
T. D. Parsons and J. L. Reinebold: Adaptive Virtual Environments for Neuropsychological Assessment in Serious Games  197 

Contributed Paper 
Manuscript received 03/01/12     
Current version published 06/22/12  
Electronic version published 06/22/12.                                       0098 3063/12/$20.00 © 2012 IEEE 

Adaptive Virtual Environments for Neuropsychological Assessment 
in Serious Games 

Thomas D. Parsons and James L. Reinebold 

 
Abstract — While advances in military relevant simulations 

provide potential for increasing assessment of Soldier readiness 
to Return-to-Duty (e.g., following a blast injury), little has been 
done to develop these simulations into adaptive virtual 
environments (AVE) for improved neurocognitive and 
psychophysiological assessment. Adaptive assessments offer the 
potential for dynamically adapting the difficulty level specific to 
the patient’s knowledge or ability. We present an iteration of the 
Virtual Reality for Cognitive Performance and Adaptive 
Treatment (VRCPAT) that proffers a framework for adapting 
scenarios in a game engine based upon the user’s neurocognitive 
(task performance) and psychophysiological (e.g., heart rate, 
skin response, heart rate, and pupil diameter) states1. 
 

Index Terms — Neuroscience, Neuropsychological 
Assessment, Psychophysiology, Adaptive Virtual Environment 

I. INTRODUCTION 

Military clinicians are increasingly being asked to make 
statements regarding a military service member’s ability to 
return to active duty. Given the increasing prevalence of blast 
injuries to the head, and the fact that many brain injuries may 
have no external marker of injury, there is need for the serious 
games community to research innovative assessment methods. 
Current “Return-to-Duty” assessments are based upon the 
“Return-to-Play” guidelines found in Sports Medicine. Both 
have incorporated the Automated Neuropsychological 
Assessment Metrics (ANAM) to aid in decisions related to 
resuming activities following a concussion. Unfortunately, the 
ANAM was not developed with the intention of 1) adapting 
the difficulty level specific to the patient’s ability; or 2) 
tapping into everyday behaviors like navigating a Middle 
Eastern city or gathering supplies for a mission. 

Some promise has been found in serious gaming 
environments that aim to 1) incorporate adaptive 
assessments that dynamically adapt the difficulty level 
specific to the user’s performance; and 2) increase the 
ecological validity of neurocognitive batteries through the 
use of simulation technologies for assessment and treatment 
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planning [1]. The success of virtual reality-based 
neuropsychological assessment and psychophysiology 
research paradigms may lead to a psychophysiological 
computing approach, in which such data gleaned from 
persons interacting within a military relevant simulation may 
be used to develop adaptive virtual environments (AVE) for 
training and rehabilitation [1]. 

At the heart of psychophysiological computing are the tools 
available to measure activity within the human user. 
Psychophysiological measures offer measures of human 
psychophysiological responses such as cardiorespiratory 
activity (e.g., heart rate (HR) and heart rate variability 
(HVR)), as well as measures of electrodermal activity (e.g., 
skin conductance and galvanic skin response (GSR)), 
respiration, and pupilometry. For a psychophysiological 
sensor to be useful it must be sensitive to an aspect of patient 
state that has cognitive or performance implications (i.e., 
arousal; cognitive workload). A key aspect of cognitive 
workload is the relation between the task and the user’s 
abilities.  Previous studies [2], [3] have shown that 
psychophysiological indices can be useful in adapting 
difficulty settings in games to provide a more entertaining 
play experience. Our framework leverages these advances to 
provide a more sophisticated performance assessment 
platform that allows the user's performance to be evaluated 
over a specific range of stress levels. 

Research on stress and performance has revealed that 
arousal is closely related to a subject’s performance in mental 
tasks. According to the well-known Yerkes-Dodson Law [4], 
performance is a nonmonotonic function of arousal. 
Performance increases with arousal when the arousal level is 
low, then reaches its peak at the optimal arousal level, and 
then decreases as arousal continues to increase. In an adaptive 
virtual environment that aims to improve the user’s 
performance in mental tasks, such as learning and cognitive 
workload, it is very important to be able to identify the user’s 
optimal arousal level and to recognize whether or not the 
user’s actual arousal level is close to that optimal level. 

In earlier work [5], we modified  a game called Full 
Spectrum Warrior to develop a Virtual Reality Cognitive 
Performance Assessment test (VRCPAT 1.0). The primary 
goal of VRCPAT 1.0 has been to psychometrically validate it 
as a system that builds upon (not replaces) current 
neuropsychological assessments. The use of a military 
relevant VE offers enhanced flexibility to gather a greater 
degree of information relative to a user’s neurocognitive 
processing: 1) information load via the intensity and 
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complexity of target stimuli; 2) temporal constraints during 
varied sustained assessment conditions; 3) distracting 
activities during the neurocognitive assessments; 4) sensory 
modality of the information presentation that needs to be 
attended to; 5) presentation of aversive stimuli for stressed 
performance evaluations; and 6) the development of a 
Normative Database whereby neuropsychological 
performance could be assessed under known conditions 
supported by normative standards. The current iteration of 
VRCPAT (Virtual Reality for Cognitive Performance and 
Adaptive Treatment; VRCPAT 2.0) uses a visual scenario 
editor and scripting language [6] to develop the scenarios: 
virtual Iraqi/Afghani scenarios (City, Checkpoint, Humvee). 
The platform was used due to its robust fidelity simulation, 
ease of modification, context relevant in game assets, and 
adoption by many military forces.   

II. THE NORMATIVE DATABASE (VRCPAT 1.0) 

We first developed VRCPAT 1.0, which includes a 
“normative database” drawn from over 400 subjects, including 
West Point cadets, college age civilians, and military service 
members recruited from large Army installations in the 
continental U.S [5], [7], [8]. Although there was some 
variation across studies, in general participants received part 
or all of the following: 1) VRCPAT battery; 2) 1.5-hour in-
person neuropsychological assessment; and 3) ANAM.  

A. Traditional Neuropsychological Measures 

The neuropsychological battery typically included the 
following assessments: Attention: Digit Span (Forward and 
Backward) from the Wechsler Adult Intelligence Scale–Third 
edition (WAIS III); and the Paced Auditory Serial Addition 
Task (PASAT). Processing speed and visual-motor functioning: 
Digit Symbol Coding from the WAIS III; and Trail Making Test 
Part A. Executive function: Trail Making Test Part B; PASAT, 
and Color-Word Interference Test (i.e., Stroop) from the Delis-
Kaplan Executive Function System (D-KEFS). General 
intellectual function: Wechsler Test of Adult Reading. Verbal 
learning and memory: Hopkins Verbal Learning Test – Revised 
(HVLT). Nonverbal learning and memory: Brief Visuospatial 
Memory Test – Revised (BVMT). Verbal fluency: we used 
letter and category fluency from the D-KEFS. The following 
ANAM subtests were given: TBI Questionnaire; Sleepiness 
Scale; Mood Scale; Simple Reaction Time; Code Substitution; 
Procedural Reaction Time; Math Processing; Matching to 
Sample; Go/No-Go; and Stroop. 

B. Psychophysiological Measures 

We also developed indices of valence and arousal using 
psychophysiological measures: Electrodermal activity (EDA) 
was assessed because greater levels of fear responding have been 
found to result in greater skin conductance response potentiation 
and increased skin conductance levels [9]. Skin conductance has 
also been found to increase as workload increases [10]. We 
looked at electrocardiographic activity (ECG) because during 
highly arousing and fearful situations ECG is generally 
associated with defensive responding, which results in increased 

heart rate (HR), as opposed to orienting responses which reduce 
HR [11]. Increased arousal caused by fearful situations tends to 
result in HR increases. Increased HR is associated with increased 
cognitive workload [12], [13]. We also monitored respiration rate 
(RSP) because RSP has consistently been shown to increase in 
response to heightened levels of arousal associated with fear 
[14]. Further  increase in respiratory rate has been associated 
with increased cognitive demand [12]. 

Convergent and discriminant validation of this module with 
a 1.5-hour neuropsychological assessment were conducted in 
four published studies (total sample number, N=137) and 3 
unpublished studies (N=200) with a total sample of 337 
healthy adults, between the ages of 21 and 36, that included 
men and women from ethnically diverse populations [5], [15], 
[16], [17]. Results across studies have consistently supported 
construct (both convergent and discriminant) validity. For 
example, in Parsons et. al. [5] convergent validity results 
indicated that the module correlated significantly with 
traditional neuropsychological 1) Learning Composite (HVLT 
1-3; and BVMT 1-3; r=0.72, p<0.001), with 52% variance 
shared between the two indices; 2) Memory Composite 
(HVLT Total Recall; and BVMT Total Recall; r=0.68, 
p<0.001), with 46% variance shared between the two indices. 
Discriminant validity was evident in that no significant 
correlations were found between the module and tests of 
executive functions, attention, or processing speed. 

C. Virtual Reality Stroop Task 

We have also addressed construct validation using a Virtual 
Reality Stroop Task (VRST) [18]. Like the paper-and-pencil 
Stroop, the VRST assesses simple attention, gross reading 
speed, divided attentional abilities, and executive functioning. 
Like the ANAM, the VRST automates the paper-and-pencil 
Stroop task and allows for assessment of reaction time to single-
item presentations of Stroop stimuli. The VRST goes beyond 
the ANAM and paper-and-pencil versions of the Stroop by 
assessing for the impact of training, stimulus intensity (arousal 
from threatening stimuli), and stimulus complexity (endogenous 
and exogenous presentations) in a virtual environment that 
replicates real world activities (see Figure 1). 

 

 
Fig. 1. A Virtual Reality Stroop Task in which the subject is immersed 
in a virtual High-Mobility Multipurpose Wheeled Vehicle (HMMWV) 
as Stroop stimuli appear on the windshield. 

The VRST involves the subject being immersed in a virtual 
High-Mobility Multipurpose Wheeled Vehicle (HMMWV) as 
Stroop stimuli appear on the windshield. The VRST is a 
measure of supervisory attentional processing (executive 
functioning) and was designed to emulate aspects of both the 
paper-and-pencil and ANAM versions of the Stroop test. Like 
the ANAM version, the VRST uses single-item presentation 
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of Stroop stimuli and requires an individual to press one of 
three computer keys to identify each of three colors, (i.e., red, 
green, or blue), however, the VRST adds a simulation 
environment with military relevant stimuli in high and low 
threat settings. As is the case with the D-KEFS, the VRST 
includes both simple and complex presentation of the 
interference stimuli. 

III. The apparatus used for the virtual HMMWV included a 
desktop computer with a 3 GHz Processor; 6 GB of RAM; and 
a high performance graphic processing unit. Two monitors were 
used: 1) one for displaying the Launcher application which is 
used by the examiner administering the test; and 2) another for 
displaying the participant’s view of the virtual environment in 
the Head Mounted Display (HMD). Participants wore a HMD 
with a multi-purpose sensor integrating nine discreet miniature 
inertial sensing elements with advanced Kalman filtering 
algorithms.  A steering wheel was clamped on to the edge of a 
table in front of the monitors. Accelerator and brake pedals were 
positioned under the table. To increase the potential for sensory 
immersion, a tactile transducer was built using a three foot 
square platform with six 50W bass speakers attached. The 
tactile transducer was powered by an amplifier with 100 Watts 
per Channel x 2 in Stereo Mode.   

Animation software was utilized for development of the 
virtual Iraqi/Afghani environment.  The environments were 
rendered in real time using a graphics engine with a fully 
customizable rendering pipeline, including vertex and pixel 
shaders, shadows, bump maps, and screenspace geometric 
primitives [18].  The NeuroSim Interface (NSI) developed in 
the Neuroscience and Simulation Laboratory (NeuroSim) at 
the University of Southern California was employed for data 
acquisition, to guide stimulus presentation, and for 
psychophysiological monitoring.  The NSI also allowed for 
key events in the environment to be logged and time stamped 
with millisecond temporal accuracy.  

Psychophysiological responses were recorded throughout 
the participants’ period of immersion within the VRST. 
Electriocardiogram (ECG), electrodermal activity (EDA), and 
respiration were the psychophysiological measures recorded 
as participants rode in the simulated HMMWV through 
alternating zones of low threat and high threat. Amongst low 
threat zones little activity in the virtual environment was 
presented aside from driving down a desert road. During the 
high threat zones, gunfire, explosions, and shouting amongst 
other stressors were presented throughout. The participants 
experienced four low threat and four high threat zones 
designed to manipulate levels of arousal. The order of threat 
level presentation was counterbalanced across participants. 
The VRST was completed during exposure to the high and 
low threat zones. The VRST consisted of four conditions: 1) 
word-reading, 2) color-naming, 3) simple interference (stimuli 
presented in the middle of windshield), and 4) complex 
interference (stimuli presented in variable locations on 
windshield). Each Stroop condition was experienced once in a 
high threat zone and once in a low threat zone. As with the 
ANAM Stroop test, the presentation speed of individual 
stimuli was user-defined, meaning that the subsequent 

stimulus did not appear until the appropriate key was pressed 
for the stimulus currently being viewed. 

Our goal was to compare the VRST with paper-and-pencil 
(D-KEFS) and computer automated (ANAM) versions of the 
Stroop on behavioral measures. We also utilized 
psychophysiological measures to assess the effects of threat 
on arousal. Finally, we aimed to assess different aspects of 
supervisory attentional control within the VRST. The primary 
results were: (1) the typical Stroop effect pattern found in the 
D-KEFS and ANAM was replicated in the VRST; (2) the 
exogenous and endogenous attentional processing effects 
were similar in the complexity condition of the VRST and the 
D-KEFS Interference/Switching; (3) the two single-item 
presentation formats (i.e., VRST and ANAM) of the Stroop 
produced similar effects; 4) there was greater 
psychophysiological arousal in the VRST high threat zones 
than the low threat zones; and 5) while there was a learning 
effect present in the VRST across conditions, it was limited to 
the high threat zones. No negative side effects were associated 
with use of the VRST [18]. 

A. General Cognitive and Arousal Indices 
Given the fact that blast injuries may cause a user’s values 

to deviate from the norms found in the normative database, a 
user specific “General Cognitive Index” (GCI) and a “General 
Arousal Index” (GAI) were developed through comparison 
with baseline assessment (see “Profile Module” below). The 
GCI is the standardized score that represents how far the user 
deviates from the norm. Cognitive workload resource capacity 
(as measured by the GCI) essentially represents how much 
information can be maintained and manipulated in working 
memory. Individual differences in cognitive workload 
capacity are consistently found and these differences are 
strongly correlated with performance on a number of different 
cognitive tasks. In a similar manner, the GAI is the 
standardized score representing how far the user deviates from 
the norm for arousal in various VRCPAT scenarios. The GAI 
represents the user’s psychophysiological profile relative to 
VE stimuli. Individual differences in arousal have been 
consistently found that strongly correlated with performance 
on a number of different cognitive tasks. 

IV. THE ADAPTIVE FRAMEWORK (VRCPAT 2.0) 
We have also developed an AVE: Virtual Reality for 

Cognitive Performance and Adaptive Treatment [1]. The 
VRCPAT 2.0 aims to progress the user from suboptimal 
cognitive and affective states toward an optimal state that 
enhances the user’s performance. To do so requires the 
simulation to first infer user's current cognitive state based on 
psychophysiological signals and task performance and then 
create changes in the virtual environment to steer the user 
towards the desired state [19]. Like VRCPAT 1.0, this 
application also used the NSI for data acquisition, stimulus 
presentation, psychophysiological monitoring, and 
communication between the psychophysiological recording 
hardware and the virtual environment. Configuration 
parameters are saved to files using the NSI and automatically 
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loaded through its control module, allowing the experimenter 
to rapidly switch configurations in order to perform specific 
experimental sequences. The NSI also enables the sending of 
event markers from the stimulus presentation computer to the 
data recording device. Finally, the NSI compiles scripts to 
filter the incoming psychophysiological data in real-time.  The 
VRCPAT 2.0 is composed of three modules (see Figure 2).  

 

 
  
Fig. 2.  The VRCPAT 2.0 Adaptive Framework.  Users first establish 
set points during the profile module and then enter the adaptive 
simulation where the control and command modules guide the 
simulation based on the user’s performance. 

 

A. Profiling Module 

The Profiling Module (PM) uses a baseline assessment that 
places the user in a simplified VE consisting of both high and 
low stress zones. Determination of whether the user’s arousal 
level is above or below pre-established (normative database) 
thresholds is done using a comparison of features extracted 
from the following psychophysiological indices: 

1)  Cardiorespiratory Activity - Cardiovascular Activity is 
assessed in the Profiling Module using interbeat intervals 
(mean IBIs) that are calculated as the time difference in 
milliseconds between successive R waves in the ECG signal. 
Higher mean results indicate higher levels of arousal. To 
calculate the number of beats, we run a discrete Fourier 
transform and bandpass filter between 0.61 and 1.31 Hz.  The 
dominant (highest magnitude) frequency detected within the 
band is the frequency of the onset of the R-waves. Next, the 
IBI is calculated based on the size of the window sampled. 
This allows for the profiling of the user’s heart rate response 
during highly arousing and threatening situations that are 
found in the high threat zones of the HMMWV Stroop task. 
Such responses reflect defensive responding that results in 
increased heart rate. Contrariwise, orienting responses reduce 
heart rate [11]. In general, increased arousal caused by the 
threatening situations found in the high threat zones result in 
heart rate increases. Additionally, heart rate is used by the 
Profiling Module to provide a useful index of cognitive 
workload, which can be applied to the response characteristics 
related to performing the HMMWV Stroop task [12], [13]. 

2) Electrodermal Activity – Electrodermal Activity is 
assessed in the Profiling Module using a low pass filter 
applied to the electrodermal signal in order to minimize the 
effects of random noise in the signal. Median skin 
conductance response levels (SCLs) are calculated for each 
zone (safe and ambush) and analyzed, as are spontaneous 
fluctuations (SFs) in the skin conductance trace. SFs were 
defined as an increase of greater than 0.01 μS, with peak 
amplitude coming within a window of 1 to 3 seconds 
following the initial increase in the signal. The number of SFs 
occurring in each sample window is calculated (see Figure 3).  

 

Fig. 3.  Matlab scoring program output for one zone in the HMMWV 
Stroop task (VRST) scenario. Asterisks denote the presence of a 
spontaneous fluctuation. The downward trending straight line is the 
average slope of the signal across the zone. This data represents a user 
experiencing a low threat zone and performing the interference portion 
of the Stroop task. 
 

The eccrine sweat glands, which are the basis of skin 
conductance measurement, provide an atypical and useful 
index of autonomic functioning in that they are innervated 
exclusively by the sympathetic nervous system, as opposed to 
cardiovascular measures which are influenced by 
parasympathetic vagal tone as well. Thus, skin conductance 
responding can be utilized as a direct measure of sympathetic 
activation. Of particular interest for military relevant VE 
applications is the way skin conductance responses are 
affected by fear inducing or threatening stimuli [9], in which 
greater levels of fear responding result in greater skin 
conductance response potentiation and increased skin 
conductance levels. Additionally, skin conductance will 
generally increase as workload increases. During cognitive 
workload tasks, as the task difficulty increases, skin 
conductance responses become larger [10], [13]. 

3) Respiration — Respiration is recorded in the Profiling 
Module using interbreath interval (IBrI), which is scored for 
each sample within a window by calculating the median 
interval in milliseconds between peak amplitudes in the raw 
data signal, signifying one full breath cycle. As with IBI, the 
dominant frequency of the signal is obtained by bandpass 
filtering (between 0.134 and 1.01 Hz) and returning the 
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highest magnitude frequency bin.  The frequency is then used 
to calculate IBrI within the sample window which is compared 
to the mean IBrI from the previous window to determine the 
necessity of a change in the adaptive environment. Respiration 
rate has consistently been shown to increase in response to 
heightened levels of arousal associated with arousing stimuli 
[14], [20]. Mental imagery of fearful events has also been 
shown to increase rates of respiration [21]. Further, an 
increase in respiratory rate has been consistently associated 
with increased cognitive demand [12], [22]. During an air 
traffic control simulation with three levels of task difficulty, 
air traffic controllers exhibited increased rates of respiration as 
task difficulty increased [23]. 

4) Pupilometry — (electrooculographic; EOG) the median 
pupil radius (measured in mm) for all samples within a window.  
The EOG signals are evaluated by laboratory-developed 
software that detects blinks and provides interblink intervals. 
Higher EOG responses indicate higher levels of arousal. 

Each of the features discussed is a statistically meaningful 
aggregation of data across spans of time in the AVE. Care 
must be taken in determining the duration of the sampling 
window. Smaller windows allow the virtual environment to be 
adapted more rapidly than larger windows, however selecting 
too small of a window size may not provide enough samples 
to extract meaningful features. Further, for AVEs, each step of 
feature extraction must be done in real-time. Thus, the 
algorithms used for feature extraction are limited by time 
constraints. For example, peak detection of each R-wave in an 
electrocardiogram recording for calculation of IBIs is not 
feasible, as movement artifacts and other producers of noise in 
the signal would typically require manual scoring which is 
inappropriate for real-time scoring. For this reason, we are 
continually incorporating increasingly robust feature 
extraction algorithms, such as frequency domain analyses 
making use of discrete Fourier transforms (DFT). For the 
features that require performing a DFT on the data (i.e., IBI 
and IBrI), we used the open source software library “Fastest 
Fourier Transform in the West” that ranks among the fastest 
performing DFT algorithm suites [24]. For SCL median 
values are calculated in order to reduce the effects of random 
noise in the signal. 

To summarize, neurocognitive and psychophysiological 
metrics provide a means of obtaining objective and ongoing 
measures of user-state through noninvasive and nonconscious 
methods to improve experimental control. Arousal and cognitive 
workload are two aspects of participant-state that provide vital 
information for the successful implementation of adaptive 
systems that can be applied to improve real-world performance. 

B. Controller Module 

After the profiling run, the user is placed in the AVE.   
During the simulation, all the aforementioned 
psychophysiological features are computed across a fifteen 
second sliding window. To combine all psychophysiological 
features, we use an approach similar to [25], in which the user 
is said to be in a hyper- or hypo-aroused state if and only if all 

psychophysiological features indicate that level of arousal.  
The median values for each of the psychophysiological 
features are computed across all windows occurring in each 
zone. These values form the thresholds to determine how to 
change the adaptive environment. 

In addition to psychophysiological metrics, the user's 
cognitive performance on a task is also measured across the 
sliding window using a Humvee following simulation. Game 
players were instructed to maintain their initial separation 
from the lead vehicle (LV) while traveling through a virtual 
city despite changes in speed of the LV. The driver’s vehicle 
is positioned 23 meters behind the LV and s/he is instructed to 
maintain the distance (with a tolerance of 5 meters) through 
acceleration and deceleration (see Figure 4). 

 

 
 
Fig. 4.  Humvee following simulation. Game players are instructed to 
maintain their initial separation from the lead vehicle (LV) despite 
changes in speed of the LV. The driver’s vehicle is positioned 23 meters 
behind the LV and s/he is instructed to maintain the distance through 
acceleration and deceleration. 

 
An important aspect of computing the cognitive and 

psychophysiological features was classification of the user 
from various signals and commands. A difficulty that we 
found inherent in this process was that the classifier used for 
establishing a user’s level of arousal and cognitive 
performance was trained from data drawn from other subjects 
(Normative Database). It was challenging to develop generic 
cognitive and arousal recognition algorithms with model 
parameters fitting all subjects. In our initial attempts to do 
this, we used a support vector machine (SVM) to classify 
arousal levels that were drawn from the profiling module 
while users were immersed in VRCPAT [19]. Results revealed 
that when each user is considered separately, an average 
classification rate of 96.5% can be obtained; however, the 
average classification rate was much lower (36.9%, close to 
random guess) when a user’s performance was predicted using 
data of other users’ arousal levels.  

Given the individual differences in arousal on VRCPAT 
tests, we needed to develop optimal classification strategies 
from a minimum number of user-specific training examples. 
We attempted to use the Normative Database to maximize the 
user-specific training data and then re-tuning the parameters 
of the profiling and control modules. Unfortunately, 
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continually returning to the Normative Database for user-
specific data is time-consuming. As a result, we set out to 
minimize this effort and identify the optimal parameters of 
profile and control algorithms using a minimum number of 
user-specific training examples. 

First, we tailored the profile and control algorithms by 
collecting a batch of user-specific training examples at a time, 
and then we estimated the recognition performance by leave-
one out cross-validation, until the cross-validation 
performance was satisfactory, or the maximum number of 
iterations/training examples was reached. To do this we first 
used a transfer learning approach in which we made use of the 
information contained in other subjects’ training examples 
[26]. Although training examples from other subjects may not 
be completely consistent with a new subject’s profile, they 
still contain some useful information, as users exhibit similar 
(though usually not exactly the same) behaviors at the same 
arousal state. This is especially significant when the number 
of user-specific training examples is very small. We have 
found that transfer learning offers us a promising technique 
for handling individual differences in our control module, and 
that it could help tailor our system for individual users with 
very few user-specific training examples [27]. 

In addition to using data from other subjects through transfer 
learning, we found it necessary to optimally generate user 
specific training examples that are independent and 
complementary. Of primary importance was the need to have a 
way to process the information when the class labels needed to 
be determined before the training examples and features can be 
obtained. For example, in the arousal classification, the arousal 
(class label) needs to be specified before the corresponding 
responses can be generated and recorded. To overcome this 
challenge, we decided to explore the use of active class selection 
(ACS) because ACS was developed to optimally select the 
classes to obtain training examples so that a good classifier 
could be constructed from a small number of training examples 
[28]. Our experimental findings using a kNN classifier revealed 
consistent results in higher classification accuracy than a 
uniform sampling approach [29]. 

Determination of what subset of features must be above or 
below set point in order to create change in the AVE is also 
necessary. The first option was to make adaptations in the VE 
solely if all extracted features were above set point. This 
resulted in a VE that was comparatively resistant to change, but 
was not ideal for situations in which we desired a flexible 
training scenario that used adaptive assessment of the user’s 
individual response patterns. Some individuals were very 
reactive according to variations in heart rate, but also showed 
little to no change in SCL over time. Next, we tried to allow for 
adaptation in the VE when any one feature surpassed the set 
point. This lead at times to an environment that was too prone to 
change and at times created an adaptive assessment scenario that 
became confusing and frustrating. The optimal solution that we 
found was to create adaptive changes to the environment based 
on the level of the majority of features relative to the set point. If 

four out of five selected features are above set point, the user is 
determined to be in a hyper-aroused state and the environment 
can be adjusted to decrease the intensity of the threatening 
stimuli, or the difficulty of the task. 

Using a message broker which fully implements clustering, 
multiple message stores, and the ability to use any database 
[30], the neurocognitive and psychophysiological profile data 
from the Profiling Module are analyzed by the Controller 
Module and transferred to the Command Module as 
“command” signals. Values of the command correspond to 
changes in position and appearance of objects in the user’s 
view of the VE, the instantiation or inhibition of immersive 
stimuli, and changes in the difficult of the primary task. The 
signals are fed to the “Command Module” to be processed by 
the VE. 

C. Command Module 
We developed a C++ plugin for the VBS2 engine that polls 

incoming messages once per game frame. When a command 
signal is detected, the environment can then be adapted via 
scripting calls within the VBS2 engine. For our AVE, we 
scripted a number of stimuli for the high stress zones: 

1) Improvised explosive device blasts near the in-game 
avatar of the user. 

2) Insurgent AI characters who fire at the in-game avatar of 
the user. 

3) Changing the in-game weather to be cloudy and rainy. 
4) Activation of a scent machine to release smells similar to 

gunpowder in the environment. 
The severity of the stimuli can be tailored to how far the 

psychophysiological features exceed the mean for arousal 
state. For example, if the features are within one standard 
deviation of a hypo-aroused state then the explosion would be 
minor. If the features are two standard deviations below the 
mean for a hypo-aroused state, then the explosion would be 
severe and cause side effects such as briefly impaired vision. 
Stimuli can also be inhibited for several seconds to prevent the 
user from reaching a hyperaroused state. 

In addition to increasing the stress of the AVE, the 
complexity of the Humvee follow task can be adjusted 
through variance of the lead vehicle’s acceleration and 
deceleration. As in the arousal assessment above, cognitive 
performance metrics (distance headway between the LV and 
the following vehicle) are computed across a fifteen second 
sliding window. Herein, the user is said to be performing at 
expectation or deviating (above or below) from expected 
performance relative to the user’s ability to maintain the 23 m 
distance from the LV. If the user is unable to maintain the 23 
m distance relative to the LV, then the LV decelerates and 
maintains speed. If the user is consistently able to maintain the 
23 m distance, then the LV’s speed can become more variable. 

The types of stimuli presented to the user and task difficulty 
adjustments are logged along with the user’s neurocognitive 
performance and their raw psychophysiological readings.  
These logs are then parsed to score the neurocognitive 
functioning of the test subject. 
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The VRCPAT 2.0’s “Command Module” has been designed 
to offer an adaptive virtual environment that can be explored by 
Military Service members under the supervision of a military 
psychologist. This virtual adaptive assessment and rehabilitation 
system aims to place the injured Military Service member into a 
state of optimal experience defined as "flow" to trigger a broad 
recovery process [31]. According to Csikszentmihalyi [32], 
"flow" is best understood as an optimal state of consciousness 
that is characterized by a state of concentration so focused that it 
results in complete immersion and absorption within an activity. 
Following the work of Fairclough [33], we partition the “flow” 
state of the Military Service member into four quadrants or 
“zones” (see Figure 2). 

 Our “Command Module” is being developed to place the 
patient (e.g., Military Service member that has experienced a 
blast injury and/or combat stress symptoms) in VRCPAT 2.0 at 
the optimal starting point for that Military Service member; Zone 
A. We do not conceptualize the flow of rehabilitation/treatment 
to be a static experience. A Military Service member’s skill level 
tends to be low when first immersed in VRCPAT. As the 
patient’s experience of the program increases, skills increase and 
s/he may become bored if the challenge remains constant (Zone 
C). Within VRCPAT2.0, the challenge will increase, but usually 
at a different rate than the Military Service member’s ability 
level. Hence, the Military Service member is constantly in a state 
of flux between the four points shown in Figure 5. 

 

  
Figure 5: Two-dimensional representation of state of the user: Note, this is 
an adaptation of graphs found in Csikszentmihalyi [32] and Fairclough [33]. 

 
At times the user may begin to disengage (start to 

experience boredom and move toward Zone C) when the 
challenge does not increase in pace with his or her skills. At 
other times, the user may move towards frustration (Zone B) 
when s/he is slow to learn the necessary skills. Particularly 
relevant to Csikszentimihalyi concept of flow states is Zone B 
because it represents a “stretch” zone, in which the Military 
Service member is engaged and ability levels are being 
increased as they are pushed toward frustration. Fairclough 
[33] has explained that this state may be tolerated for short 
periods (e.g., learning phases and/or a demanding but 

rewarding period of performance). Overall, the goal of 
VRCPAT 2.0 is to keep the Military Service member in Zone 
D—continually adapting the intensity and difficulty of the 
environment to have the Military Service member in a flow 
state with improved skills and being able to function at a 
higher level of challenge. This conceptualization allows the 
adaptive virtual environment to make a distinction between 
two states of low performance, both of which require different 
categories of adaptive response. For example, in Zone B, the 
intensity and complexity of the stimuli should be reduced until 
the ability level has been optimized. Further, if the Military 
Service member’s results indicate that s/he is heading to Zone 
C, the VRCPAT should adapt so that task demands be 
increased. This complex representation of the Military Service 
member provides the “Controller Module” with greater 
specificity in order to target the adaptive response. 

V. DISCUSSION 

While advances in military relevant simulations provide 
potential for increasing assessment of Soldier readiness to 
Return-to-Duty, little has been done to develop these 
simulations into AVEs for assessing cognitive workload. 
Although there are other attempts to apply adaptive virtual 
environments to posttraumatic stress disorder [34], [35] and 
neurocognitive rehabilitation [36], this work is in its earliest 
stages. We have presented a framework to do enhanced 
neurocogntive assessment using an AVE that is being validated 
at West Point, the University of Southern California, Madigan 
Army Medical Center, and Tripler Army Medical Center. The 
serious game described herein offers a dynamically adapting 
functional assessment of patients. Additionally, the described 
project is novel in that it includes both psychophysiological and 
neurocognitive profiles to enhance its adaptive capabilities. 
Further, the neuropsychological tests found in the Normative 
Database include a set of neuropsychological tests that have 
been validated against standard paper-and-pencil, as well as 
computerized neuropsychological measures (e.g., Automated 
Neuropsychological Assessment Metrics). To the best of our 
knowledge, there is no other project that does both 
psychophysiological and neurocognitive profiling using the 
level of validation provided by the VRCPAT 2.0. 

 A real-time adaptive virtual environment that is sensitive 
to cognitive and emotional aspects of user experience, as 
delineated in this manuscript, is considered to be the future 
alternative for devising cognitive assessment and training 
measures that will have better ecological/predictive validity 
for real-world performance.  

Further, the flexibility of stimulus delivery and response 
capture that are fundamental characteristics of such adaptive 
virtual environments is viewed as a way for military 
psychology objectives to be addressed in a more efficient 
fashion for long term needs. Such flexibility would allow for 
this system to be viewed as an open platform on which a wide 
range of research questions could be addressed that would 
have significance to military psychologists.  



204  IEEE Transactions on Consumer Electronics, Vol. 58, No. 2, May 2012 

REFERENCES 
[1] T. Parsons, & C. Courtney, "Neurocognitive and psychophysiological 

interfaces for adaptive virtual environments," in Human Centered 
Design of E-Health Technologies, C. Röcker, T. & M. Ziefle, Eds.  
Hershey: IGI Global, pp. 208-233, 2011. 

[2] M. Ambinder, "Biofeedback in gameplay:  how Valve measures 
physiology to enhance gaming experience," presented at the Game 
Developer’s Conference, 2011. 

[3] C. Liu, P. Agrawal, & S. Chen, "Dynamic difficulty adjustment in 
computer games through real-time anxiety-based affective feedback," 
Int’l J. Human-Computer Interaction, vol. 25, pp. 506-529, 2009. 

[4] R. Yerkes, & J. Dodson, "The Relation of Strength of Stimulus to 
Rapidity of Habit-Formation", Journal of Comparative Neurology and 
Psychology, vol. 18, pp. 459-482, 1908. 

[5] T. Parsons, A. Iyer, L. Cosand, C. Courtney, & A. Rizzo, 
"Neurocognitive and psychophysiological analysis of human 
performance within virtual reality environments," Studies in Health 
Technology and Informatics, vol. 142, pp. 247-252, 2009. 

[6] M. Barlow, M. Luck, E. Lewis, M. Ford, R. Cox. “Factors in Team 
Performance in a Virtual Squad Environment”, Proceedings of 
SimTecT04, Canberra, May, pp. 94-99, 2004.   

[7] T. Parsons, C. Courtney, L. Cosand, A. Iyer, A. Rizzo, & K. Oie, 
"Assessment of Psychophysiological Differences of West Point Cadets 
and Civilian Controls Immersed within a Virtual Environment," Lecture 
Notes in Artificial Intelligence, vol. 5638, pp. 514–523, 2009. 

[8] T. Parsons, C. Courtney, A. Rizzo, J. Edwards, & G. Reger. “Virtual 
reality paced serial assessment test for neuropsychological assessment of 
a military cohort.” Studies in Health Technology and Informatics, 173. 
pp. 331-337, 2011. 

[9] L. Williams, L. Phillips, M. Brammer, D. Skerrett, J. Lagopoulos, C. 
Rennie, H. Bahramali, G. Olivieri, A. David, A. Peduto, & E. Gordon. 
“Arousal dissociates amygdala and hippocampal fear responses: 
Evidence from simultaneous fMRI and skin conductance recording.” 
NeuroImage, 14, pp. 1070–1079. 2001. 

[10] N. Kobayashi, A. Yoshino, Y. Takahashi, & S. Nomura. “Autonomic 
arousal in cognitive conflict resolution.” Autonomic Neuroscience: 
Basic and Clinical, 132, pp. 70–75, 2007. 

[11] G. Berntson, S. Boyson, & J. Cacioppo. “Cardiac orienting and 
defensive responses: Potential origins in autonomic space.” In B.A. 
Campbell, H. Hayne, & R. Richardson (Eds.), Attention and information 
processing in infants and adults: Perspectives from human and animal 
research (pp. 163–200). Hillsdale, NJ: Erlbaum, 1992. 

[12] B. Mehler, B. Reimer, J. Coughlin, & J. Dusek. “Impact of incremental 
increases in cognitive workload on physiological arousal and 
performance in young adult drivers.” Journal of the Transportation 
Research Board, 2138, pp. 6–12, 2009. 

[13] Y. Hoshikawa and Y. Yamamoto, “Effects of Stroop Color-Word 
Conflict Test on the Autonomic Nervous System Responses,” AJP—
Heart and Circulatory Physiology, vol. 272, no. 3, pp. 1113-1121, 1997. 

[14] F. Boiten, N. Frijda, & C. Wientjes. “Emotions and respiratory patterns: 
Review and critical analysis.” International Journal of 
Psychophysiology, 17, pp103–128, 1994. 

[15] T. Parsons, A. Rizzo, J. Bamattre, & J. Brennan. “Virtual Reality 
Cognitive Performance Assessment Test.” Annual Review of 
CyberTherapy and Telemedicine, 5, pp. 163-171, 2007. 

[16] T. Parsons, & A. Rizzo. “Initial Validation of a Virtual Environment for 
Assessment of Memory Functioning: Virtual Reality Cognitive 
Performance Assessment Test.” Cyberpsychology and Behavior, 11, pp. 
17-25, 2008  

[17] T. Parsons, T. Silva, J. Pair, & A. Rizzo. “A Virtual Environment for 
Assessment of Neurocognitive Functioning: Virtual Reality Cognitive 
Performance Assessment Test.” Studies in Health Technology and 
Informatics, 132, pp. 351-356, 2008. 

[18] T. Parsons, C. Courtney, B. Arizmendi, & M. Dawson, "Virtual reality 
Stroop task for neurocognitive assessment," Studies in Health 
Technology and Informatics, vol. 143, pp. 433-439, 2011. 

[19] D. Wu, C. Courtney, B. Lance, S. Narayanan, M. Dawson, K. Oie, & T. 
Parsons, "Optimal arousal identification and classification for affective 
computing: virtual reality Stroop task," IEEE Transactions on Affective 
Computing, vol. 1, pp. 109-118, 2010. 

[20] S. Kreibig, F. Wilhelm, W. Roth, & J. Gross. “Cardiovascular, 
electrodermal, and respiratory response patterns to fear- and sadness-
inducing films.” Psychophysiology. 44, pp. 787–806, 2007. 

[21] P. Rainville, A. Bechara, N. Naqvi, & A. Damasio. “Basic emotions are 
associated with distinct patterns of cardiorespiratory activity.” 
International Journal of Psychophysiology, 61, pp. 5–18, 2006. 

[22] R. Backs, & K. Seljos. “Metabolic and cardiorespiratory measures of 
mental effort: The effects of level of difficulty in a working memory 
task. International Journal of Psychophysiology”, 16, pp. 57–68, 1994. 

[23] J. Brookings, G. Wilson, & C. Swain, C.R. “Psychophysiological 
responses to changes in workload during simulated air traffic control.” 
Biological Psychology, 42, pp. 361–377, 1996. 

[24] M. Frigo, & S. Johnson. "The design and implementation of FFTW3". 
Proceedings of the IEEE, 93, pp. 216–231, 2005. 

[25] A. Haarmann, B. Boucsein, F. Schaefer, "Combining electrodermal 
responses and cardiovascular measures for probing adaptive automation 
during simulated flight," Applied Ergonomics, vol. 40, pp. 1026-1040, 
2009. 

[26] S. Pan, & Q. Yang. “A survey on transfer learning.” IEEE Transactions 
on Knowledge and Data Engineering 22, pp. 1345–1359, 2010. 

[27] D. Wu, & T. Parsons. “Inductive Transfer Learning for Handling 
Individual Differences in Affective Computing.” Lecture Notes in 
Computer Science, 6975, pp. 142-151, 2011. 

[28] R. Lomasky, C. Brodley, M. Aernecke, D. Walt, M. & Friedl. “Active 
class selection.” In: Proceedings of the 18th European Conference on 
Machine Learning, Warsaw, Poland, pp. 640–647, 2007. 

[29] D. Wu., & T. Parsons. “Active Class Selection for Arousal 
Classification.” Lecture Notes in Computer Science, 6975, pp. 132-141, 
2011. 

[30] B. Snyder, D. Bosanac, R. Davies, (2010), ActiveMQ in Action (1st ed.), 
Manning Publications. 

[31] G. Riva, F. Mantovani, & A. Gaggioli, "Presence and rehabilitation: 
toward second-generation virtual reality applications in 
neuropsychology," Journal of NeuroEngineering and Rehabilitation, vol. 
1:9, 2004. 

[32] M. Csikszentmihalyi.  Flow: The psychology of optimal experience. 
New York, NY:  HarperCollins, 1990. 

[33] S. Fairclough, "Fundamentals of physiological computing," Interacting 
with Computers, vol. 21, pp. 133-145, 2009. 

[34] K. Cosic´, S. Popovic´, & T. Jovanovic, "Physiology-driven adaptive VR 
system: Technology and rationale for PTSD treatment," Annual Review 
of CyberTherapy & Telemedicine, vol. 5, pp. 179–91, 2007. 

[35] S. Popovic´, M. Horvat, & D. Kukolja, "Stress inoculation training 
supported by physiology-driven adaptive virtual reality stimulation," 
Studies in Health Technology & Informatics, vol. 144, pp. 50–54, 2009. 

[36] L. Hettinger, & M. Haas, Virtual and adaptive environments: 
Applications, implications, and human performance issues. Lawrence 
Erlbaum Associates, 2003. 

 
 

BIOGRAPHIES 
 

Thomas D. Parsons, PhD is Director of the 
Neuropsychology and Simulation Laboratory, 
Assistant Research Professor, and Research Scientist 
at the University of Southern California’s Institute 
for Creative Technologies. He developed the Virtual 
Reality for Cognitive Performance and Adaptive 
Treatment system. In addition to his patents (with 
eHarmony.com), he has over 175 publications in 

peer-reviewed journals and other fora.  
 

James Reinebold, M.S. earned a B.S. in Computer 
Science from the Georgia Institute of Technology in 
2007.  He is also recent graduate of the Master's of 
Computer Science program at the University of 
Southern California, where he completed a thesis on 
evaluating the sensing capabilities of mobile phones.  
His research interests include adaptive virtual 

environments and applications of artificial intelligence to games. 
 


