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ABSTRACT

This thesis presents a new recursive least squares (RLS) adaptive nonlinear filter,
based on Volterra series expansion. The main approach is to transform the nonlinear
filtering problem into an equivalent multichannel, but linear, filtering problem. Then,
the multichannel input signal is completely orthogonalized using sequential processing
multichannel lattice stages. With the complete orthogonalization of the input signal,
only scalar operations are required, instability problems due to matrix inversion are
avoided and, good numerical properties are achieved. Avoidance of matrix inversion
and vector operations reduce the complexity considerably, make the filter simple, highly
modular and suitable for VLSI implementation.

First, adaptive filtering algorithms employing truncated Volterra series representa-
tion of nonlinear systems are considered. The LMS and RLS adaptive second-order
Volterra filtering algorithms are presented. The Gram-Schmidth orthogonalization al-
gorithm is reviewed. The new lattice structure, sequential processing multichannel
lattice stages, is introduced. The implementation of the modified Gram-Schmidth or-
thogonalization algorithm with SPMLS’s is given. The nonlinear filtering problem is
transformed into an equivalent multichannel, but linear, adaptive filtering problem.
Different forms of the sequential processing multichannel lattice stage algorithm are
discussed.

Then, the main contribution appears as the application of sequential processing mul-
tichannel lattice stages to the second-order Volterra system identification and channel
equalization problem. In each case, several experiments demonstrating the fast con-
vergence properties of the filters are included. In system identification, the adaptive
filter is defined with the same structure and the same number of coefficients as that of
the system that is to be identified and, the performance of the filter is demonstrated
with the mean squared error curves and the mean trajectories of estimated coeflicients.

In channel equalization, the adaptive filter is so defined that it also has second-order

ix



nonlinearity and the performance of the filter is demonstrated with the mean squared
error curves and the number of iterations needed for no error reception.

Finally, the equalization and identification of digital satellite channels are inves-
tigated. These types of channels have such a nonlinear structure that they can be
modeled with higher order Volterra series. The structure of the Volterra filter is so
defined that it can identify or equalize higher-order Volterra satellite channels. The
performance of the higher-order Volterra filter is tested for the identification and the

equalization of a 4-PSK nonlinear channel.



OZET

TAM KAFES DIKLESTIRMESI ILE UYARLANIR VOLTERRA
SUZGECLEMESI

Bu tezde, Volterra serisi agilimina dayal yeni bir 6zyineli en kiigiik kareler uyarlanir
dogrusal olmayan siizge¢ sunulmaktadir. Ana yaklagim, dogrusal olmayan siizge¢leme
problemini, esdenik ¢ok kanalli, ancak dogrusal, siizgecleme problemine déniigtiirmek-
tir. Daha sonra, ¢ok kanalli girig igareti, ardigik iglem yapan ¢ok kanalli kafes kademeleri
(AIYCKKK) ile tam olarak diklegtirmektir. Girig igaretinin tam olarak diklegtirilme-
si ile, yalnizca rakkamsal iglemlere ihtiyag duyulmakta, matris tersi alinmasina bagh
kararsizlik problemleri ortadan kaldirilmakta ve iyi sayisal ozellikler elde edilmektedir.
Matris tersi islemi ve vektor iglemlerinin kullamlmamas: ile, karmagiklik olduk¢a azal-
makta, slizgeg basitlegmekte, modiiler ve ¢ok hiiyiik olgekli tiimlegim uygulamalarinda
kullamlabilir hale gelmektedir. ‘

Ikinci Béliim’de, kesik Volterra serileri ile temsil edilen dogrusal olmayan sistemler
igin uyarlanr siizge¢leme algoritmalan ele alinmigtir. Kisim 2.3 ve 2.4’de LMS ve RLS
uyarlanir ikinci derece Volterra siizgecleme algoritmalari sunulmustur. Kisim 2.5°de,
Gram-Schmidth diklegtirme algoritmas: g6zden gecirilmig, kafes yapilarimin avantajla-
rindan bahsedilmig ve yeni kafes yapisi, ardistk iglem yapan ¢ok kanalli kafes kademeleri
anlatilmigtir. Ayrica, degigtirilmis Gram-Schmidth diklestirme algoritmasinin, ardigik
isglem yapan cokkanall: kafes kademeleri ile Volterra siizgecleme problemine uygulan-
mast anlatilmg ; dogrusal olmayan siizgegleme problemi, esdenik ¢ok kanalli, ancak
dogrusal, siizgecleme problemine déniigtiiriilmiig, ardigik islem yapan c¢ok kanalh kafes
kademelerinin farkh formlan tartigtlmigtir.

Ugiincii Bolim, AIYCKKK kullanan, zyineli en kiigiik kareler Volterra siizgecinin
sistem tanima uygulamasun sunmaktadir. Kisim 3.1°de, genel en kiigiik kareler uyar-
lanir Volterra sistem tanima problemi tamtilmigtir. Daha sonra, kisim 3.2,

AIYCKKK ile dzyineli, uyarlanir ikinci-derece Volterra sistem tanima



stizgeclemnesini sunmaktadir. Kistm 3.3’de ise, yeni kafes siizgecinin performansini gis-
teren deney sonuclar: bulunmaktadir. Bu deneylerde, uyarlanir siizgeg taninacak sistem
ile ayn1 yap: ve aym sayida katsay: ile cahigtirilmgtir. Algoritmanin, tiim 6zyineli en
kiigiik kareler algoritmalarinin ortak ozelligi olan hizli yakinsama ozelligini paylagtig,
hatta sayisal kararsizlik s6z konusu olmaksizin, 6zyineli en kiiciik kareler transversal
Volterra siizgecine nazaran daha iyi performans gésterdigi g6zlenmistir.

Dérdiincii Béliim’de, Volterra tipi dogrusal olmayan kanallarin dengelenmesi dii-
gliniilmiigtir. Kisim 4.1, genel en kiigiik kareler uyarlanir ikinci-derece Volterra ka-
nal dengeleme problemini sunmaktadir. Kistm 4.2’de, dogrusal olmayan dengeleme
problemi, egdenik ¢ok kanalli, ancak dogrusal, uyarlamir dengeleme problemine gevril-
mektedir. Daha sonra, ATYCKKK ile ézyineli en kiigiik kareler ikinci-derece Volterra
kanal dengeleme problemi ele alinmaktadir. Kisim 4.3, farkli kanal distorsiyonlan igin,
dengeleyicinin performansini gosteren deney sonugclari ile ilgilidir.

Son olarak Besginci Béliim’de, sayisal uydu kanallarinin dengelenmesi ve taninmasi
problemi ele alinmaktadir. Bu tip kanallar, daha yiiksek dereceden Volterra serileri ile
modellenebilen bir dogrusal olmayan yapiya sahiptir. Volterra siizgecinin yapisi, daha
yliksek dereceli Volterra kanallarim tamyacak yada dengeleyecek gekilde tanimlanngtar.
Kanal katsayilarinin karmagik olmas: ve kanal girig igaretinin karmagik olmas: nedenle-
ri ile, AIYCKKK algoritmasinin karmagik formu kullamlmistir. Daha yiiksek dereceli
Volterra siizgecinin performansi, faz kaydirmali anahtarlamali (PSK) modiilasyonlu
dogrusal olmayan bir uydu kanali 6rnegi ile deney yapilarak incelenmigtir. Sonuglar,
daha yiiksek dereceli Volterra dengeleyicisinin, ikinci derece Volterra dengeleyicisine
nazaran daha geg yakmsadigim gostermektedir. Kanal tamimada ise performans degis-

memektedir.



CHAPTER 1
INTRODUCTION

Linear filters have played a very crucial role in the development of various signal pro-
cessing techniques. The obvious advantage of linear filters is their inherent simplicity.
Design, analysis, and implementation of such filters are relatively straightforward tasks
in many applications. However, there are several situations in which the performance
of linear filters is unacceptable. A simple but highly pervasive type of nonlinearity is
the saturation-type nonlinearity. Trying to identify these types of systems using linear
models can often give misleading results. Another situation where nonlinear models
will do well when linear models will fail miserably is that of trying to relate two signals
with nonoverlapping spectral components. In digital satellite links, the satellite ampli-
fiers are usually driven to near the saturation point and they exhibit highly nonlinear
characteristics.

When confronted with a nonlinear systems problem, many engineers shy away from
the situation, hoping that the problem will go away, mainly because the solutions
are often difficult from analytical and/or computational point of view. Moreover, the
rich variety of highly developed tools available for solving linear systems engineering
problems are just not there when it comes to most nonlinear systems problems. The
difficulties mentioned above are much more magnified in the case of adaptive nonlinear
systems.

Unlike the case of linear systems which are completely characterized by the system’s
unit impulse response function, it is impossible to find a unified framework for describing
arbitrary nonlinear systems. Consequently, the researchers working on nonlinear filters
are forced to restrict themselves to certain nonlinear system models that are less general.

Application of Volterra system theory has played an ever increasing role in non-
linear system modelling. This due, in part to the fact that Volterra series has firm
mathematical foundation and, in many cases, a gently (or lower order) nonlinear time-
invariant system can be described with reasonable accuracy by a truncated version of

the Volterra series, which considerably reduces the complexity of the problem.



Furthermore, since the output of a Volterra filter depends linearly on the linear, quadratic,
and higher-order filter coefficients (but nonlinearly on the input), many concepts orig-

inally developed for linear filters can be extended to Volterra filters.

1.1 LITERATURE REVIEW

Several researchers have used Volterra series representation of nonlinear systems to
implement nonlinear channel equalizers [1,2,3,4,5]. Other applications of nonlinear
models and filtering in communication problems include echo cancellation [6,7,8,9],
performance analysis of data transmission systems [10,11,12,13], adaptive noise cancel-
lation [14,15], and detection of nonlinear functions of Gaussian processes [16]. Nonlinear
filters are very useful in modeling biological phenomena [17,18], myoelectric signal pro-
cessing [19], characterization of semiconductor devices [20,21], image processing [22],
modeling drift oscillations in random seas [23] and when trying to relate two signals
with nonoverlapping spectral components [24]. Nonlinear filters developed using such
models include order statistics filters [25,26,27] filters based on Volterra, Bilinear [28]
and other polynomial descriptions of the nonlinearities involved.

Early works on adaptive Volterra filters [24], [29] were based on the LMS algorithm.
The LMS algorithm is an important member of the family of stochastic gradient-based
algorithms. A significant feature of the LMS algorithm is its simplicity. It does not
require measurements of the pertinent correlation functions nor does it require matrix
inversion. Indeed, it is the simplicity of the LMS algorithm that has made it the
standart against which other adaptive filtering algorithms are benchmarked. However,
it suffers from convergence behavior that is dependent on the statistics of the input
signal.

One approach to achieve a convergence behavior that is independent on the statistics
of the input signal is to use lattice (or other orthogonolized) structures in place of the
LMS adaptive filter. The gradient adaptive lattice (GAL) algorithm is formulated
around a lattice structure. Also as the name implies, its derivation is motivated by
that of the LMS algorithm. Ozgiinel, Kayran and Panayirai [30],[31] applied the GAL
second-order Volterra filter to the channel equalization and identification problems.
The GAL Volterra filter in these applications converges faster than the LMS filter, but
in channel identification application, it was not run with the same structure and the

same number of coefficients as that of the channel to be identified.



Another alternative is to use recursive least squares (RLS) algorithms which are
implementations of the stochastic Gauss-Newton method. While LMS and gradient
lattice adaptation algorithms, based on the steepest-descent method, provide a gradual
iterative minimization of the performance index, RLS algorithms are based on the ex-
act minimization of least-squares criteria. Accordingly, while the adaptive coefficients
in LMS and GAL algorithms are optimal only after convergence, in RLS algorithms
they are optimal at each time instant. An important feature of RLS algorithms is that
they utilize information contained in the input data, extending back to the instant of
time when the algorithm is initiated. The resulting rate of convergence is therefore
much faster than the LMS algorithm. This improvement in performance, however, is
achieved at the expense of a large increase in computational complexity. The recent fast
reformulations of RLS algorithms, Lee and Mathews [32] and, Syed and Mathews [33],
which are based on transversal and lattice structures respectively, reduced the complex-
ity from O(N®) to O(N?3) where N is the length of Volterra filter. Even though they are
rapidly convergent and computationally simpler, the fast RLS filter suffers from poor
numerical properties, and the lattice RLS filter can not compute the Volterra system
coefficients efficiently and directly. The QR-decomposition based RLS algorithms for
adaptive Volterra filtering has also been reported [34],[33]. The QR algorithm in [34] is
based on transversal structure and it performs the QR-decomposition using a sequence
of Givens rotations. The QR-based lattice algorithm in [33] transforms the conventional
least squares algorithm to the QR-RLS algorithm by using the Cholesky factorization
of the estimation error covariances and uses the rotation-based algorithms in [35] and
multichannel LS lattice stages proposed in [36]. While QR-decomposition based RLS
algorithms are rapidly convergent and inherently exhibit good numerical behaviour,
both suffer from relative complexity and implementational simplicity. In addition, the
QR-based lattice algorithm still needs parametric conversion for the computation .of

Volterra coefficients.

1.2 CONTRIBUTIONS OF THE THESIS

This thesis presents a new RLS adaptive lattice Volterra filter. The main objective in
the thesis is to design a fast convergent, highly modular, and simple Volterra filter
with good numerical properties.

The main contributions of the thesis are as follows :



1. The sequential processing multichannel lattice stages (SPMLS), first proposed by
Ling and Proakis [37], [38] are applied to the Volterra filtering problem.

2. The different forms of lattice algorithms are adapted to the SPMLS.

3. A complete modified Gram-Schmidth orthogonalization of the input signal is achieved
with SPMLS’s.

4. With the complete orthogonalization, matrix inversion and vector operations in the
Volterra filtering problem are avoided, only scalar operations are required and, a highly
modular and simple Volterra filter with good numerical properties is obtained. Also,
the filter in identification mode runs with the same structure and the same number
of coeflicients as that of the system to be identified and, the system coefficients are
identified efficiently and directly.

5. The RLS adaptive algorithm proposed in this thesis shares the characteristic fast
convergence property of all RLS algorithms with an additional improvement due to the
complete lattice orthogonalization with SPMLS’s.

6. The new filter is applied to the second-order Volterra channel equalization problem.
7. The new filter is applied to the identification and equalization of the satellite chan-
nels modelled with higher-order complex Volterra expansion.

8. The new filter is presented in such a way that it can be applied to adaptive echo
cancellation, and adaptive noise cancellation problems in the future research.

The remainder of the thesis is organized as follows. The following chapter describes
the LMS and RLS adaptive second-order Volterra filtering algorithms and introduces
different forms of SPMLS algorithm. Chapter 3 presents the system identification
application of the second-order Volterra filters using SPMLS’s. In chapter 4, the equal-
ization of the second-order Volterra channels with the new filter is considered. Chapter
5 presents the identification and equalization of the digital Volterra type satellite chan-

nels. Finally, the concluding remarks are made in chapter 6.



CHAPTER 2
VOLTERRA NONLINEAR FILTERING

In this chapter, the adaptive nonlinear filtering algorithms are introduced. Nonlinearity
is modelled with Volterra series expansion. As the infinite series Volterra expansion
is not useful in filtering applications, nonlinearity is modelled with truncated Volterra

series expansion. A new lattice structure is proposed for Volterra filtering applications.

First, Volterra series expansion for nonlinear systems is introduced. Then, adaptive
filtering algorithms using truncated Volterra series expansion are discussed. Least Mean
Squares (LMS), Recursive Least Squares (RLS) algorithms for second-order Volterra
filtering are given. Advantages and disadvantages of LMS and RLS for Volterra filter-
ing are discussed. The advantages of lattice filters are mentioned. The Gram-Schmidth
orthogonalization algorithm is reviewed. The new lattice structure, sequential process-
ing multichannel lattice stages, for Volterra filtering is proposed. In order to develop
the lattice parametrization of Volterra filters, the nonlinear filtering characterized as a
linear multichannel filtering problem. The different versions of the SPMLS algorithm
and a comparative complexity analysis are presented. Finally, the implementation of

the modified Gram-Schmidth orthogonalization algorithm is discussed.

2.1 VOLTERRA SERIES EXPANSION FOR NONLINEAR
SYSTEMS

In the Volterra series representation of systems, which is an extension of linear system
theory, the output y(n) of any causal, discrete-time, time invariant nonlinear system

can be represented as a function of the input sequence z(n)

y(n) = ho + f: hi(my)z(n—my) + f: i ha(my, ma)z(n — my)z(n — ma) +

m1=0 m1=0m1=0

ceet Z z hp(ml’m%“',mp)x(n—ml)

m1=0 mp=0

corz(n—my) + -+ (2.1)



where hy(my,my,...,my) is the p th order Volterra kernel [39],40] of the system.
Without any loss of generality, one can assume that the Volterra kernels are symmetric,
i.e., hy(mq,mg,...,my) is left unchanged for any of the p! permutations of the indices
m1,M2,...,Mp. One can think of the Volterra series expansion as a Taylor series
expansion with memory.

Since an infinite series expansion like (2.1) is not useful in filtering applications, one

must work with truncated Volterra series expansions of the form

N-1 N-1 N-1
y(n) = ko + Z hi(my)z(n — mq) + Z Z ha(m1, ma)z(n — my)z(n ~ my) +
m1=0 m1=0mi=0

N~1 N
cee Z Z hp(mi, ma,...,mp)z(n — my)

m1=0 mp=0

corz(n—my)+ - (2.2)

Block diagram of a second-order truncated Volterra system with N = 3 and ho is
assumed zero, is shown in Figure 2.1. Note that this system is linear in the input signal
to each coefficient. This fact highly simplifies the design problems involving Volterra
series representations. On the other hand, even for moderately large values of N and
P, the number of coefficients becomes very large. Consequently, the truncated Volterra
series representation is most useful in applications where the values of N and p are

relatively small.

2.2 ADAPTIVE FILTERS USING TRUNCATED VOLTERRA
SERIES EXPANSIONS

The operation of an adaptive Volterra filter is descriptive of a f[eedback control system.
Basically, it consists of a combination of two basic processes. An adaptive process,

which involves the automatic adjustment of a set of filter coefficients. A filtering pro-

—cess, whichinvolves forming the inner product of a set of filter coefficients emerging

from the adaptive process to produce an estimate of a desired response, and generating
an estimation error by comparing this estimate with the actual value of the desired
response. Correspondingly, one may identify two basic components in the structural
constitution of the adaptive filter as illustrated in Figure 2.2. First, there is a filter
around which the adaptive algorithm is built. This component is responsible for per-
forming the filtering process. Second, there is a mechanism for performing the adaptive

control process on the coefficients of the filter. During the filtering process, the desired
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Figure 2.1: Block diagram of a second-order truncated Volterra system with N = 3
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Figure 2.2: Block diagram of a general adaptive filter



signal d(k) is supplied for processing alonside the input signal. Given this input, the
lilter produces an output dy(k) used as an estimate of the desired signal d(k).

For simplicity, attention in this chapter will be focused on second-order Volterra
filtering. The adaptive filter in this case would try to estimate the desired response

signal d(k) using a second-order truncated Volterra series expansion in the input signal

z(n) as
N-1 N-IN-1_
dn(k) = ho + Y as(n)a(k —d) + > D bij(n)a(k — d)ax(k - j) (2.3)
=0 =0 j=¢

{@;} and {I;,',j} in (2.8) are the adaptive filter coefficients that are iteratively updated

at each time so as to minimize some convex function of the error signal defined as
e(k) = d(k) — dn(k) (2.4)

What makes the derivation of adaptive Volterra filters relatively straightforward is the
fact that the error signal can be written as a linear combination of the input signal
to each filter coefficient. In the case of the second-order Volterra filter, the relevant
signals are z(n),z(n — 1),...,2(n — N + 1),2%(n),z(n)z(n - 1),...,2(n)z(n — N +
1),...,2%2(n~ N +1). This fact also makes the theoretical performance analysis of such

filters a relatively straightforward extension of the linear filtering case.

2.3 THE LMS ADAPTIVE FILTER

The LMS adaptive filter updates the coeflicients at each time using a steepest descent
algorithm that tries to minimize €2(k) at each time. The update equations for the

second-order Volterra filter can be easily shown to be [41],[42]

ak+1) = (k) - pi1 De2(k)

2 da;(k)
fl,'(k + 1) = &,(k) + yle(k)z(k - Z) (2.5)
and
= hp) B2 08R)
b+ = bl - 52 500
g+ 1) = Big(k) + pae(B)olk — ek~ 5) (2.6

where p; and p2 are small positive constants that control the speed of convergence

and the steady state/tracking properties of the filter. For notational simplicity as well
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as ease of performance analysis, it is usual to rewrite the adaptive filtering algorithm
using vector notations. The relevant equations are shown in Table 2.1. Note that the
structure of the adaptive filter is different from that of the linear case only in the way

in which the vectors are defined.

The mean values of the adaptive filter coefficients converge (for stationary envi-
ronments) to their optimal values if the convergence constant is chosen suéh that
0 < p1,p2 < 2/Apaz , Where Apygp is the maximum eigenvalue of the autocorrela-
tion matrix of the input vector X(n). The problem, as is for the linear case, is that the
eigenvalues of the autocorrelation matrix control the speed of convergence. In general,
the larger the eigenvalue spread (the ratio of the maximum and minimum eigenvalues),
the slower is the convergence speed. This is particularly troublesome in the nonlin-
ear filtering case, since the eigenvalue spreads are in general very large. Even when
the input signal is white, the presence of the nonlinear entries in the input vector will
cause the eigenvalue spread to be more than one [42]. Consequently, it is important
to seek alternate algorithms and structures that have convergence behaviors that are
independent of or less dependent on the statistics of the input signal.

One approach is to use gradient adaptive lattice (GAL) filters. They are based
on a LMS-like approach applied to the coeffients of the lattice representations rather
than to the coefficients of the direct form representation. Taking advantage of the
decoupling property of the lattice structures, and properly choosing the adaptation
constants, all lattice coefficients can be made to converge fast and, in constrast to
the LMS coeflicients, with a convergence rate that is essentially independent of the
eigenvalue spread of the autocorrelation input matrix.

Another alternative is to use RLS algorithms in place of the LMS adaptive filter.
The LMS adaptive filter can be considered as an approximate solution to the statistical
optimization problem that tries to minimize the mean squared value of the estimation
error at each time. RLS adaptive filters, on the other hand, yield the exact solution to

an optimization problem formulated in a deterministic fashion.

2.4 THE RLS ADAPTIVE FILTER

One such formulation gives rise to the exponentially weighted RLS adaptive filter and

in the case of the second order Volterra filter, such adaptive systems minimize the
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Table 2.1: THE LMS SECOND-ORDER VOLTERRA FILTER

Coeflicient Vector

W(n) = [do(n), a1(n), - ., an-1(n), bo,o(n), bo1(n),
]T

cees EO,N_I(n), Bl,l(n), ceny I;N_l'N_l(n)
X(n) = [z(n),z(n ~ 1),...,2(n — N + 1),z%(n),z(n)z(n - 1),...,
z(n)z(n — N +1),2%(n - 1),...,2%(n -~ N + 1)|T

Initialization

W(0) can be arbitrarily chosen.

Algorithm

e(n) = d(n) — WT (n)X(n)

W(n +1) = W(n) + pX(n)e(n)

Note: ()7 denotes matrix transpose. u is a diagonal matrix with

p1 appearing in the first N diagonal entries and us appearing

in the rest of the diagonal entries.

following cost function at each time

T(n) = 30N | d(k) - W (mX(E) | (2.7)
k=0

where W(n) and X(n) are the coefficient and input signal vectors, which are defined

as

W(n) = [&o(n), &1 (n), ey dN_l(n), Bo,o(n), Bo,l(n), ey Bng_l (n), 51,1(7?,), ooy BN_I,N_l(n)]T
(2.8)

and

X(n) = [z(n)7z(n - 1))* .. 79’("7' -N+ 1),‘”2(")9‘”(”):”(” - 1)a
o z(n)z(n — N +1),2%n = 1),...,2%n - N + )7 (2.9)

respectively. A (0 < A < 1) is the parameter of the exponential window that controls
the rate at which the adaptive filter tracks the time varying parameters [43,44]. The
solution to this problem at each time can be easily found by differentiating J(n) with
respect to W(n), setting the derivative to zero, and solving for W(n). The optimal

solution at time = is given by

Wopi(n) = R1(n)P(n) (2.10)
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where
R(n) = znj APEX (B X (k)T (2.11)
k=0
and
P(n) = Y A" *d(k)X (k). (2.12)
k=0

Here, R(n) is the LS autocorrelation matrix of the input vector X(n) and P(n) is the
LS cross-correlation vector between the input vector X(n) and the desired signal d(n).
In order to derive a recursion formula for updating the coefficient vector W(n),

R(n) and P(n) is updated as
R(n) = AR(n — 1) + X(n)XT(n) (2.13)

and
P(n) = AP(n — 1) + d(n)X(n) (2.14)
where R(n — 1) and P(n — 1) are the “old” values of the correlation matrix and cross-
correlation vector respectively and, the vector products X(n)XT(n) and d(n)X(n) play
the role of a correction term in the updating operation. To avoid the direct matrix
inversion in (2.10), which is a very time consuming task, a basic result in matrix
algebra known as the matrix inversion lemma [41] is used. According to the matrix
inversion lemma, the inverse of a positive definite M X M matrix A can be expressed
as follows:
A-1 =B -BCc(D +clBC)1clB (2.15)
where B is a positive definite M X M matrix, D is another positive definite N x N
matrix, and C is an M X N matrix. Here, The superscript “H” denotes Hermitan

transpose of a matrix. These matrices are related by
A=B"1tcpicH, (2.16)

Thus, R~1(n — 1) is updated as,
A2R 1 (n -~ DX (@)XT(n) R (n - 1)

R™'(n)=A"'"R(n—1)- T FATXT () R-1(n — 1)X(n) (2.17)
and a new vector, which is called the time-varying gain vector, is defined as
k(n) = R71(n)X(n). (2.18)
Using (2.17) in (2.18), the time-varying gain vector k(n) is expressed as,
k(n) = AR (n - 1)X(n) (2.19)

14+ A"1XT(n)R-1(n — 1)X(n)
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Substituting (2.17) in (2.10), then using (2.19) for the time-varing gain voctor, the

desired recursive expression for updating the coefficient vector is,

W(n) = W(n-1)+k(n)dn) - XT(n)W(n - 1)]

(2.20)
= W(n-1)+k(n)e(n)

where ¢(n) is defined by
g(n) = d(n) — Wl (n - DX(n). (2.21)

The inner product WT(n — 1)X(n) represents an estimate of the desired signal d(n),
based on the previous least-squares estimate of the coefficient vector that was made
at time n — 1. Accordingly, &(n) is referred to as the a priori estimation error. The
algorithm has been summarized in Table 2.2 .

While direct evaluation of (2.10) requires O(N®) multiplications at each instant,
using the matrix inversion lemma, this complexity is reduced to O(N*) multiplications
per iteration [32]. Another approach, that exploits the relationships among the forward
predictor, the backward predictor, and the gain vector to obtain the relevant update
equations [32], reduces the complexity to O(N?3) multiplications per iteration. Even-
though it uses the matrix inversion lemma to avoid the direct matrix inversion, it still
suffers from relative complexity due to matrix operations.

Aside from computational complexity problems of RLS adaptive filters, they may
suffer from numerical instability problems in finite-precision arithmetic. The numerical
instability or explosive divergence of RLS adaptive filters is of similar nature to that
experienced in Kalman filtering, of which the RLS filter is a special case [41]. Indeed,
the problem may be traced to the fact that the time-updated matrix R=!(n) in equa-
tion (2.17) is computed as the difference between two nonnegative definite matrices.
Accordingly, explosive divergence of the algorithm occurs when the matrix R™1(zn) loses
the property of positive definiteness, which implies loss of nonsingularity for the matrix
R(n). Another form of divergence observed in the finite-precision RLS algorithm is
that of stalling. Stalling phenomenon occurs when the coeffients in the RLS algorithm
stop adapting. In particular, this phenomenon occurs when the quantized elements of
the matrix R~1(n) become very small, such that multiplication by R™1(n) is equivalent
to multiplication by a zero matrix.

QR-decomposition based RLS algorithms solve matrix inversion induced numerical

problems by bypassing the normal equation and working directly with the data matrix.
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Table 2.2: THE RLS ADAPTIVE SECOND-ORDER VOLTERRA FILTER

Coeflicient Vector

W(n) = [ao(n), &1(7&), vy BN-1 (n), Eo,o(n), BO,I(n)a
]T

ceesbon—1(n),b11(n), ..., by_1,n_1(n)
X(n) = [z(n),2(n - 1),...,2(n = N + 1),2%(n),z(n)z(n - 1),...,
z(n)z(n — N +1),2%(n - 1),...,2%(n - N + 1)|T

Initialization

w(0) = [0,0,...,0]7

R-1(0) =611

6 = a small positive constant

Algorithm

AR n-1X
k(n) = 1+A—1XT(n)%{."‘1 ()n—(?))X(n)

e(n) = d(n) — WT(n - 1)X(n)

W(n) = W(n — 1) + k(n)e(n)
Rin-1)=A"TRYn-1)- A" k(n)XT®n)R " (n-1)
e(n) = d(n) - WT (n)X(n)

This approach is employed because the eigenvalue spread of the data correlation matrix
is the square of the eigenvalue spread of the corresponding data matrix [36]. Hence, a
least squares solution based directly on the data matrix is better conditioned than one
based on the data correlation matrix.

In general, one would like to develop computationally simple, numerically stable and
modular algorithms such that matrix inversion and vector operations are avoided. One
such algorithm that is based on a lattice structure and is related to QR-decomposition

based RLS algorithms is proposed for Volterra filtering in the next section.

2.5 ADAPTIVE LATTICE FILTERS

Adaptive lattice filters implements the Gram-Schmidth orthogonalization algorithm
for transforming the input vector consisting of correlated samples into an equivalent
vector consisting of uncorrelated samples and, estimate the desired signal as a linear

combination of the transformed signals that are orthogonal to each other. Lattice
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filters, equipped with LMS type adaptation algorithms, which are called GAL filters,
tend to show faster and less input signal dependent convergence behavior than their
direct form counterparts. They tend to have better numerical properties than direct
form adaptive filters. Least squares (LS) lattice filters on the other hand, converge even
faster due to their exact decoupling property. In addition to their fast convergence and
good numerical properties, lattice filters in general are fairly modular and suitable for
VLSI implementations. It is the main purpose of this thesis to develop lattice structures
for Volterra filtering, equipped with recursive least squares algorithms, so as to obtain
the best of the computational efficiency of the former and the fast convergence property
of the latter. Before proposing a new lattice structure for Volterra filtering, the Gram-

Schmidth orthogonalization algorithm is first reviewed.

2.56.1 THE GRAM-SCHMIDTH ORTHOGONALIZATION ALGORITHM

In the Gram-Schmidth algorithm, the objective is to transform a sequence of corre-
lated random variables denoted by z(n),z(n — 1),...,2(n — M) into a new sequence,
bo(n),b1(n),...,by(n), of random variables uncorrelated with each other. To accom-
plish the transformation, following series of steps are taken :
1.Let

bo(n) = z(n) (2.22)

2. by(n) is expressed as a linear combination of z(n) and z(n — 1) as
bi(n) = z(n — 1) + ki (1)z(n) (2.23)
where k1(1) is a constant to be determined. The cross-correlation of bo(n) and by (n)
equals
Blbo(n)by (m)] = Ela(n)a(n — 1] + ka(1) Elz(n)] (2.24)
where E[e] is the expectation operator. For bg(n) to be orthogonal to bi(n), it is
required that
E[bg(n)b1(n)] = 0. (2.25)
This requirement is satisfied by choosing

Elz(n)z(n — 1)]
Elg*(n)]

3. by(n) is expressed as a linear combination of z(n),z(n — 1), and z(n — 2) as shown

by

k(1) = - (2.26)

ba(n) = z(n — 2) + ko(1)z(n — 1) + ko(2)z(n). (2.27)
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For by(n) to be orthogonal to by(n) and by(n), it is required that
Elbo(n)b2(n)] =0 and E[by(n)by(n)] = 0. (2.28)

Solving for the constants ky(2) and ky(1),

B[z(n)o(n ~ 1)] - E[z(n)a(n)] Ele(n)e(n — 2)
Ba(n)a(n)] - B2[s(n)a(n 1]

Efz(n)e(n — 1)) Ela(n)z(n — 2)] — E[z(n)s(n)] E[z(n)z(n — 1)]
E2[z(n)z(n)] - E2[z(n)z(n — 1)] '

4. Continue in this manner until the last random variable of interest, bu(n), has been

kay(2) = (2.29)

ko(1) = (2.30)

accounted for. That is, bp(n) is expressed as a linear combination of z(n),z(n —

1),...,2(n — M) as shown by
bu(n) = kp(M)z(n) + kpye(M - Dz(n~ 1)+ ...+ 2(n — M). (2.31)

Thus, the Gram-Schmidth orthogonalization procedure is completed with the gen-
eration of a set of random variables bg(n),b1(n),...,by(n) that are orthogonal to each
other. The series of steps involved in the construction of the Gram-Schmidth algorithm

may be summarized in matrix formulation as follows:

[ bo(n) 1 [1 0 oo z(n)
fn(n) _ fﬁ(l) 1 f) fv(n -1 (2.32)
| bu(n) | [ km(M) k(M —-1) ... 1] | a(n—M) |
Accordingly, the equation (2.32) can be rewritten simply as
b(n) = Lx(n) (2.33)

where x(n) = [z(n),z(n - 1),...,2(n — M)]T, b(n) = [bo(n),by(n),...,by(n)]T and

[ 1 0 e 0]
L fcl(l) ! -0
_kM(M) kM(M—l) cen 1]

This equation states that the input vector x(n) is transformed into the output vector
b(n) via multiplication by the unit lower triangular matrix L. The construction of unit
lower triangular matrix L in the Gram-Schmidth algorithm is built up row-wise. On

the other hand, it is built up coloumn-wise in the modified Gram-Schmidth algorithm.
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Let R, denote the (M + 1) x (M + 1) correlation matrix of the (M + 1) x 1 input
vector x(n). Let Ry denote the corresponding (M + 1) x (M + 1) correlation matrix
of the (M +4 1) x 1 output vector b(n) produced by the Gram-Schmidth algorithm.

Accordingly, Ry, can be writlen as
Ry = E[b(n)b(n)]
= E[Lx(n)xT(n)LT]
= LE[x(n)xT(n)]LT
= LRxLT

(2.34)

Since the output vector b(n) consists of uncorrelated random variables, the correla-
tion matrix Ry is a diagonal matrix whose elements equal the mean-square values of
the respective random variables that constitute the vector b(n). That is, Ry can be
expressed as

Rb = dz’ag(Do, Dl, ey DM) (2.35)

where

D; = E[b}(n)], i=0,1,..., M. (2.36)
Then, the inverse of the correlation matrix R, becomes
R;! = diag(D5, D7Y,..., D3}). (2.37)

Thus, with the implementation of the (modified) Gram-Schmidth orthogonalization al-
gorithm, the matrix inversion operation is transformed to a simple scalar operation.
Hence, numerical problems associated with matrix inversion are avoided and the com-
plexity is reduced. In addition, regular, modular and simple structures such as lattice
structures, which are suitable for VLSI implementations become available for matrix

inversion problem.

2.5.2 ADAPTIVE VOLTERRA FILTERING WITH SPMLS

The objective in this section is to propose a new multichannel lattice structure for
Volterra filtering which implements the modified Gram-Schmidth orthogonalization al-
gorithm. To implement the modified Gram-Schmidth algorithm, the nonlinear filtering’
problem is first transformed into an equivalent multichannel, but linear, adaptive fil-
tering problem [33]. The basic idea is to partition the input vector X(n) at time # into
the following set of smaller (V4 1) vectors so that each of the vectors can be considered

as being formed from successive samples of signals from a different input channel.
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CH1: z(n),z(n—1),...,2(n — N + 1)]

[
CH2: [z(n)z(n),z(n — Dz(n—1),...,2(n - N + Dz(n — N + 1)]
CH3: [z(n)z(n —1),z(n - Da(n-2),...,z(n — N +2)z(n — N + 1)]
[

CH4: z(n)z(n —2),z(n — )z(n-3),...,2(n — N + 3)z(n— N + 1)]

CH(N +1): [z(n)z(n— N +1)]. (2.38)

The most important manner in which this multichannel characterization differs from
traditional multichannel, adaptive linear filters is that the number of coefficients asso-
ciated with each channel varies from channel-to-channel [37]. Channel 1 and 2 have
N coeflicients associated with it while channel 3 has N — 1, channel 4 has N — 2 and
finally channel N + 1 has only single coefficient associated with it.

After transforming the Volterra filtering problem into the equivalent multichan-
nel filtering problem, a complete, modified Gram-Schmidth orthogonalization of the
multichannel input vector is achieved using sequential processing multichannel lattice
stages.

A sequential processing multichannel lattice stage, first proposed by Ling and
Proakis [37], has a block structure as shown in Figure 2.3. It consists of two self-
orthogonal processors (SOP) and two reference-orthogonal processors (ROP). While
ROP’s consist of orthogonal processing cells, which are represented as circles, SOP’s
in addition contain processing cells, which are represented as double circles. Input and
output signals for cells are shown in Figure 2.4. Each processing cell represented as
double circles has two input signals s,(n), 7;(n) and, two output signals r(n) and y,(n).
The input signals s.(n) and y;(») are retransmitted. Each orthogonal processing cell
represented as circles on the other hand, has one main input signal s;(n), three refer-
ence input signals r(n), s,(n), vi(n) and one output signal s,(n). The reference input
signals are also retransmitted.

At each orthogonal processing cell represented as circles, the exponentially weighted
LS cross-correlation, A(n), between the input signals s;(n) and s,(n) at time n is com-
puted and the correlation associated with the input signal s,(n) is removed .from the
other input signal s;(n). Thus, the orthogonality between the output signal s,(n) and

the input signal s,(n) is achieved. To accomplish the correlation cancelling operation
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Figure 2.3: Block diagram of a sequential processing multichannel lattice

stage, first proposed by Ling and Proakis [37]
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at each orthogonal processing cell represented as circles, the exponentially weighted LS
autocorrelation, r(n), of the input signal s,(n) and, the likelihood variable v,(n) are
computed at each orthogonal processing cell represented as double circles. The com-
putations that are taking part in cells can be considered as the least squares equivalent
of the Gram-Schmidth orthogonalization steps in the previous section.

The exponentially weighted LS cross-correlation A(n) and the exponentially weighted
autocorrelation r(n) are defined as

A(n) = i/\""isr(n)éz;(n) (2.39)

2==1

and
n

r(n) = Z)\”“isf(n) (2.40)

=1

respectively. The likelihood variable v,(n) is defined as

Yo(n) = ¥i(n) ~ 87(n)/r(n) (2.41)

where v;(n) is the input likelihood variable and, the input likelihood variable to the
first orthogonal processing cell represented as double circles at the first SPMLS is given
by

w@=4 =" (2.42)

0, 1+=1,2,...,n—1

which is called the first unit vector. Thus, the likelihood variable can be interpretated as
the estimation error signal for the generation of the LS estimate of the first unit vecfor
and, acts as a gain factor which facilitates fast tracking of changes in the statisticé of
the observed data.

Processing equations for cells depend on what version of SPMLS algorithm is used.
Mainly, there are four versions of the SPMLS algorithm [41],[45]. In version I, the
variables are a posteriori forms of prediction and estimation errors, and the rellection
coeflicients are computed indirectly. In version II, the variables are a priori forms of
prediction and estimation errors, and the reflection coefficients are again computed
indirectly. In version III, the variables are a priori forms of prediction and estimation
errors, but the reflection coeflicients are computed directly. As a result of this direct
computation, error feedback is introduced into the operation of the algorithm. In
version IV, the variables are a posteriori forms of prediction and estimation errors,

but the reflection coefficients are computed directly. Here again, error feedback is



22

introduced into the operation of the algorithm. In a posteriori forms, the output
signals for cells represented as circles are computed using the reflection coefficients at
the present time instant, ». In a priori forms, the output signals are computed using
the reflection coefficients at the previous time instant, n — 1. In indirect forms, cross-
correlation between the input signals are first computed, then reflection coefficients
are computed. On the other hand in direct forms, reflection coefficents are computed
without computing cross-correlation between the input signals. In all forms, recursive
formulations are used.

In version 1, a posteriori, indireet form, the processing equations for cells represented

as double circles are,

r(n) = Ar(n — 1) + s2(n)/7:{n) (2.43)

Yo(n) = 7i(n) — s7(n)/r(n) (244)

where s,(n) is the input signal to the cell, r(n) is the exponentially weighted LS autocor-
relation of the input signal, v;(n) is the input likelihood variable, A is the exponential
weighting factor and v,(n) is the output likelihood variable, all at time n [37]. Process-

ing equations for cells represented as circles are,

A(n) = AA(n = 1) + si(n)s.(n)/7i(n) (2.45)
k(n) = A(n)/7(n) (2.46)
50(m) = 5i(m) — K(n)s.(n) (2.47)

where s;(n) and s,(n) are the input signal and the reference input signal to the cell
respectively, A(n) is the exponentially weighted LS cross-correlation between the input
signals, s,(n) is the output signal for the cell, and k(n) is the reflection coefficient all
at time n.

In version II, the a priori, indirect form, processing equations for cells represented

as double circles are,

r(n) = Ar(n — 1) + v(n)s2(n) (2.48)

Yo(n) = %i(n) = 7i(n)s}(n)/r(n) (2.49)

where s,(n) is the input signal to the cell, r(n) is the exponentially weighted LS autocor-

relation of the input signal, v;(n) is the input likelihood variable, A is the exponential
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weighting factor and v,(n) is the output likelihood variable, all at time n [37]. Process-

ing equations for cells represented as circles are,

8o(n) = si(n) — k(n — 1)s,(n) (2.50)
A(n) = AA(n — 1) + vi(n)si(n)s,(n) (2.51)
k(n) = A(n)/r(n) (2.52)

where s;(n) and s,(n) are the input signal and the reference input signal to the cell
respectively, A(n) is the exponentially weighted LS cross-correlation between the input
signals, s,(n) is the output signal for the cell and, k(n) is the reflection coeflicient all
at time mn.

In version IIl, the a priori, direct form, processing equations for cells represented

as double circles are,

r(n) = Ar(n — 1) + 7i(n)si(n) (2.53)

To(n) = 7i(n) — Y2 (n)s}(n)/r(n) (2.54)

where s.(n) is the input signal to the cell, r(n} is the exponentially weighted LS autocor-
relation of the input signal, v;(n) is the input likelihood variable, X is the exponential
weighting factor and 7,(n) is the output likelihood variable, all at time n. Processing

equations for cells represented as circles are,
3o(n) = si(n) — k(n — 1)s.(n) (2.55)

k(n) = k(n — 1) + 7i(n)so(n)s(n)/r(n) (2.56)

where s;(n) and s,(n) are the input signal and the reference input signal to the cell
respectively, k(n) is the reflection coefficient, s,(n) is the output signal for the cell, all
at time n.

In version IV, the a posteriori, direct form, processing equations for cells represented
as double circles are,

r(n) = Ar(n — 1) + s2(n)/yi(n) (2.57)

Yo(n) = ¥i(n) = s7(n)/r(n) (2.58)

where s,(n) is the input signal to the cell, r(n) is the exponentially weighted LS autocor-

relation of the input signal, v;(n) is the input likelihood variable, A is the exponential
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weighting factor and v,(n) is the output likelihood variable, all at time n. Processing

equations for cells represented as circles are,

k(n) = k(n—1) - %(s,(n) + s (n)k(n — 1)) (2.59)
so(n) = si(n) — k(n)s,(n) (2.60)

where s;(n) and s.(n) are the input signal and the reference input signal to the cell
respectively, k(n) is the reflection coefficient, s,(n) is the output signal for the cell, all
at time n.

In theory, assuming the use of infinite precision, all four versions of the SPMLS al-
gorithm are mathematically equivalent. However, in a practical situation involving the
use of finite-precision arithmetic, the four versions behave differently [41]. In particular,
versions I and II may suffer from a numerical instability problem due to finite-precision
effects. On the other hand, versions Il and IV offer better numerical properties due to
direct updating of reflection coefficients without first computing the cross correlation
and autocorrelation of errors as done in version 1 and II. While the a priori forms are
hest suited for applications such as adaptive equalization and adaptive noise cancelling,
a posteriori forms are used in system identification applications. Processing equations
for all four versions are summarized in Table 2.3. The computational complexity of
the SPMLS algorithm depends on which version is used. A comparalive complexity
analysis of the SPMLS algorithm is presented in Fig. 2.5.

Sequential processing multichannel lattice stage algorithm is also related to QR-
decomposition based multichannel approach in [36]. Basically, in QR-decomposition,
the ¢ matrix is implicitly formed and then used to compute the R matrix; whereas in
the modified Gram-Schmidth approach used in this thesis, the inverse of the R matrix
is implicitly formed and then used to compute the Q. Also, processing equations
of the SPMLS algorithm are algebraically equivalent with the Givens rotation based
algorithms in [46] which proves the equivalence for the a priori error-feed back version.

In the regular implementation of multichannel adaptive lattice filters, the compo-

nents of forward prediction error vectors,

fn(n) = [f1(n), 2 (n),..., 20T (261)

and. backward prediction error vectors,

bm(n) = [b,(r), b7, (1), .., b, ()T (2.62)
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Table 2.3: PROCESSING EQUATIONS FOR THE SPMLS ALGORITHM

Version |
r(n) = Ar(n — 1)+ s3(n)/7i(n)
Yo(n) = 7i(n) — s7(n)/(n)
A(n) = AA(n — 1) + si(n)s(n)/vi(n)
K(n) = A(n)/r(n)
so(n) = 8i(n) — k(n)s:(n)
Version 11
r(n) = Ar(n — 1) + 7i(n)si(n)
Yo(n) = Yi(n) — v¥(n)sF(n)/r(n)
so(n) = si(n) — k(n — 1)s,(n)
A(n) = M(n— 1)+ vi(n)si(n)s-(n)
k(n) = A(n)/r(n)
Version 11
r(n) = Ar(n — 1)+ 7i(n)s3(n)
Jo(n) = 7i(m) = 3 (n)s3(n) [ +(n)
so(n) = si(n) — k(n — 1)s:(n)
K(n) = K — 1) + 7:(n)so(n)s:(2)/7(n)
Version IV
r(n) = Ar(n — 1) + s2(m)/%(n)
Yo(n) = vi(n) = s7(n)/r(n)
k(n) = k(n = 1) = 75585 (si(n) + s (n)k(n — 1)
so(n) = si(n) — k(n)s: (n)
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at the output of the m th stage and at time = are not orthogonal to each other.
Here, p is the number of input channels. In the sequential processing lattice stage
implementation, the new error vectors f,,(n) and b,,(n) are constructed from f,(n)
and by, (n) at each stage as shown in Fig. 2.3. The construction of the new error
vectors f,,(n) and by, (n) from £, (n) and b,,(n) is accomplished by two self-orthogonal
processors at each stage. Self-orthogonal processors orthogonalize the components of
the backward, b,,(n), and forward, f,(n), error vectors, by coloumn-wise building up

the unit lower triangular transformation matrices k2, (n) and kf,(n) at each stage as

Bm(n) = kB, (n)bm(n) (2.63)
and
fin(n) = kb (n)fm(n) (2.64)
where
[ 1 0 e 0] 1 0 i
kb 1 . 0 % 1 ... 0
kg(n) = m,l(n) : and kfm(n) = m,x(n) .
kb () Kb, i(n) ... 1 | B (n) K, _i(n) ... 1]
(2.65)

The orthogonality between the components of prediction error vectors at diflerent stages
is achicved by two relerence-orthogonal processors at cach stage. At cach reference
orthogonal processor, the reflection coeflicients at time n between orthogonalized back-
ward by (n) ( forward fi;,(n) ) prediction error vector components and forward f,,(n)
(backward byy(n) ) prediction error vector components are computed coloumn-wise

and, a correlation cancelling operation is performed as follows,

0 ] [ ] [ K Kum) . k) | [ A ]

b2 (7 b2 (n—1 kS (n) ESo(n) ... K (n 2 (n
.m+1(") _ .m(n ) _ '2,1( ) .2,2( ) .2,p( ) . (n) (2.66)
| O (m) L on(n—1) | [ K(n) Kby(n) ... K (m) || fu(n) |

and

RO ON R AORN N ORNRINCESE

S || a0 | ) e R | B0

| Pt | L amy ] L Eam) . k) || B(n—1) ]
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Thus, forward f,;,+1(z) and backward b,,4+1(n) prediction error vectors for the (m+1)th
stage are obtained. The elements of the unit lower triangular matrices, k2 (n) and
kf (n), in (2.65) and the square matrices in (2.66) and (2.67), which are called reflec-
tion coeflicients, are all computed recursively in orthogonal processing cells represented
as circles. In the coloumn-wise computation of the lower triangular matrices k2, ()
and kE (n), following series of steps are taken :

1. The RLS correlations of b,(n) and f1(n) are computed in the processing cells rep-
resented as double circles with the equations (2.43), (2.48), (2.53) or (2.57) depending
on which version of the processing equations is implemented.

2. In versions I and II, The RLS cross-correlations between b},(n) and the other el-
ements of b,,(n), which are bZ,(n),...,bE (n), and the RLS cross-correlation between
fL(n) and the other elements of f,,(n), which are f2(n),..., f7(n), are computed in
the processing cells represented as circles with the equations (2.45) or (2.51).

3. In versions I and 11, the first coloumns of the matrices, k2, () and k& (n), are then
computed in the cells represented as circles with the equations (2.46) or (2.52).

4. In versions III and IV, the first coloumns of the matrices, k2, (n) and kf,(n), are
computed directly without the computation of cross-correlations by using the equations
(2.56) or (2.59).

5. After obtaining the new signals using the equations (2.47), (2.50), (2.55) or (2.60),
the same steps are followed for the second coloumns of the matrices kP (1) and kf”(n)
and the third coloumuns, so on.

Similarly, the coloumn-wise computation of the square transformation matrices in (2.66)
and (2.67) is carried out by implementing the equations (2.46), (2.52), (2.56) or (2.59)
in the processing cells represented as circles. Thus, each circular cell in SPMLS’s takes
part in the complete sequential orthogonalization of the input vector by computing a
reflection coefficient in the unit lower triangular or square transformation matrices in
the equations (2.65) or (2.66) and (2.67).

Since the output vectors by (n) and fm(n) consists of uncorrelated random vari-
ables, the corresponding correlation matrices whose elements equal the mean-square
values of the respective random variables that constitute the vector Bm(n) are diagonal.
Thus, with the implementation of the (modified) Gram-Schmidth orthogonalization al-
gorithm, the matrix inversion operation is transformed to a simple scalar operation.

The desired signal d(n) can now be estimated without matrix operations.



CHAPTER 3

IDENTIFICATION OF SECOND-ORDER VOLTERRA SYSTEMS
USING LATTICE STRUCTURES

In this chapter, the identification of second-order Volterra systems using lattice struc-
tures is investigated. Second-order Volterra systems are identified with adaptive filters
using sequential processing multichannel lattice stages. The adaptive filters have the
same structure and the same number of coeflicients as that of the system to be iden-
tified. A posteriori, indirect form of SPMLS algorithm is used in system identification
problems in this chapter.

In the following sections, first, the general second-order adaptive Volterra system
identification problem is described, then the RLS second-order Volterra system identi-
fication with SPMLS’s is introduced. The second-order Volterra filtering algorithm and
a block diagram of the filter structure is presented. In the last section, experimental

results showing the performance of the new lattice filter are presented.

3.1 SYSTEM MODEL

A block diagram of the general second-order adaptive Volterra system identification
problem is shown in Figure 3.1. Let d(k) and (k) represent the desired response signal
and the input signal, respectively, to the adaptive filter. The desired signal d(k) to the

adaptive filter is modelled by
d(k) = y(k) + eo(k) (3.)

where y(k) is the unknown system output and, e,(k) is the measurement noise. Both
d(k) and z(k) are assumed to be wide-sense stationary with zero means. The problem
is then to find an exponentially windowed, LS solution for the linear and quadratic

coefficients of the adaptive filter that minimizes the cost function,

()= 3N [ d(k) — da() (32)
k=0
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at each time instant n. The filter output d,(k) is a second-order Volterra filter estimate

of the desired signal d(k) and,

N-1 N—-1N-1 . )
dn(k) = ho + Zj di(n)z(k — ) + Z 2_: bi j(n)z(k — i)z(k — j) (3.3)

where {@;} and {Bi,j} are called the linear and quadratic filter weights, respectively, N
is the filter length as in section 2.2. The first step in minimizing the cost function is to
require the unbiasedness of the filter output. In other words, since the desired signal
is zero mean, the filter output d,(k) should also be zero mean. The unbiased filter
output is obtained by having the following relationship between hg and the quadratic

filter weights [24],
N-1N-1

ho=— 3 3 bij(n)ra(i — j) (3.4)

=0 g=i
where r,(j) = E[z(n)z(n — j)] denotes the autocorrelation function of «(n). By com-

bining (3.2) and (3.3), the filter output can be expressed as

N-1 N—-1N-1
do(k) = 3 a(n)a(k —4) + }_: Z_: bij(n)[z(k — i)a(k —5) —ra(i — ). (3-5)

Without the inclusion of h,, the estimated coefficients of the filter would be biased and
and hence, the error performance of the filter would worsen accordingly.

The input vector X(n) and the coefficient vector W(n), both having N(N + 3)/2

elements, at time n are defined as
X(n) = [2(n),22(n),z(n — 1),2%(n — 1),2(n)z(n — 1),...,z(n)z(n — N + DT (3.6)
and
W(n) = [ao(n), boo(n), a1(n),b1,1(%), bo,1(n), - . ,bo,n—1(n)]" (3.7)

respectively. In the above “T” represents transpose of a matrix. Thus, the main concern
of the exponentially weighted LS problem under consideration is to find, at each time

n, the optimal coeflicient vector W(n) that would minimize the cost function

J(n) = i AP | d(k) — WT(n)X(k) 2. (3.8)

k=0

3.2 SYSTEM MODEL BASED ON SPMLS

The approach for developing a lattice structure for Volterra system identification is to

transform the nonlinear system identification problem into an equivalent multichannel,
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but linear, adaptive system identification problem. The basic idea is to partition the
input vector X(n) at time n into the following set of smaller (N + 1) vectors so that
each of the vectors can be considered as being formed from successive samples of signals
from a different input channel as in section 2.5.

To avoid matrix inversion and vector operations and to achieve simplicity, good
numerical properties and modularity, a complete, modified Gram-Schmidt orthogonal-
ization of the input data X(») is obtained using SPMLS.

The main objective in this section is to apply sequential processing lattice stages
into the Volterra system identification problem. A block diagram of the second-order
Volterra filter in system identification mode using SPMLS’s with the filter length, N = 3
is shown in Figure 3.2. The basic idea employed here is to obtain a modified Gram-

Schmidth orthogonalization of

X(n) = [z(n), z%(n), z(n — 1),2%(n — 1),z(n)z(n — 1),2(n — 2),

z¥(n - 2),z(n — z(n - 2),2(n)z(n — 2)]7 (3.9
sequentially in such a way that an orthogonal basis set corresponding to X(n)
b(n) = [53(n), B(n), b3(n), b (n), B3 (n), b3(n), bi(n), B3(n), B3(n)] (3.10)

is obtained, so that the desired signal d(n) can be estimated as a linear combination of
the orthogonal basis set b(n), instead of the elements of X(n).
To obtain the new orthogonal set sequentially, the elements of X(n) are grouped

into three coloumns of a matrix as shown in (3.10).

[ z(n) z(n-1) z(n — 2)

z(n)z(n) z(n—-z(n—1) 2z(n-2)z(n-2)
z(n)z(n—1) z(n — 1)z(n - 2)

I z(n)z(n — 2) |

Each row in this matrix may be thought of as made up of samples of a signal belonging

(3.11)

to a different channel in (2.13). Initially, the elements of the first coloumn, z(n) and
z%(n), are orthogonalized with a SOP and the new orthogonal signals, called backward
prediction error (BPE) signals, b3(n), bl(n) are then obtained. The elements of the sec-
ond coloumn are predicted from b(n), I)E,(’lt), and the desired signal is estimated from
b3(n), b(n). Thus, the BPE signals, b9(n),b!(n),b}(n) and the first stage estimation

error signal e;(n) are generated. Similarly, z(n), z(n)z(n), z(n)z(n — 1),z(n)z(n - 2)
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are predicted from bJ(n — 1), b}(n — 1) and the forward prediction errors (FPE) sig-
nals fP(n), fi(n), f2(n), f3(n) are obtained. Following these steps, the first stage BPE
signals 49(n), b(n),b%(n) are orthogonalized with a SOP, and the first stage FPE sig-
nals f2(n), f1(n), f2(n), f3(n) are predicted from the orthogonalized and delayed new
BPE signals 89(n — 1),b}(n — 1),b3(n — 1). The first stage estimation error signal
ei(n) is estimated from b%(n), bi(n), b?(n) and then the second stage estimation error
signal e;(n) is obtained. The FPE error signals f2(n), fi(n), f2(n) are similarly or-
thogonalized using a SOP. The delayed first stage backward prediction error signals,
b(n — 1),bl(n — 1),b3(n — 1),b3(n — 1) are predicted from the orthogonolized FPE
signals fO(n), f}(n), f2(n) and the second stage BPE signals b3(n), bi(n), b3(n), b3(n)

are obtained.

The second stage backward prediction error signals are again orthogonalized with a
SOP and ey(n) is estimated with the new orthogonalized BPI signals and so on. The

complete algorithm for arbitrary N is presented in Table 3.1.

The key idea is that the complete orthogonalization of the data makes it possible
to consider the LS optimization of each cell separately and the recursions defining the
adaptive filter can be developed independently for each cell. With complete orthogo-
nalization of the data, only scalar operations are required and instability problems due
to matrix inversion are avoided, good numerical properties are achieved. Avoidance of
matrix inversion and vector operations reduce the complexity considerably, make the

filter simple, highly modular and suitable for VLSI implementation.

It is important to note that a cell in joint-process estimation part of the filter
functions in no different manner than a cell in the prediction part. The only difference
between them is the input signal. In the joint-process estimation part, the input signal
is the desired signal or the relevant estimation error signal. In the prediction part, the

input signal is the relevant backward or forward prediction error signal.

The computational complexity calculations for the second-order Volterra filter with
SPMLS depends on the form of SPMLS algorithm is used and, on the number of
channels. The number of channels in turn is related to the filter length ¥ as shown in
(2.13). The computational complexity for the filter can then be determined with the
knowledge of the form of SPMLS algorithm and the number of channels. A comparative
complexity analysis of the second-order Volterra filter is presented in Fig. 3.3. The
version 1 of the SPMLS algorithm is used in the system identification mode of the filter.
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Note that the number of multiplications required for the SPMLS algorithm is less than
the conventional lattice algorithm in [33] and QR-decomposition based algorithm in
[34]. On the other hand, the number of divisions required for the SPMLS algorithm is
more than the conventional lattice algorithm.

The previous lattice filter structures for Volterra systems does not achieve a com-
plete orthogonalization of the input data. In the previous lattice based structures
as in [33], while signals in difTerent stages of the filter are orthogonal to cach other,
signals in the same stage are not orthogonal to each other. This necessitates matrix
imversion and vector operations, hence the matrix inversion lemma and makes the al-
gorithm computationally complex. In the previous system identilication applications
with lattice structures, the linear and quadratic coeflicients are obtained by converting
the lattice reflections coefficients to the equivalent transversal filter coeflicients. In the
novel approach used here, the Volterra system coeflicients are computed and identified

efficiently and directly.
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Table 3.1: SECOND ORDER VOLTERRA FILTERING ALGORITIIM

WITH SPMLS
Initialization
eo(n) = d(n)
“)’g(n) =1.0 ;
bo(n) = fo(n) = :2((7:3)
bo(n) = To(n) = k§(n)fo(n)

bg(n — 1)

bi(n) = ~ kP(n)fo(n)

z(n)z(n—1) j

[ fo(n) ]

fi(n) = | z(n)z(n—1) | — kKE(n)bgo(n — 1)

L z(n)z(n ~ j)
where k§(n) is 2 x 2 unit lower triangular coefficient matrix, kP(n) is 3 x 2 BPE
coefficient matrix, kf (n) is (j+2) x 2 FPE coefficient matrix and j=2,3,...,N-1.
e1(n) = eo(n) - k{i(n)bo(n)
71(n) = 70(n) = BF (n)rg (n)bo(n)
where ro(n) is the diagonal LS autocorrelation matrix of bg(n) and k‘ll(n) is 1 x2
estimation error coefficient matrix.
Stages 2 thru N-1
do for i=2,3,... ,N-1
Backward Prediction Error Update
b;_1(n)
bi(n)=| ... |-kP(wfia(n)
[ Hw
bi(n) = kf'(n)bj(n)
Forward Prediction Error Update
fi(n) = fi_1(n) - kf(n)bs_1(n— 1)
fi(n) = k(n)fi(n)
where kP(n) and kf(n) are (i+2) x (i+1) prediction error coefficient matrices and

ki(n)’s are unit lower triangular coeflicient matrices.
Likelihood Variable Update

%(n) = %ica(n) = b (n)r (n)bs(n) .
where rj(n) is the diagonal LS autocorrelation matrix of b;j(n).

Joint Process Estimation Error Update

ei(n) = ei1(n) — k{(n)bs_1(n)
where kfi(n) is 1 x (i+1) estimation error coefficient matrix.

end
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3.3 EXPERIMENTAL RESULTS

In this section we present several experimental results to show the performance of the
second-order Volterra filtering algorithm with SPMLS. The MATLAB programming
environment was used in the experiments. In these experiments the adaptive filters
were run in the identification mode with the same structure and the same number
of coefficients as that of the system that was to be identified with ¥ = 3 and the
exponential weighting factor is 0.995. The input signal is a white, zero-mean, pseudo-
Gaussian noise, and the measurement noise signal is an additive white, zero-mean,
pseudo-Gaussian, uncorrelated with the input signal. The system to be identified had

three linear and six quadratic coefficients. These coefficients are given in Table 3.2.

In the experiments, the parameters of the input signal were chosen such that the
unknown system output power is approximately unity. The desired signal d(n) was
obtained by adding the measurement noise to the output signal of the unknown system.
The variance of measurement noise was adjusted so as to obtain the desired signal-to-
measurement noise ratio. The autocorrelation values, r,(j), for the estimation of the
zeroth-order term h, are computed by time-averaging the input vector components
z(n)z(n — 7). The computed values of r(j) are then subtracted from the input vector
components, z(n)z(n — j) at time n, before the first SPMLS. The results presented are
ensemble averages of 50 independent runs. Performance evaluations were carried out by
plotting the mean-squared value of the a posteriori estimation error and the estimated
mean coefficient trajectories of the unknown system. The plots of the ensemble averaged
a posteriori mean-squared error for two different signal-to-measurement noise ratios,
20 dB and 30 dB, are shown in Figure 3.4. Figures 3.5-3.6 show the estimated mean
coefficient trajectories for 20 dB and 30 dB signal-to-measurement noise ratios. Observe
that bias and fluctuations occur in the mean coefficient trajectories due to measurement
noise and the choice of exponential weighting factor less than one, respectively.

Several experiments were conducted to compare the performance of the filter with
that of the RLS transversal second-order Volterra filter, mentioned in section 2.4. In
Figures 3.6-3.8, the mean-square error and the estimated mean coefficient trajectory
performance of both filters are shown. Observe that the new lattice filter has better
convergence due to the complete orthogonalization and the transversal filter has better
self-noise performance. Note that the extensive simulation conducted reveal the fact

that, the self-noise performance of the new lattice filter can be improved with a larger
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Table 3.2: LINEAR AND QUADRATIC COEFFICIENTS OF THE UNKNOWN

SYSTEM
aj b j
i j= 0 1 2
0 -0.78 0.54 3.72 1.86
1 -1.48 0.00 -1.62 0.76
2 -1.39 0.00 0.00 1.41

exponential weighting factor at the expense of decreasing the convergence speed.
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CHAPTER 4
SECOND-ORDER LS ADAPTIVE CHANNEL EQUALIZATION

The problem of equalizing a channel whose channel correlation matrix has a large eigen-
value spread is well known. Channels with nonlinear entries will cause the eigenvalue
spread to be large even when the input signal is white. A typical channel equalizer is
a transversal filter with enough taps to approximate the inverse transfer function of
the channel. In many situations, the channel is not known in advance, or it may be
time-varying as in the case of multipath channels. Therefore, it is desirable to design
adaptive equalizers.

Lattice structures offer a number of potential advantages over transversal filters in
equalization applications. One advantage of lattice structures is their modularity. This
property of lattice structures allows the dynamic assignment of the particular length of
the lattice equalizer which proves the most effective at any instant of equalization. A
second advantage of lattice structures is that longer lattice filters may be built up from
shorter ones by simply adding on more lattice stages. These properties prove useful in
designing VLSI implementations. Another important advantage of lattice structures is
their robust numerical properties, and their insensitivity to roundoff noise.

In this chapter, the equalization of Volterra type nonlinear channels are consid-
ered. In the following sections, first the general adaptive second-order Volterra channel
equalization problem is described, then the RLS second-order adaptive Volterra chan-
nel equalization using SPMLS’s is introduced. In the final section, experimental results
showing the performance of the adaptive second-order Volterra equalization filter are

presented.

4.1 MODEL

The purpose of a channel equalizer is to undo the distorting effects of the channel and
recover, from the received signal, the input signal. The block diagram of a general
second-order adaptive Volterra channel equalization problem is shown in Figure 4.1.

The desired signal d(k) in channel equalization problem is the appropriately delayed
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input signal, 2(k — D). The input signal y(k) to the equalizer is modeled by

y(k) = yo(k) + e,(k) (4'1)

where y,(k) is the output signal from the channel and e,(k) is the measurement noise.
The input signal, z(k), to the channel to be equalized and the input signal, y(k), to the
equalizer are both wide-sense stationary and zero mean. The problem is then to find
an exponentially windowed, LS solution for the linear and quadratic coefficients of the

adaptive equalizer that minimizes the cost function,

n

J(n) =D N"F | d(k) ~ du(k) (4.2)

k=0
at each time instant n. The filter output d,(k) is a second-order Volterra filter estimate

of the desired signal d(k) and,

N-1 N-1N-1_
dn(k) = ho + Z_: ai(n)y(k — 1) + 2_: 2; bij(n)y(k —dyk-35)  (4.3)

where {&;} and {zi,j} are called the linear and quadratic filter weights, respectively, N
is the equalizer length as in section 2.2. The first step in minimizing the cost function is
to require the unbiasness of the equalizer output. The unbiased filter output is obtained

by having the following relationship between hg and the quadratic filter weights
N-1N-1

ho=—3 3 bij(n)ry(i—4) (4.4)

=0 j=t
where r,(j) = E[y(n)y(n — j)] denotes the autocorrelation function of y(n). By com-

bining (4.2) and (4.3), the equalizer output is expressed as

N-1 N-1N-1_
du(k) = 3 a(m)y(k —d) + 3 3 bij(m)lu(k = iy(k =) = ry(i= ). (4.5)

The input vector Y{(n) and the coefficient vector W(zn), both having N(N + 3)/2

elements, at time n are defined as
Y(n) = [y(n), v*(n),y(n — 1),5%(n — 1),5(r)y(r = 1),...,y(n)y(n - N + 1)]T (4.6)

and
W(n) = [ao(n), bo,o(n), 81(n),b1,1(n), bo(n), - . ., bon—-1{m)]" (4.7)
respectively. In the above “T” represents transpose of a matrix. Thus, the main concern

of the exponentially weighted LS problem under consideration is to find, at each time

n, the optimal coefficient vector W(n) that would minimize the cost function

J(n)= 3" NF | d(k) - WT(m)Y(k) 2. (4.8)
k=0
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4.2 MODEL BASED ON SPMLS

The approach for developing a lattice structure for Volterra channel equalization is to
transform the nonlinear system equalization problem into an equivalent multichannel,
but linear, adaptive channel equalization problem. The basic idea is to partition the

input vector Y(n) at time n into the following set of smaller (¥ + 1) vectors

CH1: [y(n),y(n—1),...,9(n— N +1)]

CH2:  [y(n)y(n),y(n—L)y(n—1),...,y(n = N + y(n — N +1)]

CH3:  [y(n)y(n—1),y(n—1y(n —2),...,5(n = N+ 2)y(n — N + 1)]
[y(n)y(n - 2),y(n - D)y(rn = 3),...,y(n — N + 3)y(n - N + 1)]

CH5:  [y(n)y(n —8),y(n— y(n —4),...,y(n — N +4)y(n — N + 1)]

CH4 :

CH(N+1): [yn)y(n—N +1)] (4.9)

so that each of the vectors can be considered as being formed from successive samples
of signals from a different input channel, where N is the length of the equalization
filter.

To avoid matrix inversion and vector operations and to achieve simplicity, good
numerical properties and modularity, a complete, modified Gram-Schmidt orthogonal-
ization of the input data Y(n) is obtained using SPMLS.

The main objective in this section is to apply sequential processing lattice stages
into the Volterra channel equalization problem. A block diagram of the second-order
Volterra equalization filter using SPMLS’s with the filter length, N = 5 is shown in
Appendix A. The basic idea employed here is to obtain a wodified Gram-Schmidth

orthogonalization of

Y(n) = [y(n),5*(n), y(n = 1),9%(n = 1), y(n)y(n ~ 1), y(n — 2),

y*(n —2),y(n - )z(n — 2),y(n)y(n — 2),y(n — 3),y(n ~ 3)y(n — 3),

y(n - 2)y(n — 3),y(n — 1)y(n — 3),y(n)y(n — 3),3(n — 4),y(n - 4)y(n — 4),
y(n - 3)y(n — 4),y(n — 2)y(n — 4),y(n — y(n — 4),y(n)y(n — 4)]* (4.10)

sequentially in such a way that an orthogonal basis set corresponding to Y(n)

b(n) = [63(n), b3(n), B3(n), B} (n), B}(n), 83(n), b3(n), B3 (n), B3(n), BY(n),
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is obtained, so that the desired signal 2(n— D) can be estimated as a linear combination
of the orthogonal basis set b(n), instead of the elements of Y(n).
To obtain the new orthogonal set sequentially, the elements of Y(n) are grouped

into five coloumns of a matrix as shown in (4.11).

o) yn-1) y(n—2) y(n - 3) y(n—4)
y(n)y(n) yn—Nyn—-1) yn-2)y(n—-2) y(n-3)y(n—-3) y(n-4)y(N -4)
y(n)y(n — 1) y(n~1y(n —2) yln-2)y(n —3) y(n - 3)y(N - 4)
y(n)y(n —2) y(n — Dy(n —3) y(n—2)y(n - 1)
y(n)y(n - 3) y(n — y(n — 4)

y(n)y(n —4)
(4.12)

Itach row in this matrix may be thought of as made up of samples of a signal belonging to
a different channel in (4.8). Initially, the elements of the first coloumn ,y(n) and y*(n),
are orthogonalized with a SOP and the new orthogonal signals, called backward pre-
diction error (BPE) signals, b3(n), 8}(n) are then obtained. The elements of the second
coloumn are predicted from §3(n), bi(n), and the desired signal @(n — D) is estimated
from b3(n), bi(n). Thus, the BPE signals, b3(n),b}(n),b3(n) and the first stage estima-
tion error signal e1(n) are generated. Similarly, y(n), y(n)y(n), y(n)y(n — 1), y(n)y(n —
2), y(n)y(n—3),y(n)y(n—4) arc predicted from b3(n— 1), bi(n—1) and the forward pre-
diction errors (FPL) signals f2(n), fi(n), f2(n), f2(n), fi(n), /7 (n) are obtained. Fol-
lowing these steps, the first stage BPE signals bY(n), b1 (n), b?(n) are orthogonalized with
a SOP, and the first stage FPE signals fo(n), fi(n), f2(n), fi(n), fi(n), f(n) are pre-
dicted from the orthogonalized and delayed new BPE si.gnals (= 1),bl(n—-1),b3(n—
). The first stage estimation error signal e;(n) is estimated from W(n), bl (n), b2(n)
and then the second stage estimation error signal ey(n) is obtained. The FPI error
signals f2(n), fi(n), f2(n) are similarly orthogonalized using a SOP. The delayed first
stage backward prediction error signals, b(n — 1),bi(n — 1),b6%(n —1),bj(n — 1) are pre-
dicted from the orthogonolized FPE signals f2(n), f1(n), f}(n) and the second stage
BPE signals b3(n), b3(n), b3(n),b3(n) are obtained.

The second stage backward prediction error signals are again orthogonalized with

a SOP and ey(n) is estimated with the new orthogonalized BPE signals and so on.
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With the a priori, direct form of SPMLS algorithm is used and the longer filter
length, the complexity increases comparing to the system identification problem in the

previous chapter.

4.3 EXPERIMENTAL RESULTS

In this section, several experimental results are presented to show the performance
of the second-order Volterra equalization filter. The channel input signal is a white,
zero-mean, pseudorandom bipolar (+/- 1) signal. The measurement noise signal is an
additive, white, zero-mean, pseudo-Gaussian, uncorrelated with the input signal. The
noise variance in all experiments was adjusted to be 0.001. The channel to be equalized
had three linear and six quadratic coefficients. The linear coefficients of the second-

order Volterra channel are defined by the raised cosine shape [41],

a; =

31+ cos(F(i - 1)), i=0,1,2 (4.13)
0

, otherwise
and, the quadratic coefficients are defined by b; ; = a;.a¢; and b;; = b;;. W in (4.13)
controls the amount of distortion and therefore the eigenvalue spread produced by the
channel. The desired signal d(n) was obtained by delaying the input signal suitably so
that the smallest mean squared error for the equalizer is obtained. The delay param-
cter for the smallest mean square error was three. The length, N, of the second-order
Volterra channel to be equalized was three. Exploiting the modularity property of
latlice structures , the particular length of the adaptive equalizer which proved most
effective was assigned dynamically and, the most effective equalizer length, N, was five.
The exponential weighting factor was chosen as 0.995. Experiments were carried out
for W = 2.9,3.1,3.3,3.5 and W = 2.9 with nonlincar coellicients zcro. The autocor-
relation values, ry(7), for the estimation of the zeroth-order term A, are computed by
time-averaging the input vector components y(n)y(n — j). The computed values of
r4(j) are then subtracted from the input vector components, y(n)y(n — j) at time =,
before the first SPMLS. The results presented are ensemble averages of 50 independent
runs. Performance evaluations were carried out by plotting the mean squared values
of the a priori estimation errors. Figure 4.3 shows the mean squared error curves for
different channel distortions. Notice that the perlormance of the equalizer worsens as
the eigenvalue spread or distortion increases. The input signal, estimated signal and

the threshold detector output signal when W = 2.9 is shown in Figure 4.4.
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Table 4.1: THE NUMBER OF ITERATIONS NEEDED FOR EQUALIZATION

A W | Noise variance | T
0.995 | 2.9 0.001 27.0
0.995 | 3.1 0.001 31.9
0.995 | 3.3 0.001 51.2
0.995 | 3.5 0.001 78.0
0.995 | 2.9 0.100 79.3

The number of iterations, 7, needed before the adaptive equalizer makes no error
was determined for two different measurement noise variances and different channel
distortions. First, the measurement noise variance was constant but, the channel dis-
tortion was varied. Then, the channel distortion was constant but, the measurement
noise variance was varied. In both cases, the exponential weighting factor was 0.995.
Notice that 7 gets large either channel distortion or measurement noise variance in-

creases. The results are averages of 10 independent runs and summarized in Table 4.1.



CHAPTER 5

EQUALIZATION AND IDENTIFICATION OF DIGITAL
SATELLITE CHANNELS

It has been long recognized that PSK/TDMA provides highly efficient use of power
and bandwidth, for digital satellite communication, through the sharing of a single
transponder by several earth stations accessing it [1]. The increasing demand for digital
satellite services requires the use of new frequency bands together with economical
earth stations. In such a band-limited, nonlinear channel, a critical factor influencing
the performance is the choice of transmit and receive filters, which must be selected in
order to minimize the nonlinear distortions.

Satellite channels differ from voiceband channels in the sense that the nonlinearity
is stronger for satellites, but the memory is shorter. In this chapter, digital satellite
channels which are modelled by higher-order Volterra series are examined. In the fol-
lowing sections, first digital satellite channels modeled with higher-order Volterra series
are described, then RLS higher-order adaptive Volterra identification and equalization
filters using SPMLS’s are introduced. The results of experiments for each case are also

included at each section.

5.1 DIGITAL SATELLITE CHANNELS

The input-output relationship for satellite channels which are modelled by higher-order

Volterra series can be expressed as [1,3]

y(r)=ho+ D> D -+ D hampr(n—ki,...sn— komgr)z(kr) -

m=0 k kom41
z(k1)z(k2) - - - 2" (hams1) (5.1)

The structure of (5.1) reflects how the channel output depends both on the channel
(through the Volterra coefficients) and on the information symbols. Particularly, the
symbol structure of phase shift keying (PSK) modulation is insensitive to certain kinds

of nonlinearities. In phase shift keying, the complex baseband equivalent input signal
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is represented by

z(n) = ¥ (5.2)

where 1, takes values in the set
2r M
{EI_(Z -1+ ¢}a=
and ¢ is an arbitrary constant phase. In binary coherent phase shift keying, where
M = 2, since z(n)z*(n) =1, it is apparent from (5.1) that certain Volterra coefficients
ham+1 will contribute to nonlinearities of order less than 2m+ 1. To be more specific, if
the third-order Volterra coefficients hs(n — k1,n — kg, n — k3) are considered for k1 = k3

or ks = ks, the channel nonlinearities reflected by these coefficients do not affect the

PSK signal, because

m(kg)hg(n - kl,n — kz, n — k‘a), if kl = k‘3

:c(kl)h3(n - kl,n - k2, n— k3), if k’2 = k3
(5.3)

z(k1)z(ke)z* (k3)ha(n—k1,n~ke,n—ks) =

and the only contribution is to the linear part of the channel. Similar considerations
on the higher-order coeflicients show that some of them contribute to the linear part,
others only to the third-order nonlinearity, and so on. These considerations can be
further pursued if it is observed that, for an M-ary coherent phase shift keying (PSK),
zM(n) = 1 (for instance in 4-PSK, z(n)z(n)z*(n)z*(n) = 1), which results in a further
reduction of sensitivity of PSK to certain nonlinearities. This leads to the noteworthy
conclusion that, for PSK, certain coefficients need only linear compansation, while
others affect the signal to a lower degree than other modulation schemes. The overall
effect is a further reduction of the number of Volterra coefﬁcients to be taken into

account in the channel model.

In this chapter, an example of modelling a 4-PSK nonlinear satellite channel using
Volterra series is considered. The computed Volterra coefficients for a PSK channel,
after deletion of the smallest (the Volterra coefficients less than 0.001 for linear part
and 0.005 for nonlinear parts are neglected), are shown in Table 5.1 [1]. After a further
reduction that takes into account the structure of 4-PSK modulation, the surviving
coefficients are shown in Table 5.2 [1]. It is seen that the size of the reduction is

relevant.
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5.2 SYSTEM MODEL AND PARAMETERS

In this section, the LS identification of digital satellite channels modelled with higher-
order Volterra series is investigated. A procedure similar to the identification of second-
order Volterra systems will be followed for the reduced Volterra channel given in the

previous section. The desired signal d(k) to the adaptive filter as before is modelled by
d(k) = y(k) + e, (k) (5.4)

where y(k) is the unknown system output and, e,(k) is the measurement noise. An
4-PSK signal, 2(k), is used to probe the channel. Both d(k) and z(k) are assumed to
be wide-stationary with zero means.

The problem is to find an exponentially windowed, LS solution for the linear and
higher-order nonlinear coefficients of the adaptive filter that minimizes the cost func-
tion,

n
J(n) = 32 XE [ d(k) - du(k) ? (5.5)
k=0
at each time instant n. The filter output d,(k) is a higher-order Volterra filter estimate

of the desired signal d(k) and,

dn(k) = ho + i &nl (n) :c(k - nl) +

n1=0
z Z Zanlmzyna (n) z(k — n1)z(k — n2)z"(k — na)
+ éo,0,01,1(n) z(k)z(k)z(k)z*(k — 1)z*(k — 1) (5.6)

where {@n,} and {bn, nyma} » {€0001,} are called the linear and higher-order filter
weights. The unbiased filter output is obtained by having the following relationship
between ho and the higher-order filter weights,

ho = — Z Zzzm,nz,ns (n) Toze(n1 — n2 — n3) — €0,0,01,1() Tzzz22(0) (5.7

n1T n2 N3
where 7opp(n1 —n2—n3) = Elz(n—nq)z(n—n2)z*(n—nz] and rzz202(0) = Elz(n)z(n)z(n)
x*(n — a*(n — 1)] respectively. By combining (5.4) and (5.5), the [ilter output is ex-
pressed as

3
da(k) = Y by (n)a(k— n1) +

n1=0

3> b e (m) [k = ma)(k — ma)a®(k — nis) = Tao(ma — nz —n3)] +
dop,01.1(n) [z(k)e(k)z(k)e*(k — 1)a*(k — 1)

"ra:wm:a:(o)]° (5'8)
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Table 5.1: VOLTERRA COEFFICIENTS FOR A PSK CHANNEL

Linear part

h1(0) = 3.400 + ;0.381 hs(0,0,0,0,0) = 3.920 — j2.210
hy(1) = 0.052 + j0.006 hs(1,0,0,0,0) = —0.690 + 50.388
hy(2) = —0.048 — j0.005 hs(1,0,0,1,0) = 0.236 — j0.133
h1(3) = 0.178 + 50.020 hs(1,1,0,1,0) = 0.070 — 50.066
h3(0,0,0) = —4.296 + j1.741 hs(1,1,0,1,1) = 0.074 — j0.022
h3(1,0,0) = 0.388 — j0.137 hs(1,1,1,1,1) = 0.039 — 50.022
h3(1,0,1) = —0.230 + j0.081 h5(2,0,0,0,0) = 0.059 — j0.033
h3(1,1,1) = —0.105 + 50.037 hs(2,2,2,2,2) = —0.053 + 50.030
h3(2,0,0) = —0.056 + 50.020 hs5(3,0,0,0,0) = 0.349 — j0.197
h3(2,2,2) = 0.074 — j0.026 h5(3,0,0,3,0) = 0.118 — j0.066
h3(3,0,0) = —0.384 + 50.136 h7(0,0,0,0,0,0,0) = —1.140 + j0.764
h3(3,0,3) = —0.033 + 50.029 h7(1,0,0,0,0,0,0) = 0.309 — j0.207

hz(1,0,0,0,1,0,0) = —0.106 + 70.072
h7(3,0,0,0,1,0,0) = —0.107 + j0.072
h7(3,0,0,0,3,0,0) = —0.043 + 50.029

Third-order nonlinearities

h3(0,0,1) = 0.194 — j0.068 h5(0,0,0,3,0) = 0.233 — j0.131
h3(0,0,3) = —0.192 + 50.068 hs(1,1,0,0,0) = 0.118 — j0.066
ha(1,1,0) = —0.115 + 50.041 hs(1,1,1,1,0) = 0.049 — 50.028
ha(3,3,0) = —0.041 + 70.015 hs(3,3,0,0,0) = 0.059 — 50.033

h5(0,0,0,1,0) = —0.460 + j0.259 h7(0,0,0,0,1,0,0) = 0.231 — j0.156
hs(0,0,0,2,0) = 0.039 — j0.022  h(0,0,0,0,3,0,0) = ~0.081 + 50.054
h2(1,1,0,0,0,0,0) = —0.053 4 50.036

Fifth-order nonlinearities

h5(0,0,0,1,1) = 0.039 — j0.022
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Table 5.2: REDUCED VOLTERRA COEFFICIENTS FOR A PSK CHANNEL

Linear part

h1(0) = 1.220 + j0.646
h1(1) = 0.063 — 70.001
h1(2) = —0.024 — 50.014
h1(3) = 0.036 + j0.031

Third-order nonlinearities
h3(0,0,2) = 0.039 — 50.022
k3(3,3,0) = 0.018 — j0.018
h3(0,0,1) = —0.035 + 50.035
h3(0,0,3) = —0.040 — 70.009
hs(1,1,0) = —0.001 — j0.017

Fifth-order nonlinearities

h5(0,0,0,1,1) = 0.039 — 50.022

The input vector X(n) and the coefficient vector W(n), at time n are defined as

X(n) = [o(n), 2(m)a(n)a"(n — 2),2(n — 1),a(n - 3)a(n — 3)*(n),
z(n)z(n)z*(n — 1),z(n)e(n)z*(n — 3),z(n — Na(n — 1)z*(n),
z(n)z(n)z(n)z*(n — )z*(n — 1),

z(n - 2),z(n - 3)]7 (5.9)
and

W(n) = [do(n), bo,o2(n), &1(n), b33,0(n), bo0(n),

bo,0,1(n), Bo,0,3(n), b1,1,0(n), é0,0,01,1(n), da(n), aa(n)]" (5.10)

respectively. In the above “T” represents transpose of a matrix. Thus, the main concern
of the exponentially weighted LS problem under consideration is to find, at each time

n, the optimal coefficient vector W(n) that would minimize the cost function

J(n) = i AR | d(k) — WH ()X (k) |2 (5.11)
k=0

where the superscript“H”denotes Hermitan transpose of a matrix as in Chapter 2.
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5.2.1 RLS ADAPTIVE VOLTERRA SATELLITE CHANNEL
IDENTIFICATION USING SPMLS

The approach for developing a lattice structure for Volterra satellite channel identifica-
tion is to transform the higher-order nonlinear channel identification problem into an
equivalent multichannel, but linear, adaptive channel identification problem. The basic
idea is to partition the input vector X(n) at time n into the following set of smaller

vectors,

- CH1: [z(n),z(n—1),z(n—2),2(n — 3)]
CH2: [z(n)z(n)z*(n —2)]

CH3: [z(n-—3)z(n—3)z"(n)]

[
CH4: [z(n)z(n)z*(n - 1)]
CH5: [z(n)z(n)z*(n - 3)]
[
[

CHG6: [z(n—1)z(n—1)z"(n)]

CHT7: [z(n)z(n)x(n)z*(n — 1)z*(n — 1)] (5.12)

so that each of the vectors can be considered as being formed from successive samples
of signals from a different input channel. To avoid matrix inversion and vector opera-
tions and to achieve simplicity, good numerical properties and modularity, a complete,
modified Gram-Schmidt orthogonalization of the input data X(n) is obtained using
SPMLS.

The main objective in this section is to apply sequential processing lattice stages.into
the Volterra satellite channel identification problem. A block diagram of the Volterra
satellite channel identification problem using SPMLS’s is shown in Figure 5.1. The com-
plex, a posteriori and indirect form of SPMLS algorithm is used in the Volterra satellite
channel identification. In complex, a posteriori, indirect form, processing equations for

cells represented as double circles are,
r(n) = Ar(n — 1) + [s,(n)] [7i(n) (5.13)

Yo(n) = 1) = |sr(n)|* /7(n) (5.14)

where s,(n) is the input signal to the cell, r(n) is the LS autocorrelation of the input
signal, 7;(n) is the input likelihood variable, A is the exponential weighting factor and

9o(n) is the output likelihood variable, all at time n. Processing equations for cells
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represented as circles are,

A(n) = AA(n — 1) + s¥(n)s,(n)/7i(n) (5.15)
K(n) = A(n)/r(n) (5.16)
30(n) = 8i(n) — k*(n)s.(n) (5.17)

where s;(n) and s,(n) are the input signal and the reference input signal to the cell
respectively, A(n) is the LS crosscorrelation between the input signals, s,(n) is the
output signal from the cell, all at time n.

The basic idea employed is to obtain a modified Gram-Schmidt orthogonalization

of X(n) sequentially in such a way that an orthogonal basis set corresponding to X(n),

b(n) = [B3(n), b§(n), B(n), B3(n), b3(n), B§(n), BG(n), B3(n), B3(n), B3(m)]  (5.18)

is obtained, so that the desired signal d(n) can be estimated as a linear combination
of the orthogonal basis set b(n), instead of the elements of X(z). To obtain the new
orthogonal set sequentially, the elements of X(n) are grouped into three coloumns of a

matrix as shown in (5.19).

[ z(n) z(n—-1) x(n-2) z(n-3) T

z(n)z(n)z*(n — 2)
z(n — 3)z(n — 3)z*(n)
z(n)z(n)z*(n — 1) (5.19)
z(n)z(n)z*(n — 3)
z(n — 1)z(n — 1)z*(n)
z(n)z(n)z(n)z*(n — 1)z*(n — 1) J

Each row in this matrix may be thought of as made up of samples of a signal belonging to

a different channel in (5.12). Initially, the elements of the first coloumn are orthogonal-
ized with a SOP and the new orthogonal signals, called backward prediction error (BPL)
signals, 53(n), B3(n), B3(n), B3(n),b4(n), B3(n)H8(n) are then obtained. The second
coloumn, z(n— 1), is predicted from b3(n), b(n), b3(n), b3(n),b3(n), b§(n),b8(n) and the
desired signal is estimated from 53(n), b3(n), b2(n), B3(n),b&(n), B5(n),b8(n). Thus, the
BPE signal, b9(n) and the first stage estimation error signal e;(n) are generated. Simi-
larly, the elements of the first coloumn are predicted from b3(n— 1) and the forward pre-

diction errors (FPE) signals fP(n), fl(n), [E(n), [{(n), J}(n), [} (n), [} (n) are obtained.
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Following these steps, the first stage FPE signals f2(n), fl (n), f2(n), F3(n), [1(n), [7(n), [i(n)
are predicted from §§(n — 1). The first stage estimation error signal e;(n) is estimated
from b%(n) and then the second stage estimation error signal e3(n) is obtained. The FPE
error signals f2(n), fi(n), f2(n), f3(n), fi(n), ff(n), ff(n) are similarly orthogonalized
using a SOP. The delayed first stage backward prediction error signal, 3(n — 1) are pre-
dicted from the orthogonolized FPE signals f2(n), fi(n), f2(n), f£(n), fi(n), f(n), fi(n)
and the second stage BPE signal b3(n) is obtained. ey(n) is estimated with the new
BPE signal 53(n) and so on.
The computational complexity of the satellite channel identification filter is larger
than the second-order case for the same channel length N, due to higher order Volterra

components.

§.2.2 EXPERIMENTAL RESULTS

Several experiments were conducted to show the performance of the satellite channel
identification filter. In the experiments, the exponential weighting factor is 0.995, the

input signal z(n) is a 4-PSK signal defined as
z(n) = e¥n (5.20)

where 1, takes values from the set

{%—Zﬁ(z’ 1)+ ¢}; (5.21)

and ¢ is an arbitrary constant phase. If ¢ = 0, then %, takes values from the set

{0, ST, 37"} So, z(n) takes values from the set
{1,ef’f/2,ef",ej3"/2} ) (5.22)

The measurement noise signal is an additive white, zero-mean, pseudo-Gaussian, un-
correlated with the input signal. The variance of measurement noise is 0.001. The
autocorrelation values, Tzzz(m1 — N2 — n3) and Tgge(0), for the estimation of the
zeroth-order term h, are computed by time-averaging the input vector components
z(n — n1)z(n — ng)z*(n — n3) and z(n)z(n)z(n)z*(n — 1)z*(n — 1) respectively. The
computed values of 75z4(m1 — ng —n3) and T4z424(0) are then subtracted from the input
vector components, z(n—n;)2(n —n2)z*(n—n3) and z(n)z(n)z(n)z*(n—1)z*(n—1) at
time 7, before the first SPMLS. The results presented are ensemble averages of 50 inde-

pendent runs. Performance evaluations were carried out by plotting the mean-squared
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Table 5.3: ESTIMATED LINEAR AND NONLINEAR WEIGHTS OF THE 4-PSK
CHANNEL

Linear part

do = 1.220 4 70.64445
i, = 0.063 — 70.008

dy = —0.0243 — 50.0145
a3 = 0.0368 + 70.0316

Third-order nonlinearities
boo,2 = 0.04 — 50.0228

ba 30 = 0.0179 — j0.0177
bo,0,1 = —0.0348 + j0.0352
bo,p;3 = —0.0406 — j0.0093
b1,1,0 = 0.0376 — 50.038

Fifth-order nonlinearities

¢0,0,0,1,1 = 0.0188 — 70.0193

value of the a posteriori estimation error, in Figure 5.2 and the estimated coefficients
of the channel, in Table 5.3. Note that the filter has a very good convergence speed
and there is bias in some coeflicients due to the choice of exponential weighting factor

and measurement noise.

5.3 RLS ADAPTIVE VOLTERRA SATELLITE CHANNEL
EQUALIZATION USING SPMLS

In this section, SPMLS’S are applied into the digital satellite channel equalization
problem. The channel is modeled as a 4-PSK with the reduced Volterra coefficients in
Table 5.2. A procedure similar to the equalization of second-order Volterra channels
will be followed.

To obtain the multichannel input signal to the adaptive equalizer, the input vector

at time n is partitioned as follows

CH1: [y(n),y(n—-1),...,y(n— N ~2)]
CH2: [y(m)y(m)y’(n —2),...,y(n— N+ Dy — N + Dy(n - N — 1)
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Figure 5.2: Learning curve for the adaptive Volterra satellite channel identification filter.
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CH3: [y(n=3)y(n - 3)y*(n),...,y(n — N = 2)y(n - N — 2)y*(n — N + 1)]
CH4: [y(m)y(n)y"(n—1),...,y(n = N + 1)y(n — N + 1)g*(n — N - 1)]
CHS: [y(n)y(n)y*(n—3),...,9(n — N+ L)y(n — N + 1)y*(n — N - 2)]
CH6: [y(n—Dy(n - 1)y*(n),...,y(n — N)y(n — N)y*(n — N + 1)]
CHT: [y(n)y(n)y(n)y"(n ~ y*(n - 1),...,
y(n— N+ )y(n — N+ D)y(n - N + L)y*(n = N)y*(n— N)]  (5.23)

so that each of the vectors can be considered as being formed from successive samples
of signals from a different input channel.

To avoid matrix inversion and vector operations and to achieve simplicity, good
numerical properties and modularity, a complete, modified Gram-Schmidt orthogonal-
ization of the input data is obtained using SPMLS.

A block diagram of the Volterra satellite channel equalization problem using SPMLS’s
for N = 2 is shown in Appendix B. The complex, a priori and direct form of SPMLS
algorithm is used in the Volterra satellite channel equalization. In complex, a priori,

direct form, processing equations for cells represented as double circles are,
r(n) = Ar(n — 1) + 7i(n) s, (n)]? (5.24)

Yo(n) = %i(n) = () |s,(n)]? /7(n) (5.25)

where s,(n) is the input signal to the cell, r(n) is the LS autocorrelation of the input
signal, 7;(n) is the input likelihood variable, A is the exponential weighting factor and
Yo(n) is the output likelihood variable, all at time n. Processing equations for cells

represented as circles are,
so(n) = si(n) — k*(n — 1)s,(n) (5.26)

A(n) = A(n — 1) + %i(n)s(n)sr(n)/r(n) (5.27)

where s;(n) and s,(n) are the input signal and the reference input signal to the cell
respectively, A(n) is the LS crosscorrelation between the input signals, s,(n) is the
output signal from the cell, all at time n.

The computational complexity of the Volterra satellite channel equalization filter
using SPMLS is larger than the second-order case for the same channel length N , due

to higher order Volterra components.
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5.3.1 EXPERIMENTAL RESULTS

Several experiments were conducted to show the performance of the satellite channel
equalization filter. In the experiments, the exponential weighting factor is 0.995, the
input signal z(n) to the satellite channel is the same 4-PSK signal used in the previ-
ous section. The measurement noise signal is an additive white, zero-mean, pseudo-
Gaussian, uncorrelated with the input signal. The variance of measurement noise is
0.001. The autocorrelation values, 7y, (71 —n2 —n3) and ryy,,, (0), for the estimation of
the zeroth-order term A, are computed by time-averaging the input vector components
y(n — n1)y(n — n2)y*(n — n3) and y(n)y(n)y(n)y*(n — 1)y*(n — 1) respectively. The
computed values of r,,,(n; — ng —n3) and ryyy,, (0) are then subtracted from the input
vector components, y(n—n1)y(n —n2)y*(n —n3) and y(n)y(n)y(n)y*(n—1)y*(n—1) at
time n, before the first SPMLS. The results presented are ensemble averages of 50 inde-
pendent runs. Performance evaluations were carried out by plotting the mean-squared
value of the a priori estimation error, in Figure 5.4. The desired signal was obtained
by delaying the input signal suitably so that the smallest mean squared error for the
equalizer is obtained. The delay parameter for the smallest mean squared error was
four. Notice that the higher-order Volterra equalizer filter converges slower comparing

to the second-order Volterra equalizer in Chapter 4.
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CHAPTER 6

CONCLUSIONS

In this thesis, a new multichannel lattice structure for nonlinear systems modeled with
Volterra series representation is presented. The structure is different from most previ-
ously published Volterra structures in that it completely orthogonalizes the multichan-
nel input signal vector resulting in a less complex, very modular and suitable for VLSI
implementations. It is also applicable to arbitrary input signal and planes of support
of the Volterra kernels extending to higher order nonlinearities.

In Chapter 2, adaptive filtering algorithms employing truncated Volterra series rep-
resentation of nonlinear systems were considered. Section 2.3 and 2.4 presented the
LMS and RLS adaptive second-order Volterra filtering algorithms respectively. In sec-
tion 2.5, the benefits of lattice structures in Volterra filtering applications were men-
tioned, the Gram-Schmidth orthogonalization algorithm was reviewed and the new lat-
tice structure, sequential processing multichannel lattice stages, were introduced. The
nonlinear filtering problem was transformed into an equivalent multichannel, but linear,
adaptive filtering problem. The implementation of the modified Gram-Schmidth or-
thogonalization algorithm with SPMLS’s were discussed. Different forms of the SPMLS
algorithm were given.

Chapter 3 presents a system identification application of the RLS filter based on
SPMLS. In section 3.1, the general LS adaptive second-order Volterra system identifica-
tion problem was described. Then, section 3.2 presented the RLS adaptive second-order
Volterra system identification with SPMLS’s. In section 3.3, the results of several ex-
periments showing the performance of the new lattice filter was investigated. In these
experiments, the adaptive filters were run in with the same structure and the same
number of coefficients as that of the system that was to be identified. It was observed
that the algorithm shared the fast convergence property of all RLS algorithms and
showed even better performance than RLS transversal Volterra filters without suffering

numerical instability.
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In Chapter 4, the equalization of the Volterra type of nonlinear channels were con-
sidered. Section 4.1 presented the general LS adaptive second-order Volterra channel
equalization problem. In section 4.2, the nonlinear equalization problem was tran-
formed into the equivalent multichannel, but linear, adaptive equalization problem.
Then, the RLS second-order Volterra channel equalization problem with SPMLS’s were
introduced. Section 4.3 was concerned with the experimental results showing the per-
formance of the equalizer for different channel distortions.

The final contributions appeared in Chapter 5, in which the equalization and iden-
tification of digital satellite channels were investigated. These types of channels have
such a nonlinear structure that they can be modeled with higher order Volterra se-
ries. The structure of the Volterra filter was so defined that it can identify or equalize
higher-order Volterra channels. The complex forms of SPMLS algorithm were used due
to complex channel coeflicients and complex channel input signal. The performance of
the higher-order Volterra filter was tested for the identification and the equalization of
a 4-PSK nonlinear channel. It was observed that the learning curve for the equalizer
converged to steady state later, comparing to the second-order Volterra equalizer.

The algorithm was not tested under finite precision conditions, but one could expect
that the numerical properties of the nonlinear filters using SPMLS algorithm would be
similar to their linear counterparts and the analysis of the numerical properties of such
filters [36] have shown that they indeed possess good finite precision characteristics.

As the approach in this thesis achieves the desired modularity and suitability for
VLSI implementation, the estimation of the order of memory, the order of nonlinearity
and the effects of order and model mismatch issues should also be investigated, in.the

future research.
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BI i
ock diagram of the VOlterﬁ‘a‘:sa,tellite channel equalization with SPMLS’s.
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