note that the track multiplicities of the secondary vertices are the multiplicities of the sum of all secondary vertices

per event.

Stats
Entries 14509

Mean 0.0117

RMS 0.9615

[cm]x∆
-5 -4 -3 -2 -1 0 1 2 3 4 5

0

500

1000

1500

2000

2500

Stats
Entries 14509

Mean 0.0117

RMS 0.9615

, distance primary vertex - secondary vertices, x-axiscc Stats
Entries 14509

Mean -0.00128

RMS 0.8869

[cm]z∆
-5 -4 -3 -2 -1 0 1 2 3 4 5

0

500

1000

1500

2000

2500

3000

Stats
Entries 14509

Mean -0.00128

RMS 0.8869

, distance primary vertex - secondary vertices, z-axiscc

Figure 5: Distances between simulated collision (primary) vertices and decay (secondary) vertices in the cc̄ sample.

5

Stats
Entries 8903

Mean 1.63

RMS 0.819

secondary vertices
0 1 2 3 4 5 6 7

0

500

1000

1500

2000

2500

3000

3500

4000

Stats
Entries 8903

Mean 1.63

RMS 0.819

 number of secondary verticescc

Figure 6: Number of reconstructible secondary vertices in the cc̄ sample.

3.2 Event topology of qq̄ jets

8936 events have been analysed. Only tracks within the reconstructed jet cones are considered. The track multiplic-

ities of primary and secondary vertices are shown in Fig. 7, the distances between primary vertices and secondary

vertices in Fig. 8, and the number of reconstructible secondary vertices per event in Fig. 9. Again, the track mul-

tiplicities of the secondary vertices are the multiplicities of the sum of all secondary vertices per event – summing

over all reconstructed tracks in all jets.

Stats
Entries 8936

Mean 17.29

RMS 7.199

tracks
10 20 30 40 50 60

0

100

200

300

400

500

600

Stats
Entries 8936

Mean 17.29

RMS 7.199

, track multiplicities, primary vertexqq Stats
Entries 8936

Mean 2.683

RMS 3.048

tracks
0 5 10 15 20 25

0

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

2400

Stats
Entries 8936

Mean 2.683

RMS 3.048

, track multiplicities, secondary verticesqq

Figure 7: Reconstructed track multiplicities in the qq̄ sample — primary vertex (left) and secondary vertices (right).

Note that the track multiplicities of the secondary vertices are the multiplicities of the sum of all secondary vertices

per event.

Stats
Entries 5428

Mean -0.03278

RMS 1.477

[cm]x∆
-5 -4 -3 -2 -1 0 1 2 3 4 5

0

100

200

300

400

500

600

700

Stats
Entries 5428

Mean -0.03278

RMS 1.477

, distance primary vertex - secondary vertices, x-axisqq Stats
Entries 5428

Mean 0.005242

RMS 1.384

[cm]z∆
-5 -4 -3 -2 -1 0 1 2 3 4 5

0

100

200

300

400

500

600

700

Stats
Entries 5428

Mean 0.005242

RMS 1.384

, distance primary vertex - secondary vertices, z-axisqq

Figure 8: Distances between simulated collision (primary) vertices and decay (secondary) vertices in the qq̄ sample.

6

Stats
Entries 8936

Mean 0.6074

RMS 0.8948

secondary vertices
0 1 2 3 4 5 6

0

1000

2000

3000

4000

5000

Stats
Entries 8936

Mean 0.6074

RMS 0.8948

 number of secondary verticesqq

Figure 9: Number of reconstructible secondary vertices in the qq̄ sample.

3.3 Kinematics of τ → πππ

6404 events have been analysed, 5110 of which have all three π’s reconstructed. Figure 10 shows the sums of the

pT of the three reconstructed decay tracks. τ leptons. The remaining 1294 events have only two reconstructed π’s

which were assignable to the corresponding simulated track. As the track association criterion, the framework’s

TrackAssociatorByHits with default values was employed – see Sec. 3.1 for a short description of the associator.

Stats
Entries 5110

Mean 73.14

RMS 59.24

[GeV]
T

p
0 50 100 150 200 250 300 350 400 450 500

0

50

100

150

200

250

Stats
Entries 5110

Mean 73.14

RMS 59.24

 distribution
T

, pπππ→τ Stats
Entries 6404

Mean 2.798

RMS 0.4015

tracks
2 3

1500

2000

2500

3000

3500

4000

4500

5000

Stats
Entries 6404

Mean 2.798

RMS 0.4015

, number of reconstructed tracksπππ→τ

Figure 10: pT distribution of the τ lepton (fully reconstructed decays only) and multiplicity distribution of the

number of reconstructed tracks.

3.4 Kinematics ofBs → J/ψ ϕ → K+K−µ+µ−

9803 events have been analysed. 7451 events have all four tracks reconstructed “correctly”: all four of them are

assigned to the corresponding simulated track — for the details of the assignment criterion see, again, Sec. 3.1.

In 2088 cases one track was not reconstructed correctly in the above sense; the analysis was performed with only

three reconstructed secondary tracks. In 264 cases two tracks are missing. Figure 11 shows the pT distribution of

the J/ψ ϕ system for the fully reconstructed events.

4 Technical aspects of the adaptive method

This section describes the various parts of the adaptive method. The technical choices that had to be taken will be

presented and justified.

4.1 Track (re-)linearization

No matter what track parametrization is used, a charged track in a magnetic field can not be described exactly by

a linear model. In order to deal with this non-linearity, the exact track model is approximated by a linear model.

The linear expansion is recomputed if the estimated vertex has moved too far from the expansion point. For CPU

performance reasons, track relinearization should only be performed when needed. The current implementation

recomputes the linear approximation when the current vertex estimate moves by more than a certain threshold in

7

Stats
Entries 5227

Mean 13.46

RMS 6.439

[GeV]
T

p
0 10 20 30 40 50 60 70

0

50

100

150

200

250

300

350

400

Stats
Entries 5227

Mean 13.46

RMS 6.439

 distribution
T

, pϕ ψJ/ Stats
Entries 6857

Mean 3.735

RMS 0.4997

tracks
2 3 4

0

1000

2000

3000

4000

5000

Stats
Entries 6857

Mean 3.735

RMS 0.4997

, number of reconstructed tracksϕ ψJ/

Figure 11: pT distribution of the J/ψ ϕ system (fully reconstructed decays only) and multiplicity distribution of

the number of reconstructed tracks.

the transverse plane. The default for this threshold is currently at 100µm. Another possibility is hinted at in [10]:

the definiteness of the matrix of second derivatives of the model can be used to determine whether the current

estimate is still in the domain of attraction of the global maximum. Further studies in this direction are desirable.

4.2 Initial estimate of vertex position

A robust initial estimate of the vertex location is important in the adaptive estimation. It not only defines around

which points the tracks are linearized, but also the initial assignment probabilities (weights) of the tracks. If the

adaptive method is interpreted as an optimization procedure, then the initial estimate can be seen as its global

aspect. It is imperative that it resides close to where the global optimum of the adaptive estimate is. The method

by which it is produced must therefore be robust with a high break-down point [11].

4.2.1 The default algorithm

The input for all linearization point finders is a container of reconstructed tracks. The output is a point in three-

dimensional Euclidean space. Details of the implementation are given in the appendix.

Many different algorithms have been tried. For the sake of brevity we shall in this note restrict ourselves to

the presentation of the default method: the fraction-of sample mode with weights (FSMW, [12]), and show a

comparison with a few other methods that have been tried [5]. This default method is based on the crossing points

of the tracks. A crossing point is defined as the algebraic mean of the two points of closest approach of two tracks.

To a crossing point we attach a weight which is a function of the inverse distance of the two tracks, such that a

smaller distance between the two tracks gives a larger weight to their crossing point.

The weight function reads:

w = (d+ dmin)
n (10)

where d denotes the distance between the points of closest approach. The default values are: n = −.5, dmin =
10µm.

The FSMW finds the mode (point of highest density) of the crossing points, separately in each of the three spatial

coordinates. Each one-dimensional mode finding starts by finding the smallest “weighted” interval that covers at

least f percent of all data points, where f is a parameter of the algorithm. A weighted interval is defined as the

length of the interval divided by the sum of all weights of the contained points. The procedure is iterative: it is

recursively applied to the previously found interval, until an interval with two points remains. Finally, the mode

of this particular spatial coordinate is the average of the remaining two points. Applying this iterative procedure

separately to each spatial coordinate results in the final three-dimensional mode of the crossing points. The default

value of f is 0.4 in the current implementation.

For performance reasons, the weights of the crossing points are ignored until the number of data points drops

below a certain threshold. The default value for this threshold is 5. CPU performance was also the reason behind

the decision to implement an upper limit for how many crossing points are considered. Since there is one crossing

point for each track pair, their total number grows quadratically with the number of tracks. The default value of

the upper limit is 400. If more track pairs are available, the most “interesting” ones are chosen, “interesting” being

defined by

8

track 1

track 2

track 3

track 4

track 5

track 6

less favorable

h
ig

h
er

 p

Figure 12: The order of track pairs considered in the crossing point based algorithms, shown for six tracks.

(a) using as many different tracks as possible, and

(b) as high-energetic tracks as possible (the length of the full 3d track momentum vector is currently used),

(c) mixing as much as possible high-energy tracks with low-energy tracks, as far as this is compatible with (a)

and (b).

Fig. 12 shows the order of track pairs considered for the special case of six tracks.

4.2.2 Performance analysis of the FSMW

The performance of the FSMW method has been analysed and compared against a few other algorithms that are

described in [5]. The results are summarized in Table 1. The column labelled with “RMS” denotes the RMS of the

resolution plot of the z coordinate of the initial vertex estimate. The z coordinate is used because the differences

between the various methods are particularly pronounced in this variable. “σFit” refers to the standard deviation of

a Gaussian distribution fitted into the resolution distribution. A least-squares fit has been used, assuming Gaussian

errors on the uncertainty in each bin. “> 2 mm” denotes the failure to find a linearization point whose z coordinate

is within 2 mm from the true vertex position. Note that the given “RMS” as well as “σFit” refer to the distributions

that have been truncated according to the “failure” criterion, i.e. at 2 mm. Finally, the column labelled “t” denotes

the average time spent per event, in milliseconds, on a 2.8 GHz Intel Celeron processor. FSMW, the default

algorithm, performs well in all scenarios. Its CPU consumption is also acceptable. Very notable is also the fact

that the non-iterative Least Median of Squares (LMS) fails in high-multiplicity events. Fig. 13 shows two resolution

plots of the default linearization point finder.

cc̄ (primary vertex) qq̄ (primary vertex)

RMS σFit > 2 mm t RMS σFit > 2 mm t
LinPtFinder [µm] [µm] � [ms] [µm] [µm] � [ms]

Other method (ISMS) 86 43 5 7.7 80 39 5 9.3

Other method (HSM) 90 47 2 3.7 85 41 3 5.7

Other method(LMS) 373 63 66 3.6 358 51 88 5.6

FSMW (default) 92 49 3 4.4 88 44 3 5.8

τ → πππ J/ψ ϕ→ K+K−µµ
(secondary vertex) (secondary vertex)

RMS σFit > 2 mm t RMS σFit > 2 mm t
LinPtFinder [µm] [µm] � [ms] [µm] [µm] � [ms]

Other method (ISMS) 630 458 146 0.1 290 80 41 0.5

Other method (HSM) 632 455 146 0.2 293 84 41 0.5

Other method(LMS) 632 455 146 0.2 554 272 154 0.3

FSMW (default) 617 436 140 0.2 289 85 40 0.5

Table 1: Resolutions and failure rates of different LinearizationPointFinders for the four test samples. See the text

for detailed description.

9

 [cm], |dz|<0.03z∆
-0.03 -0.02 -0.01 0 0.01 0.02 0.03
0

100

200

300

400

500

cz resolution of the default LinPtFinder - c

 [cm], |dz|<0.07z∆
-0.06 -0.04 -0.02 0 0.02 0.04 0.06

0

100

200

300

400

500

600

700

ϕ ψz resolution of the default LinPtFinder - J/

Figure 13: Resolution plots of the default LinearizationPointFinders.

4.2.3 Influence of the linearization point on the final estimate

It is interesting to study the importance of the initialization of the adaptive fitter. To this end the default linearization

point finder was compared against three “artificial” finders:

• A Monte Carlo based finder that uses the simulated vertex as the fitter’s initialization (“MonteCarlo”),

• a finder that always returns the point (0, 0, 0) (“Zero”), and

• a finder that returns the result of the linear least-squares fitting method as the linearization point.

The results are given in Table 2. No beam spot constraints were applied. The columns match the ones given in

Table 1. For the final fit the default adaptive vertex fitter was employed (χc = 3.0, T = 256, 64, 16, 4, 1, 1, . . .).

It can be seen that the initialization indeed does matter. The “zero” linearization point finder scores poorly. The

comparison between FSMW and the linear method is interesting insofar as the linear method (which itself was

initialized with the FSMW method) is mathematically equivalent to starting the adaptive fitter by assigning equal

weights to all tracks. It can be seen that this leads to an increase of the residual tails. Note also that in the cc̄ sample

the adaptive fit with the simple “Zero” linearization point finder takes longer than the fit with the sophisticated

FSMW. The reason is that a better linearization point speeds up the fitting procedure because fewer iterations are

necessary for convergence. The comparison of FSMW with MonteCarlo indicates that there might be some space

for improvement, albeit not very much.

cc̄ (primary vertex) qq̄ (primary vertex)

RMS σFit > 2 mm t RMS σFit > 2 mm t

LinPtFinder [µm] [µm] � [ms] [µm] [µm] � [ms]

Zero 191 28 110 18.9 194 26 115 25.1

MonteCarlo 72 30 1 12.1 53 28 2 15.7

KalmanVertexFitter 78 30 11 25.4 88 27 14 34.9

FSMW 72 30 2 16.7 55 27 2 21.4

τ → πππ J/ψ ϕ→ K+K−µµ
(secondary vertex) (secondary vertex)

RMS σFit > 2 mm t RMS σFit > 2 mm t

LinPtFinder [µm] [µm] � [ms] [µm] [µm] � [ms]

Zero 726 663 183 2.2 453 158 281 6.7

MonteCarlo 591 348 106 1.9 260 72 29 3.8

KalmanVertexFitter 590 354 114 4.7 262 72 31 8.0

FSMW 589 352 114 1.9 261 72 36 4.0

Table 2: Influence of the linearization point on the final (adaptive) vertex fit. See the text for further explanations.

10

4.3 Annealing schedule

A few annealing schedules have been tried out. Table 3 compares some of them in the four event topologies. As

before, no beam spot constraints were applied. Again, the RMS and the (Gaussian) fitted σ of the z-coordinate are

given. The label “> 2 mm” denotes the failure to reconstruct a vertex whose z coordinate is within 2 mm from

the true vertex position, including truly failed fits (in which cases exceptions were thrown). The “t” column lists

the average time spent per event, given in milliseconds. The “. . . ” refers to geometric annealing schedules with an

annealing ratio r = 2. The time was measured on a 2.8 GHz Intel Celeron processor and an annealing schema of

T = (256, 64, . . .) has been chosen as the default.

cc̄ (primary vertex) qq̄ (primary vertex)

RMS σFit > 2 mm t RMS σFit > 2 mm t
Schedule [µm] [µm] � [ms] [µm] [µm] � [ms]

1 84 30 1 13.2 68 28 2 17.3

4 3 2 1 79 30 2 14.1 59 27 2 18.2

8 4 ... 75 30 2 16.0 58 27 2 21.8

32 16 ... 73 30 2 16.7 59 27 2 21.4

256 64 16 4 1 72 30 2 17.3 55 27 2 22.2

512 256 ... 76 30 3 20.4 61 27 3 27.5

2048 1024 ... 74 30 2 22.7 65 27 2 29.8

8192 4096 ... 74 30 2 25.3 68 27 2 33.2

τ → πππ J/ψ ϕ→ K+K−µµ
(secondary vertex) (secondary vertex)

RMS σFit > 2 mm t RMS σFit > 2 mm t
Schedule [µm] [µm] � [ms] [µm] [µm] � [ms]

1 583 358 102 1.2 270 73 38 2.4

4 3 2 1 587 364 105 1.4 268 73 36 3.8

8 4 ... 586 347 106 1.8 269 72 36 3.8

32 16 ... 589 354 109 1.6 270 73 36 3.9

256 64 16 4 1 589 352 114 1.7 261 72 36 4.5

512 256 ... 589 356 116 2.5 261 72 35 5.1

2048 1024 ... 589 356 117 2.6 262 72 36 6.6

8192 4096 ... 590 357 117 2.9 262 72 36 7.2

Table 3: The choice of the annealing schedule influences the result. The “. . . ” refer to geometric annealing

schedules with r = 2.

4.4 Choosing a χ2
c

Also a good default χ2
c criterion needed to be found. To this end the same procedure as before has been applied:

RMS, σFit, fraction of outliers, and CPU time have been evaluated as a function of χ2
c . The results, again, without

any beam spot constraints, are shown in Table 4. The effect is more pronounced in the cc̄ and qq̄ sample, because

of the larger number of outliers (secondary tracks). In the samples with small track multiplicity the results hardly

depend on the choice of χ2
c . Fig. 14 shows the same information, only in a more visual form. In the end a default

value of χc = 3 has been chosen.

4.5 Prior information on the vertex position

A vertex fit can also make use of a prior knowledge of the vertex. This prior information is used as a linearization

point with finite errors. The number of degrees of freedom of the reconstructed vertex is raised by three. The

adaptive fitter can deal with such a prior information. One use case for this feature is to feed a fitter with the

knowledge of the beam profile. This makes sense if it is known that the vertex that is to be fitted is a primary

vertex. The analyses shown in this paper do not exploit any such prior information.

11

cc̄ (primary vertex) qq̄ (primary vertex)

RMS σFit > 2 mm t RMS σFit > 2 mm t
χc [µm] [µm] � [ms] [µm] [µm] � [ms]

1.0 77 30 2 18.3 57 28 2 24.5

2.0 74 30 2 17.7 56 28 2 21.8

2.5 74 30 2 17.7 56 28 2 21.8

3.0 72 30 2 16.3 55 27 2 22.4

3.5 72 30 2 16.3 55 27 2 22.4

4.0 76 31 2 16.4 55 28 3 21.7

5.0 76 32 3 16.0 61 28 3 20.9

6.0 83 33 2 15.4 64 29 3 21.4

7.0 86 34 3 16.0 66 29 3 21.1

8.0 88 36 3 15.8 68 30 2 20.4

9.0 91 37 3 15.8 72 30 2 20.4

τ → πππ J/ψ ϕ→ K+K−µµ
(secondary vertex) (secondary vertex)

RMS σFit > 2 mm t RMS σFit > 2 mm t
χc [µm] [µm] � [ms] [µm] [µm] � [ms]

1.0 595 363 116 2.1 269 75 39 5.3

2.0 593 354 115 2.0 266 73 37 4.6

2.5 593 354 115 2.0 266 73 37 4.6

3.0 589 352 114 1.9 261 72 36 4.2

3.5 589 352 114 1.9 261 72 36 4.2

4.0 591 345 116 2.2 256 72 34 4.1

5.0 595 351 117 1.6 257 73 35 4.3

6.0 600 365 118 1.7 261 75 35 4.4

7.0 599 359 120 1.8 265 75 34 4.4

8.0 601 361 120 1.8 264 75 34 4.7

9.0 602 359 121 1.6 267 76 34 4.5

Table 4: Results of the fit, as a function of χc.

4.6 Exceptions

The AdaptiveVertexFitter throws an exception (“Supplied fewer than two tracks”), if the user supplies one or no

tracks. The class also throws an exception (“fewer than two significant tracks”), if, after the iterative fit, fewer than

two significant tracks were found. Significant in this context means that the weight is above a certain threshold,

which defaults to 0.01.

5 Case studies

This section is dedicated to two use cases that are intended to further illustrate the algorithmic procedure. Sec. 5.1

shows how the associated track weights change in each iteration step. Sec. 5.2 studies the algorithmic behavior at

its low-multiplicity limits.

5.1 Evolution of track weights in a cc̄ event

Fig. 15 shows how the track weights change in each iteration step in the adaptive method for one particular cc̄ event

(Fig. 16). The eleven tracks from the primary vertex are contaminated with three tracks from secondary vertices,

plus two more tracks that could not be associated to any vertex. It is interesting to note that in this particular

topology the fitter down-weights one of the primary tracks in the beginning. Only when the bias on the fit from the

mis-associated tracks decreases is the fitter capable of “deciding for” keeping this track.

12

cc̄

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 1 2 3 4 5 6 7 8 9

χc

σfit [µm]
rms [µm]

> 2 mm [permill]
t [ms]

qq̄

 0

 10

 20

 30

 40

 50

 60

 70

 80

 1 2 3 4 5 6 7 8 9

χc

σfit [µm]
rms [µm]

> 2 mm [permill]
t [ms]

τ → πππ

 0

 100

 200

 300

 400

 500

 600

 700

 1 2 3 4 5 6 7 8 9

χc

σfit [µm]
rms [µm]

> 2 mm [permill]
t [ms]

J/ψ ϕ→ KKµµ

 0

 50

 100

 150

 200

 250

 300

 1 2 3 4 5 6 7 8 9

 χc

σfit [µm]
rms [µm]

> 2 mm [permill]
t [ms]

Figure 14: Fit results as a function of χc.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

111141664256

w

T

Time series of the track weights

primary tracks
contamination

secondary tracks

Figure 15: Evolution of the track weights of a cc̄ primary vertex fit.

5.2 Track weights in a τ event

The adaptive method has originally been designed for high-multiplicity vertices with mis-associated tracks. It is

thus interesting to study the behavior of the method in low-multiplicity vertices. To this end we investigate how

the adaptive method behaves in cases of failure of the TrimmedKalmanVertexFitter (TKVF, see [6]), a least-squares

fitter with iterative removal of incompatible tracks.

13

Figure 16: Snapshot of the cc̄ event used in Sec. 5.1. The two “contamination” tracks and the three secondary vertex

tracks are clearly visible. The ellipsoid represents the reconstructed vertex error. For visibility it is magnified by a

factor of ten.

Fig. 17 shows the track multiplicities of the events in which the TKVF run with default values does not find a

vertex. Fig. 18 shows the highest versus second highest track weights obtained by the default AVF, run on this

τ -subsample (left hand plot). It can be seen that in the majority of the cases, the vertex is pulled towards a single

track. Already the second highest track weight is zero or close to zero in most cases. The right hand plot of Fig. 18

shows how the second highest track weight w(2) affects the distribution of the standardized residuals of the fitted

vertices’ z coordinate. For the events withw(2) ≈ 0 the vertex errors tend to be over-estimated and the standardized

residuals cluster near 0.0. This fact can also be seen in Fig. 19. The pronounced peak in the left plot comes from

these “one-track” events. Introducing a cut on the second highest track weight of w(2) >= 0.01 removes the peak

(right plot), at the price of throwing some events away. Finally, Fig. 20 repeats the plots of Fig. 19 (fitted with the

superposition of two Gaussians), only this time the complete event sample is used. This study justifies the choice

of the minimum weight for a track to contribute significantly to the vertex (see Sec. 4.6).

One main advantage of the AVF over “hard-assigning” algorithms like the TKVF is particularly visible in this

example. When given three mutually incompatible tracks, the TKVF cannot but fail. Not so the AVF. Since tracks

are never fully discarded in this “soft-assigning” algorithm, a vertex can still be found. An a-posteriori decision of

what to do with the vertex can be (and is) made, based on the track weights with respect to the final vertex.

2 3

170

180

190

200

210

220

 sampleτtrack multiplicity, filtered

Figure 17: Track multiplicities in the τ sub-sample for which the TrimmedKalmanVertexFitter fails.

14

15

3

1

1

1

252 6 4 1 3 5 8 26 64

second highest track weight
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

h
ig

h
e
s
t

tr
a
c
k
 w

e
ig

h
t

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Highest versus second highest track weight

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

-10 -8 -6 -4 -2 0 2 4 6 8 10

s
e
c
o
n
d
 h

ig
h
e
s
t
w

e
ig

h
t

standardized residual, z coordinate

Figure 18: Track weights and standardized residuals of the AVF, in the τ sub-sample for which the Trimmed-

KalmanVertexFitter fails. The left plot shows the highest track weights plotted against the second highest track

weights. On the right the second highest track weight is plotted against the residuals of the z coordinates of the

vertices.

Stats
Entries 390

Mean -0.09458

RMS 1.798

 / ndf 2χ 169.3 / 53

Constant 1.90± 15.91

Mean 0.07152± -0.08379
Sigma 0.0962± 0.9967

stz, |stz|<10
-10 -8 -6 -4 -2 0 2 4 6 8 10
0

10

20

30

40

50

60

70

80

90

Stats
Entries 390

Mean -0.09458

RMS 1.798

 / ndf 2χ 169.3 / 53

Constant 1.90± 15.91

Mean 0.07152± -0.08379
Sigma 0.0962± 0.9967

Standardized residuals, z, second highest weight >=0.0 Stats
Entries 213

Mean -0.2113

RMS 2.449

 / ndf 2χ 43.61 / 52

Constant 0.93± 7.21

Mean 0.14362± -0.07367
Sigma 0.180± 1.658

stz, |stz|<10
-10 -8 -6 -4 -2 0 2 4 6 8 10
0

2

4

6

8

10

12

Stats
Entries 213

Mean -0.2113

RMS 2.449

 / ndf 2χ 43.61 / 52

Constant 0.93± 7.21

Mean 0.14362± -0.07367
Sigma 0.180± 1.658

Standardized residuals, z, second highest weight >=0.01

Figure 19: Standardized residuals, with all events of the τ sub-sample for which the TrimmedKalmanVertexFitter

fails (left), introducing a threshold on the second highest track weight (right).

Stats
Entries 6404

Mean 0.00808

RMS 1.564

 / ndf 2χ 244.7 / 86

Constant(Core) 8.0± 440.4

Mean(Core) 0.01405± 0.00634

Sigma(Core) 0.013± 1.028

Constant(Tail) 0.271± 3.616

Mean(Tail) 0.9089± -0.6104

Sigma(Tail) 0.2± 10

stz, |stz|<10.0
-10 -8 -6 -4 -2 0 2 4 6 8 10
0

100

200

300

400

500

600

Stats
Entries 6404

Mean 0.00808

RMS 1.564

 / ndf 2χ 244.7 / 86

Constant(Core) 8.0± 440.4

Mean(Core) 0.01405± 0.00634

Sigma(Core) 0.013± 1.028

Constant(Tail) 0.271± 3.616

Mean(Tail) 0.9089± -0.6104

Sigma(Tail) 0.2± 10

Standardized residuals, z, second highest weight>=0.0 Stats
Entries 6087

Mean 0.006315

RMS 1.601

 / ndf 2χ 157.1 / 86

Constant(Core) 7.5± 409.5

Mean(Core) 0.014847± 0.009462

Sigma(Core) 0.013± 1.062

Constant(Tail) 0.271± 3.526

Mean(Tail) 0.9361± -0.6343

Sigma(Tail) 0.3± 10

stz, |stz|<10.0
-10 -8 -6 -4 -2 0 2 4 6 8 10
0

50

100

150

200

250

300

350

400

450

Stats
Entries 6087

Mean 0.006315

RMS 1.601

 / ndf 2χ 157.1 / 86

Constant(Core) 7.5± 409.5

Mean(Core) 0.014847± 0.009462

Sigma(Core) 0.013± 1.062

Constant(Tail) 0.271± 3.526

Mean(Tail) 0.9361± -0.6343

Sigma(Tail) 0.3± 10

Standardized residuals, z, second highest weight>=0.01

Figure 20: Standardized residuals of the AVF, for the full event sample, with (right) and without (left) a threshold

on the second highest track weight.

15

6 Interpretation of the track weights

After fitting a vertex with a linear fitter, physicists usually discard vertices which fail a certain χ2-probability cut.

Only then one usually continues with the analysis. When using an adaptive fitter, the issue is more subtle. The χ2

probability is not trivial to interpret; the information is now in the track weights, albeit at a more fine-grained level:

A track with w < 0.5 is by construction an outlier; one with w > 0.5 is an inlier. “Cutting” at anything other than

0.5 is discouraged; it is statistically meaningless.

So the user now implicitly defines a cut on the tracks when choosing χ2
c . It is equivalent to cutting at a certain

track’s χ2 probability, knowing that an individual track contributes two degrees of freedom to the vertex fit.

So what should one really do with the final vertex, knowing that the “goodness of fit” information is hidden in

the track weights? The authors believe that this a question of the specific use case. Consider the case of fitting

J/ψ ϕ → KKµµ. Assume that the result of a fit is that three track weights are close to one, while the fourth

weight is close to zero. The question of discarding the vertex is a question of what is relevant. If it is important

that the vertex with its four daughter particles be reconstructed fully and correctly, then discarding this event is a

possibility. If only the lifetime information of the mother particle is the relevant information, then the reconstructed

vertex seems a perfectly legitimate candidate.

7 Summary and Outlook

Let us not throw away data all too hastily. Instead, let us weight and re-weight the data, consider and reconsider

alternative models. Only if we must, at the latest possible stage, shall we distinguish between “in” and “out”,

discriminate between signal and noise.

The authors (a formal answer to Mr. Edgeworth, see p. 2)

The adaptive vertex fitter is a general-purpose algorithm that can be used in a very wide range of applications.

Its most particular asset is the fact that no specific information on the type or level of contamination is required

(see also [13]). This feature must be valued highly, considering the challenging LHC environment that has to be

faced. Vertex fitting is used in a few high level tasks such as b-tagging or kinematic fitting. It is not yet clear which

consequences the introduction of a soft track-to-vertex association will have on this higher level code. It can be

expected, though, that the extra information that is contained in the track weights can be exploited also in these

parts of the analysis.

Acknowledgements

The authors would like to thank the referees Danek Kotlinski and Ian Tomalin for their valuable comments and

suggestions which have led to substantial improvements.

References

[1] R. Frühwirth. Application of Kalman filtering to track and vertex fitting. Nuclear Instruments and Methods

in Physics Research A, 262:444, 1987.

[2] R. Frühwirth, P. Kubinec, W. Mitaroff, and M. Regler. Vertex reconstruction and track bundling at the LEP

collider using robust algorithms. Computer Physics Communications, 96:189–208, 1996.

[3] CMS Collaboration. ORCA, CMS OO Reconstruction. http://cmsdoc.cern.ch/orca.

[4] CMS Collaboration. CMSSW, CMS SoftWare.

http://cmsdoc.cern.ch/cms/cpt/Software/html/General/.

[5] W. Waltenberger. Development of Vertex Finding and Vertex Fitting Algorithms for CMS. PhD thesis, TU

Wien, 2004. CMS TS-2006/12. See also http://publications.teilchen.at/ww diss.pdf.

[6] T. Speer, K. Prokofiev, R. Frühwirth, W. Waltenberger, and P. Vanlaer. Vertex Fitting in the CMS Tracker.

(CMS-NOTE-2006-032), 2006.

16

[7] M. Ohlsson, C. Peterson, and A. Yuille. Track finding with deformable templates — the elastic arms ap-

proach. Computer Physics Communications, 71:77, 1992.

[8] R. Frühwirth and A. Strandlie. Track fitting with ambiguities and noise: a study of elastic tracking and

nonlinear filters. Computer Physics Communications, 120:197–214, 1999.

[9] F. R. Hampel, E. M. Ronchetti, P. J. Rousseeuw, and W. A. Stahel. Robust Statistics: The Approach Based

on Influence Functions. John Wiley & Sons, New York, 1986.

[10] H. Eichinger and M. Regler. Review of Track-Fitting Methods in Counter Experiments. Technical Report

CERN 81-06, CERN, Geneva, 1981.

[11] P. J. Rousseeuw and A. M. Leroy. Robust Regression and Outlier Detection. John Wiley & Sons, New York,

1987.

[12] David R. Bickel and Rudolf Frühwirth. On a fast, robust estimator of the mode: Comparisons to other robust

estimators with applications. Computational Statistics & Data Analysis, 50(12):3500–3530, August 2006.

available at http://ideas.repec.org/a/eee/csdana/v50y2006i12p3500-3530.html.

[13] J. D’Hondt, R. Frühwirth, P. Vanlaer, and W. Waltenberger. Sensitivity of robust vertex fitting algorithms.

IEEE Transactions on Nuclear Science, 51(5):2037–2044, 2004.

Appendix: Implementation details

Our implementation not only knows of data objects, but also of algorithm objects. A VertexFitter is an object that

maps a set of reconstructed tracks on a reconstructed vertex, see Fig. 21. Furthermore, the sequential (weighted)

update of a vertex candidate with a single track is encapsulated in its own class, the VertexUpdator. The algorithms

that compute the first rough guess of the vertex location also have their abstract base class, called Linearization-

PointFinder. Finally, also the recomputation of the track momenta after the vertex fit (the “smoothing” procedure)

and the computation of the annealing temperature are encapsulated in separate classes.

The task of linearization point finding can be formulated on top of the crossing points, although other formulations

are conceivable (see [5]). If crossing points are used, a three-dimensional mode finder such as the FSMW is

employed to compute the location of the vertex candidate. The software design reflects this simple relationship

between linearization point finders and mode finders, see Fig. 22.

The code originally developed for ORCA was ported to CMSSW. The UMLs (Figs. 21 and 22) are valid for the

CMSSW implementation also, except for one tiny difference: RecTracks are now known as reco::Tracks.

17

Figure 21: Implementation of the adaptive vertex fitter.

Figure 22: The DefaultLinearizationPointFinder and its inheritance.

18

