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ADAPTIVE WAVELET ESTIMATION: A BLOCK THRESHOLDING
AND ORACLE INEQUALITY APPROACH
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We study wavelet function estimation via the approach of block thresh-
olding and ideal adaptation with oracle. Oracle inequalities are derived and
serve as guides for the selection of smoothing parameters. Based on an
oracle inequality and motivated by the data compression and localization
properties of wavelets, an adaptive wavelet estimator for nonparametric re-
gression is proposed and the optimality of the procedure is investigated. We
show that the estimator achieves simultaneously three objectives: adaptiv-
ity, spatial adaptivity and computational efficiency. Specifically, it is proved
that the estimator attains the exact optimal rates of convergence over a
range of Besov classes and the estimator achieves adaptive local minimax
rate for estimating functions at a point. The estimator is easy to imple-
ment, at the computational cost of O�n�. Simulation shows that the es-
timator has excellent numerical performance relative to more traditional
wavelet estimators.

1. Introduction. Wavelet methods have demonstrated considerable suc-
cess in nonparametric function estimation in terms of spatial adaptivity, com-
putational efficiency and asymptotic optimality. In contrast to the traditional
linear procedures, wavelet methods achieve (near) optimal convergence rates
over large function classes such as Besov classes and enjoy excellent mean
squared error properties when used to estimate functions that are spatially
inhomogeneous. For example, as shown by Donoho and Johnstone (1998),
wavelet methods can outperform optimal linear methods, even at the level
of convergence rate, over certain Besov classes.

Standard wavelet methods achieve adaptivity through term-by-term
thresholding of the empirical wavelet coefficients. There, each individual
empirical wavelet coefficient is compared with a predetermined threshold.
A wavelet coefficient is retained if its magnitude is above the threshold
level and is discarded otherwise. A well-known example of term-by-term
thresholding is Donoho and Johnstone’s VisuShrink [Donoho and Johnstone
(1994)]. VisuShrink is spatially adaptive and the estimator is within a log-
arithmic factor of the optimal convergence rate over a wide range of Besov
classes. VisuShrink achieves a degree of tradeoff between variance and bias
contributions to the mean squared error. However, the tradeoff is not optimal.
VisuShrink reconstruction is often over-smoothed.

Hall, Kerkyacharian and Picard (1999) considered block thresholding for
wavelet function estimation which thresholds empirical wavelet coefficients in
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groups rather than individually. The goal is to increase estimation precision
by utilizing information about neighboring wavelet coefficients. The method
of Hall, Kerkyacharian and Picard is to first obtain a near unbiased estimate
of the sum of squares of the true coefficients within a block and then to keep
or kill all the coefficients within the block based on the magnitude of the
estimate. The estimator attains the exact minimax rate of convergence with-
out the logarithmic penalty over a range of perturbed Hölder classes [Hall,
Kerkyacharian and Picard (1999)].

In the present paper, we study block thresholding rules via the approach of
ideal adaptation with oracle. An oracle will not tell us the true estimand, but
will tell us, for our method, the “best” choice of smoothing parameters. Ideal
adaptation is the performance which can be achieved from smoothing with the
aid of an oracle. This approach has been used by Donoho and Johnstone (1994)
in developing term-by-term thresholding procedures. Our goal is to derive an
estimator that achieves simultaneously three objectives: adaptivity, spatial
adaptivity and computational efficiency.

We use the standard device of transforming a function estimation problem
into a normal mean problem of estimating the wavelet coefficients in the se-
quence domain [see, e.g., Donoho and Johnstone (1994)]. After Section 2 in
which basic notation and motivations are reviewed, we study in Section 3 the
problem of estimating a normal mean by a special family of block shrink-
age estimators. The coordinates of the mean vector are estimated in groups
and simultaneous shrinkage decisions are made about all coordinates within
a block. The performance of the estimators is compared to that of an ideal
“estimator” in which case an oracle is available. The goal is to construct esti-
mators which can essentially mimic the performance of an oracle. Among the
many traditional shrinkage estimators developed in normal decision theory,
the James–Stein estimator is perhaps the best known and is the primary fo-
cus in the present paper. A risk inequality for block projection oracle using a
blockwise James–Stein rule is derived in Section 3. The block projection oracle
inequality offers insights into the balance and tradeoff between block length
and threshold level. The oracle inequality, together with the compromise be-
tween global and local adaptation, suggests the optimal choice of block size
and thresholding constant in wavelet function estimation.

Guided by the oracle inequality developed in Section 3 and motivated by
the data compression and the localization properties of wavelets described
in Section 2, we define in Section 4 a block thresholding estimator, called
BlockJS, for nonparametric regression. BlockJS overcomes the problem of
choosing smoothing parameters and achieves simultaneously the three ob-
jectives: adaptivity spatial adaptivity and computational efficiency.

The asymptotic properties of the estimator are investigated in Section 5.
The estimator enjoys a high degree of adaptivity and spatial adaptivity in
terms of the rate of convergence both for global and local estimation. It is
shown that BlockJS simultaneously attains the exact optimal rate of conver-
gence over a wide interval of the Besov classes, without prior knowledge of the
smoothness of the underlying functions. The estimator automatically adapts
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to the local smoothness of the underlying function; it attains the local adaptive
minimax rate for estimating functions at a point.

BlockJS is easy to implement, at the computational cost of O�n�. The esti-
mator is not only quantitatively appealing but visually appealing as well. We
show, in Section 5, that BlockJS has an interesting smoothness property: if
the underlying function is the zero function, then, with probability tending to
1, BlockJS is also the zero function.

In Section 6, estimators with different choices of block sizes and thresh-
old levels are compared. Based on the comparisons of the properties of the
estimators, it is shown that BlockJS achieves the optimal balance between
global adaptivity and local adaptivity among the given class of estimators. In
the present paper we also suggest that, through the example of the James–
Stein estimator, block thresholding serves as a “bridge” between the tradi-
tional shrinkage estimators in normal decision theory and the more recent
wavelet function estimation. This connection allows us to develop new classes
of (near) optimal wavelet estimators, all of which may be useful in different
estimation situations.

Simulation results, summarized in Section 7 , show that the estimator has
excellent numerical performance relative to more traditional wavelet estima-
tors. For example, for three of the four test functions of Donoho and Johnstone
(1994), Doppler, Bumps and Blocks, BlockJS has better precision with sam-
ple size n than VisuShrink with sample size 2n for all n from 512 to 8192
and all signal-to-noise ratios from 3 to 7. Section 8 discusses generalizations
and variations of the method. The proofs of the main theoretical results are
postponed to Section 9.

2. Notation and motivation. An orthonormal wavelet basis is generated
from dilation and translation of two basic functions, a “father” wavelet φ and a
“mother” wavelet ψ. In the present paper, the functions φ and ψ are assumed
to be compactly supported and

∫
φ = 1. We call a wavelet ψ r-regular if ψ has

r vanishing moments and r continuous derivatives.
For simplicity in exposition, we work with periodized wavelet bases on �0�1�,

letting

φ
p
jk�t� =

∑
l∈�

φjk�t− l�� ψ
p
jk�t� =

∑
l∈�

φjk�t− l� for t ∈ �0�1��

where

φjk�t� = 2j/2φ�2jt− k�� ψjk�t� = 2j/2ψ�2jt− k�

The collection �φp

j0k
� k = 1� 
 
 
 �2j0 	 ψp

jk� j ≥ j0 ≥ 0� k = 1� 
 
 
 �2j� is then
an orthonormal basis of L2�0�1�, provided the primary resolution level j0 is
large enough to ensure that the support of the scaling functions and wavelets
at level j0 is not the whole of �0�1�. The superscript “p” will be suppressed
from the notation for convenience.

An orthonormal wavelet basis has an associated exact orthogonal discrete
wavelet transform (DWT) that is norm-preserving and transforms sampled
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data into the wavelet coefficient domain in O�n� steps. We will use the stan-
dard device of transforming the problem in the function domain into a problem,
in the sequence domain, of estimating the wavelet coefficients. See Daubechies
(1992) and Strang (1992) for further details about the wavelets and the dis-
crete wavelet transform.

For a given square-integrable function f on �0�1�, denote ξjk = �f�φjk
,
θjk = �f�ψjk
. So the function f can be expanded into a wavelet series,

f�t� =
2j0∑
k=1

ξj0k
φj0k

�t� +
∞∑

j=j0

2j∑
k=1

θjkψjk�t�
(2.1)

In (2.1), ξj0k
are the coefficients at the coarsest level. They represent the gross

structure of the function f and θjk are the wavelet coefficients which represent
finer and finer structures of the function f as the resolution level j increases.

A remarkable fact about wavelets is that full wavelet series (those having
plenty of nonzero coefficients) represent really pathological functions, whereas
normal functions have sparse wavelet series [see Meyer (1992), page 113]. A
wavelet transform can compact the energy of a normal function into very few
number of large wavelet coefficients. See DeVore, Jawerth and Popov (1992)
and Meyer (1992) for details on the data compression property of wavelets.

Wavelet bases are well localized, that is, local regularity properties of a
function are determined by its local wavelet coefficients. In particular, a func-
tion is smooth at a point if and only if its local wavelet coefficients decay fast
enough. The wavelet coefficients at high resolution levels are small where the
function is smooth.

Based on these data compression and localization heuristics, one can intu-
itively envision that all but only a small number of wavelet coefficients of a
normal function are negligible and large coefficients at high resolution levels
cluster around irregularities of the function.

3. Oracle inequality: a tool. Suppose we observe a noisy sampled func-
tion f,

yi = f�ti� + εzi� i = 1�2� 
 
 
 � n�

with ti = i/n, n = 2J and zi i.i.d. N�0�1�. We wish to recover the unknown
function f based on the sample y = �y1� 
 
 
 � yn�. By applying the orthogonal
discrete wavelet transform to y, we can turn the function estimation problem
into a problem of estimating a high-dimensional normal mean. Furthermore,
according to the data compression and the localization properties of wavelets,
we can envisage the normal mean: the wavelet coefficients, as a sparse vector
which contains only a small portion of large coordinates.

We thus consider in this section the problem of estimating a multivariate
normal mean. Suppose we are given

xi = θi + σzi�(3.1)
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i = 1� 
 
 
 � n, zi ∼ N�0�1� i.i.d. with σ known. We wish to estimate
θ = �θ1� 
 
 
 � θn� based on the observations x = �x1� 
 
 
 � xn� under the
mean squared error

R�θ̂� θ� = 1
n

∑
E�θ̂i − θi�2
(3.2)

When n = 1 or 2, decision theory shows that the maximum likelihood esti-
mator x is an admissible estimator of θ. When n ≥ 3, it was shown by Stein
(1955) that x is no longer a good estimator of θ in the sense that x is uniformly
dominated by some other estimators. It is known that in order to perform well
according to the risk measure (3.2), some form of shrinkage is necessary [see,
e.g., Lehmann (1983)].

Diagonal projection oracle. Donoho and Johnstone (1994) studied ideal
adaptation using a special class of shrinkage estimators, diagonal projection
estimators, in the context of wavelet function estimation. Ideal adaptation is
the performance which can be achieved from smoothing with the aid of an or-
acle. Such an oracle will not tell us the true estimand, but will tell us, for our
method, the “best” choice of smoothing parameters [see Donoho and Johnstone
(1994)]. The “estimator” obtained with the aid of an oracle is not a true statis-
tical estimator; it represents an ideal for a particular estimation method. The
approach of ideal adaptation is to derive true estimators which can essentially
“mimic” the performance of an oracle.

Suppose we observe �xi� as in (3.1). Denote by � a given subset of indices
and consider

θ̂i�� � =
{
xi� if j ∈ � ,
0� if j /∈ � 


Such a diagonal projection estimator either keeps or omits a coordinate. For
each individual coordinate, the expected loss is

E�θ̂i�� � − θi�2 = σ2I�i ∈ � � + θ2
i I�i /∈ � �


Ideally, to minimize the risk, one would estimate θi by xi when θ2
i > σ2

and by 0 otherwise. A diagonal projection (DP) oracle would not tell us the
value of θi, but would supply exactly the extra side information �oracle�θ� =
�i� θ2

i > σ2�. The ideal diagonal projection consists in estimating only those
θi larger than the noise level. Supplied with such an oracle, one would have
an “estimator” θ̂ideal

i = xi I�θ2
i > σ2� and would attain the ideal risk

Rdp
oracle�θ� σ�1� = 1
n

n∑
i=1

min�θ2
i � σ

2�


The “estimator” θ̂ideal
i , however, is not a true estimator in a statistical sense,

because it depends on the unknown parameter θ. To mimic the performance
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of the DP oracle, Donoho and Johnstone (1994) proposed the soft threshold
estimator,

θ̂∗i = sgn�xi���xi� − σ
√

2 log n�+�(3.3)

and showed that the estimator comes (essentially) within a logarithmic factor
of the ideal risk for all θ ∈ R

n. Specifically, they show the following DP oracle
inequality:

R�θ̂∗� θ� ≤ �2 log n+ 1��Rdp
oracle�θ� σ�1� + σ2/n� for all θ ∈ R
n
(3.4)

Donoho and Johnstone derive the DP oracle inequality primarily for wavelet
function estimation. They and coauthors show that the wavelet estimator, Vis-
uShrink, achieves unusual adaptivity. The estimator comes within a logarith-
mic factor of the minimax rates over a wide range of Besov classes [Donoho,
Johnstone, Kerkyacharian and Picard (1995)].

Block projection oracle. A DP estimator keeps or kills each coordinate indi-
vidually without using information about other coordinates. On the contrary,
a block projection (BP) estimator thresholds coordinates in groups, it uses in-
formation about neighboring coordinates. Simultaneous decisions are made to
retain or discard all the coordinates within the same group.

Suppose �xi� are given as in (3.1). Let B1�B2� 
 
 
 �BN be a partition of the
index set �1� 
 
 
 � n� with each Bi of size L (For convenience, we assume that
the sample size n is divisible by the block size L). Let � be a subset of the
block indices �1� 
 
 
 �N�. A block projection estimator associated with � is
defined as

θ̂Bj
�� � =

{
xBj

� if j ∈ � �

0� if j /∈ � 

(3.5)

where xBj
denotes the vector �xi�i∈Bj

. For each given block the expected loss is

E�θ̂Bj
�� � − θBj

�2 = Lσ2I�j ∈ � � + �θBj
�2

2I�j /∈ � �
(3.6)

To minimize the risk (3.6), we would ideally like to choose � to consist of
blocks with signal greater than noise, that is, �θBj

�2
2 > Lσ2. A BP oracle

would supply exactly this side information,

�∗ = �∗�θ� = �j� �θBj
�2

2 > Lσ2�

With the aid of the BP oracle, one has the ideal block projection “estimator,”

θ̂Bj
��∗� =

{
xBj

� if j ∈ �∗�
0� if j /∈ �∗

(3.7)

with the ideal risk

Rbp
oracle�θ� σ�L� = inf
�

1
n
E�θ̂�� � − θ�2 = 1

n

N∑
j=1

��θBj
�2

2 ∧Lσ2��(3.8)
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where a ∧ b = min�a� b�. It is clear that the ideal risk is unattainable in
general because it requires the knowledge of an oracle which is unavailable
in most realistic situations. The ideal “estimator” (3.7) is not a true estimator
in a statistical sense. Our first goal is to derive a practical estimator which
can mimic the performance of the BP oracle. That is, we wish to construct an
estimator whose risk is close to the risk of the ideal “estimator.” In the present
paper, we focus on the well-known James–Stein estimator. Generalizations of
the method are discussed in Section 8.

Suppose xi are observed as in (3.1). James and Stein (1961) proposed a
particularly simple shrinkage estimator, θ̂�1� = �1−�n−2�σ2/S2�x where S2 =∑

x2
i . James and Stein (1961) show that the estimate dominates the maximum

likelihood estimator x when n ≥ 3. It is easy to see that the estimator θ̂1 is
further dominated by θ̂�2� = �1 − �n− 2�σ2/S2�+ x.

Efron and Morris (1973) showed that the (positive part) James–Stein esti-
mator θ̂�2� does more than just demonstrate the inadequacy of the maximum
likelihood estimator x. It is a member of a class of good shrinkage rules, all of
which may be useful in different estimation problems. The class of estimators,
θ̂ = �1 − cσ2/S2�+ x can be regarded as truncated empirical Bayes rules. See
Efron and Morris (1973).

Under the context of BP estimators, we consider a class of blockwise James–
Stein estimators. Within each block Bj, a James–Stein shrinkage rule is ap-
plied,

θ̂Bj
�L�λ� =

(
1 − λLσ2

S2
j

)
+
xBj

�(3.9)

where S2
j = �xBj

�2
2. We compare the risk of the estimator (3.9) with the ideal

risk (3.8). When the block size L and the threshold λ are properly chosen,
the blockwise James–Stein rule can mimic the performance of a BP oracle.
Other types of shrinkage procedures are also usable and are presently under
consideration; see Berger (1985).

Theorem 1 (BP oracle inequality). Assume that xi and θ̂Bj
�L�λ� are given

as in (3.1) and (3.9), respectively. Then

R�θ̂�L�λ�� θ� ≤ 1
n

N∑
j=1

��θBj
�2 ∧ λLσ2� + 4σ2P�χ2

L > λL�
(3.10)

Written in “oracular” form, we have

R�θ̂�L�λ�� θ� ≤ λRbp
oracle�θ� σ�L� + 4σ2P�χ2
L > λL�
(3.11)

In particular, with the choice of the block size L = log n and the threshold
λ = λ∗ ≡ 4
50524,

R�θ̂�L�λ∗�� θ� ≤ λ∗Rbp
oracle�θ� σ�L� + 2σ2

n

(3.12)
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Therefore, with block size L = log n and thresholding constant λ∗ =
4
50524, the estimator comes essentially within a constant factor of 4.50524
of the ideal risk. The oracle inequality (3.12) is the main motivation for
proposing the BlockJS estimator in wavelet function estimation setting. The
risk inequality is also a key in proving the asymptotic optimality of the
BlockJS estimator. The second term on the right-hand side of (3.11) is also
important; it determines the balance between the block length L and the
threshold level λ when it is applied to function estimation problems. See
discussions in Section 6.

Remark. The threshold λ∗ = 4
50524 is the solution of the equation λ −
log λ − 3 = 0. This particular threshold is chosen so that the corresponding
wavelet estimator is (near) optimal in function estimation problems. See Sec-
tion 6 for further discussions.

Block linear shrinker oracle. An alternative to the block projection estima-
tors given in (3.5) is the more general block linear shrinkers,

θ̂Bj
= γjxBj

� γj ∈ �0�1�

In the case of block projection, γj ∈ �0�1�
 An oracle for block linear shrinkage
provides the ideal shrinkage factors γj = �θBj

�2
2/��θBj

�2
2 +Lσ2�� and it is easy

to see that the risk of the ideal “estimator” is given by

Rbls
oracle = 1
n

N∑
j=1

�θBj
�2

2Lσ
2

�θBj
�2

2 +Lσ2



A risk inequality for the block linear shrinker oracle can be derived as well.

Theorem 2. The estimator given in (3.9) satisfies

R�θ̂�L�λ�� θ� ≤ 2λRbls
oracle�θ� σ�L� + 4σ2P�χ2
L > λL�
(3.13)

With L = log n and λ = λ∗ ≡ 4
505� 
 
 
 � we have

R�θ̂�L�λ∗�� θ� ≤ 2λ∗Rbls
oracle�θ� σ�L� + 2σ2

n



Therefore, with block size L = log n and thresholding constant λ∗ =
4
50524, the risk of the estimator is within a constant factor of the risk of an
ideal block linear shrinker.

4. Wavelet shrinkage via the BP oracle inequality: the connection.
Now let us consider the function estimation problem and imagine that the nor-
mal mean vector θ in (3.1) is the wavelet coefficients of a regression function.
According to the data compression and the localization properties of wavelets,
it is reasonable to think of θ as a high-dimensional sparse normal mean vec-
tor. We estimate the coordinates of the mean vector in groups by putting the
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empirical wavelet coefficients into blocks and make simultaneous shrinkage
decisions about all coefficients within a block. The true wavelet coefficients at
each resolution level is estimated via a blockwise James–Stein rule. The BP
oracle inequality (3.12) serves as a guide for choosing the block size and the
threshold level, as well as a key in showing the adaptivity of the estimator.
We are now ready to define our block thresholding wavelet estimator.

Method. Suppose we observe a noisy sampled function f,

yi = f�ti� + εzi� i = 1�2� 
 
 
 � n(4.1)

with ti = i/n, n = 2J and zi i.i.d. N�0�1�. The noise level ε is assumed to be
known. We are interested in recovering the unknown function f. The precision
of an estimator is measured both globally by the expected integrated squared
error,

R�f̂� f� = E�f̂− f�2
2�(4.2)

and locally by the expected loss at a point,

R�f̂�t0�� f�t0�� = E�f̂�t0� − f�t0��2


Suppose we observe the data Y = �yi� as in (4.1). Let (̃ = Wn−1/2Y be the
discrete wavelet transform of n−1/2Y. Write

(̃ = �ξ̃j01� 
 
 
 � ξ̃j02j0 � θ̃j01� 
 
 
 � θ̃j02j0 � 
 
 
 � θ̃J−1�1� 
 
 
 � θ̃J−1�2J−1�T


Here ξ̃j0k
are the gross structure terms at the lowest resolution level, and

the coefficients θ̃jk (j = 1� 
 
 
 � J− 1� k = 1� 
 
 
 �2j) are fine structure wavelet
terms. One may write

θ̃jk = θ′jk + n−1/2εzjk�(4.3)

where the mean θ′jk is approximately the true wavelet coefficients of f, and
zjk’s are the transform of the zi’s and so are i.i.d. N�0�1�.

At each resolution level j, the empirical wavelet coefficients θ̃jk are grouped
into nonoverlapping blocks of length L. Let �jb� denote the set of indices of
the coefficients in the bth block at level j, that is,

�jb� = ��j� k�� �b− 1�L+ 1 ≤ k ≤ bL�


Let S�jb� ≡
∑

b θ̃
2
jk denote the L2 energy of the noisy signal in block �jb�. We

then apply the James–Stein shrinkage rule to each block �jb�. For jk ∈ �jb�,

θ̂jk = �1 − λLε2/S2
�jb��+ θ̃jk
(4.4)
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Applying the inverse discrete wavelet transform (IDWT), we obtain the es-
timate of f at the sample points. That is, �f�ti�� i = 1� 
 
 
 � n� is estimated
by f̂ = �f̂�ti�� i = 1� 
 
 
 � n� with f̂ = W−1n1/2(̂. The estimate of the whole
function f is given by

f̂n�t� =
2j0∑
k=1

ξ̃j0k
φj0k

�t� +
J−1∑
j=j0

2j∑
k=1

θ̂jkψjk�t�
(4.5)

Based on the BP oracle inequality we derived in Section 3, we choose the
block size L = log n and the threshold λ = λ∗ = 4
50524. With these particular
choices of block size and threshold level in (4.4), we call the estimator in (4.5)
BlockJS and denote the estimator in (4
5) by f̂∗

n.

Remark. The block length L = log n is selected based on the optimal com-
promise of global and local adaptivity. The thresholding constant λ∗ = 4
50524
is chosen according to the BP oracle inequality and a minimax criterion dis-
cussed in Section 6. With the given block length and threshold level, the esti-
mator achieves both global and local adaptivity simultaneously. See Section 6
for further details on the choices of block length and threshold level.

5. Properties of the BlockJS estimator.

Global properties. As is traditional in the wavelet literature, we investi-
gate the adaptivity of the BlockJS procedure across a range of Besov classes.
Besov spaces are a very rich class of function spaces. They include many tra-
ditional smoothness spaces such as Hölder and Sobolev spaces, as well as
function classes of significant spatial inhomogeneity such as the bump alge-
bra and the bounded variation classes. We show that BlockJS enjoys excellent
adaptivity across a wide range of Besov classes. Full details of Besov spaces
are given, for example, in DeVore and Popov (1988).

For a given r-regular mother wavelet ψ with r > α, define the sequence
seminorm of the wavelet coefficients of a function f by

�θ�bsp�q =
( ∞∑

j=j0

(
2js

(∑
k

�θjk�p
)1/p)q)1/q

(5.1)

where s = α+1/2−1/p. The wavelet basis provides smoothness characteriza-
tion of the Besov spaces. It is an important fact that the Besov function norm
is equivalent to the sequence norm of the wavelet coefficients of f. See Meyer
(1992). We will always use the equivalent sequence norm in our calculations
with �f�Bα

p�q
. The Besov class Bα

p�q�M� is defined to be the set of all functions
whose Besov norm is less than M.

Denote the minimax risk over a function class � by

R�� � n� = inf
f̂n

sup
�

E�f̂n − f�2
2
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Donoho and Johnstone (1998) show that the minimax risk over a Besov class
Bα

p�q�M� is of the order n−r with r = 2α/�1 + 2α�, that is,

R�Bα
p�q�M�� n� � n−2α/�1+2α�� n → ∞


And the minimax linear rate of convergence is n−r′ as n → ∞ with

r′ = α+ �1/p− − 1/p�
α+ 1/2 + �1/p− − 1/p� where p− = max�p�2�
(5.2)

Therefore, the traditional linear methods such as kernel and orthogonal series
estimates are suboptimal for estimation over the Besov bodies with p < 2.

The following theorem shows that the simple block thresholding rule attains
the exact optimal convergence rate over a wide range of the Besov scales.

Theorem 3. Suppose the wavelet ψ is r-regular. Then BlockJS satisfies

sup
f∈Bα

p�q�M�
E�f̂∗

n − f�2 ≤ Cn−2α/�1+2α�(5.3)

for all M ∈ �0�∞�, α ∈ �0� r�, q ∈ �1�∞� and p ∈ �2�∞�.

Thus, BlockJS, without knowing the a priori degree or amount of smooth-
ness of the underlying function, attains the true optimal convergence rate that
one could achieve by knowing the regularity. That is,

sup
f∈Bα

p�q�M�
E�f̂∗

n − f�2 � R�Bα
p�q�M�� n� for p ≥ 2


Over the Besov classes with p < 2, we have the following theorem.

Theorem 4. Assume that the wavelet ψ is r-regular. Then the BlockJS
estimator is simultaneously within a logarithmic factor from being minimax
for p < 2,

sup
f∈Bα

p�q�M�
E�f̂∗

n − f�2 ≤ Cn−2α/�1+2α��log n��2/p−1�/�1+2α�(5.4)

for all M ∈ �0�∞�, α ∈ �1/p� r�, q ∈ �1�∞� and p ∈ �1�2�.

Therefore, by comparing with the minimax linear rate (5.2), BlockJS
achieves advantages over the traditional linear methods even at the level of
rates.

Remark. Hall, Karkyacharian and Picard (1999) study global adaptivity of
their block thresholding procedure over a family of perturbed Hölder classes.
It can be easily shown, using the oracle inequality (3.12), that BlockJS also
achieves optimal convergence rates over a wide range of perturbed Hölder
classes.
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Local adaptation. We now consider the property of BlockJS for estimating
functions at a point. For functions of spatial inhomogeneity, the local smooth-
ness of the functions varies significantly from point to point and global risk
measures such as (4.2) cannot wholly reflect the performance of estimators at
a point. The local risk measure

R�f̂�t0�� f�t0�� = E�f̂�t0� − f�t0��2(5.5)

is used for spatial adaptivity.
We measure the local smoothness of a function at a point by its local Hölder

smoothness index. Let us define the local Hölder class 1α�M�t0� δ� as follows.
For a fixed point t0 ∈ �0�1� and 0 < α ≤ 1,

1α�M�t0� δ� = �f� �f�t� − f�t0�� ≤ M �t− t0�α for t ∈ �t0 − δ� t0 + δ��

If α > 1, then

1α�M�t0� δ� = �f� �f��α���t� − f��α���t0�� ≤ M �t− t0�α
′

for t ∈ �t0 − δ� t0 + δ��
where �α� is the largest integer less than α and α′ = α− �α�.

It is a well-known fact that for global estimation, it is possible to achieve
complete adaptation for free in terms of the convergence rate across a range
of function classes. That is, one can do as well when the degree of smoothness
is unknown as one could do if the degree of smoothness is known. However,
for estimation at a point, one must pay a price for adaptation. The optimal
rate of convergence for estimating f�t0� over function class 1α�M�t0� δ� with
α completely known is n−2α/�1+2α�. Lepski (1990) and Brown and Low (1996b)
showed that one has to pay a price for adaptation of at least a logarithmic
factor even when α is known to be one of two values. It is shown that the best
one can do is (

log n
n

)2α/�1+2α�
�

when the smoothness parameter α is unknown. We call �log n/n�2α/�1+2α� the
local adaptive minimax rate over the Hölder class 1α�M�t0� δ�.

The following theorem shows that BlockJS achieves optimal local adapta-
tion with minimal cost.

Theorem 5. Suppose the wavelet ψ is r-regular and φ has r vanishing
moments with r ≥ α. Let t0 ∈ �0�1� be fixed. Then the BlockJS estimator f̂∗

n

satisfies

sup
f∈1α�M�t0� δ�

E�f̂∗
n�t0� − f�t0��2 ≤ C

(
log n
n

)2α/�1+2α�
(5.6)

Remark. The choice of L = log n is important for achieving the optimal
local adaptivity. The result does not hold if L = �log n�1+δ, δ > 0. See Section 6
for further details.
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Denoising property. The BlockJS procedure is easy to implement, at the
computational cost of O�n�. Besides the global and local adaptation proper-
ties, BlockJS has an interesting denoising property which should offer high
visual quality of the reconstruction. If the sample contains purely noise with-
out any signal, then, with probability tending to 1, the underlying function is
estimated by the zero function.

Theorem 6. If the target function is the zero function f ≡ 0, then with
probability tending to 1 BlockJS is also the zero function; that is, there exist
universal constants Pn such that

P�f̂∗
n ≡ 0�f ≡ 0� ≥ Pn → 1 as n → ∞
(5.7)

6. Choices of block size and threshold level. In the problem of esti-
mating a function f based on a sample contaminated with noise,

yi = f�ti� + εzi� i = 1�2� 
 
 
 � n�

we have three objectives in mind: adaptivity, spatial adaptivity, and compu-
tational efficiency. We indicated in the previous sections that, with block size
L = log n and λ = 4
50524, BlockJS achieves the three objectives simulta-
neously. In particular, Theorems 3, 5 and 6 hold. Naturally, one would ask,
How are the block size and the threshold selected? What is the performance of
estimators with other choices of block length and threshold level? To answer
these questions, let us first look back at the oracle inequality (3.11).

For the purpose of selecting block size and threshold level, let us regard the
right-hand side of the oracle inequality (3.11) as the true risk instead of an
upper bound. We then choose the thresholding constant of a given block size by
minimizing the risk relative to an ideal risk. A similar approach of minimizing
an upper bound on the risk has been used in Wahba (1990), page ix). For a
chosen block size L, we compare the risk with the ideal risk, ��θ�2

2∧Lσ2�+σ2/n
and select the corresponding threshold according to the minimax quantity

λL = arg min
λ

sup
θ

λ��θ�2
2 ∧Lσ2� + 4σ2P�χ2

L > λL�
��θ�2

2 ∧Lσ2� + σ2/n

(6.1)

Based on this criterion, we select the thresholding constant λL so that the
“risk” of the estimator is minimized, in comparison with the ideal risk. The
threshold λL increases as the block size L decreases. We consider here three
interesting cases of block size, L = 1, log n and �log n�1+δ. The case L = 1 is
the standard term-by-term thresholding, and the block size of L = �log n�1+δ

is used in Hall, Kerkyacharian and Picard (1999). [The thresholding rule in
Hall, Kerkyacharian and Picard (1999), however, is different from the block-
wise James–Stein rule discussed here.] We first determine the corresponding
thresholding constant λL.
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Proposition 1. Let the threshold λL be defined as in (6.1), then:

(i) With block size L = log n,

λL ∼ 4
50524 as n → ∞
(6.2)

(ii) With L = 1,

λL ∼
√

2 log n as n → ∞
(6.3)

(iii) With L = �log n�1+δ, δ > 0,

λL ∼ 1 as n → ∞
(6.4)

Our choice of threshold λL = 4
50524 used in BlockJS is based on (6.2).
The choice of block size L = log n aims at achieving a high degree of both
global and local adaptivity. The proof of Proposition 1 uses Lemma 2 on chi-
square tail probabilities in Section 9. How are the performances of the block
thresholding estimators with parameters �L�λL� for L = 1 and L = �log n�1+δ?
We summarize the results in the following theorems.

Theorem 7. Let L = 1 and λ = √
2 log n, and denote by f̂

�1�
n the estimator

given by (4.4) and (4.5). Under the conditions of Theorems 3 and 5, f̂
�1�
n satisfies

�6
5� �i� sup
f∈Bα

p�q�M�
E�f̂�1�

n − f�2 � n−2α/�1+2α��log n�2α/�1+2α��

�6
6� �ii� sup
f∈1α�M�t0� δ�

E�f̂�1�
n �t0� − f�t0��2 ≤ C

(
log n
n

)2α/�1+2α�
�

�6
7��iii� P�f̂�1�
n ≡ 0�f ≡ 0� ≥ Pn → 1 as n → ∞


That is, the results of Theorems 5 and 6, but not Theorem 3, hold for f̂
�1�
n .

Therefore, the estimator f̂
�1�
n has the noise-free feature and optimal local

adaptivity, but not optimal global adaptivity. The extra logarithmic factor in
(6.5) is unavoidable because this is a term-by-term thresholding estimator.
The shrinkage function ηJS

λ �x� = �1 − λ/x2�+x is bounded between the hard
threshold ηh

λ�x� = xI��x� > λ� and the soft threshold ηs
λ�x� = sgn�x���x� −

λ�+. The estimator enjoys essentially the same properties as VisuShrink. This
estimator has also been studied by Gao (1998).

What if we choose a larger block size? With L = �log n�1+δ, we have the
following.

Theorem 8. Denote by f̂
�2�
n the estimator given by (4.4) and (4.5), with block

size L = �log n�1+δ, δ > 0 and a fixed thresholding constant λ > 1. Under the
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conditions of Theorems 3 and 5, f̂
�2�
n satisfies

�6
8� �i� sup
f∈Bα

p�q�M�
E�f̂�2�

n − f�2 � n−2α/�1+2α�	

�6
9� �ii� sup
f∈1α�M�t0� δ�

E�f̂�2�
n �t0� − f�t0��2 �

(
log n
n

)2α/�1+2α�
�log n�2αδ/�1+2α�	

�6
10��iii� P�f̂�1�
n ≡ 0�f ≡ 0� ≥ Pn → 1 as n → ∞


That is, the results of Theorems 3 and 6, but not Theorem 5, hold for f̂
�2�
n .

In words, the estimator f̂�2�
n achieves global adaptivity, but not optimal local

adaptivity. The extra logarithmic factor in (6.9) is because the estimator is not
well localized; the block size L = �log n�1+δ is too large to achieve optimal
local adaptivity in terms of the rate of convergence at a point. We emphasis
here that the optimal block size L = log n is specifically for the family of
blockwise James–Stein estimators and for nonparametric regression models.
The optimal choice of block size may differ in other situations.

By comparing the asymptotic properties of the estimators, it is clear that
only the BlockJS estimator, with block size L = log n and threshold λ =
4
50524, achieves both global and local adaptivity simultaneously. The block
size of L = log n achieves the optimal compromise between global and local
adaptivity in terms of convergence rates.

We have so far focused on the selection of block length and threshold level
based entirely on asymptotics. Empirically, other criteria, of course, can also
be used for choosing smoothing parameters. A natural choice is to use the
principle of minimizing Stein’s unbiased risk estimate [Stein (1981)]. This
approach has been used by Donoho and Johnstone (1995) in term-by-term
thresholding. Ignoring the higher order approximation error, the method can
be described as follows.

The positive part James–Stein estimator (4.4) is weakly differentiable;
Stein’s formula for unbiased estimate of risk yields that

SURE�θ̃j•�L� λ� ≡ 2j +∑
b

λ2L2 − 2λL�L− 2�
S2

�jb�
I�S2

�jb� > λL�

+ �S2
�jb� − 2L�I�S2

�jb� ≤ λL�
is Stein’s unbiased risk estimate at resolution level j. Then we can empirically
choose the level-dependent block size Lj and threshold level λj to be the
minimizer of SURE:

�Lj� λj� = arg min
L�λ

SURE�θ̃j•�L� λ�


The performance of this estimator is currently under study. We will report the
results elsewhere in the future.
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7. Simulation results. We compare the numerical performance of
BlockJS with Donoho and Johnstone’s VisuShrink and SureShrink as well
as Coifman and Donoho’s translation-invariant (TI) denoising method.
SureShrink selects the threshold at each resolution level by minimizing
Stein’s unbiased estimate of risk at each resolution level. In the simulation,
we use the hybrid method proposed in Donoho and Johnstone (1995). The TI
denoising method was introduced by Coifman and Donoho (1995).

Eight test functions representing different level of spatial variability are
used. The test functions are normalized so that all of the functions have equal
s
d
�f� = 10. (Formulas and graphs of the test functions are given in the
Appendix). BlockJS, VisuShrink, SureShrink and TI denoising are applied to
noisy versions of the test functions. Sample sizes from n = 512 to n = 8192
and signal-to-noise ratios (SNR) from 3 to 7 are considered. To save space, we
report here only a brief summary of the simulation results. See Cai (1998) for
further details.

Simulation shows that BlockJS uniformly outperforms VisuShrink in all
examples in terms of the mean squared error. For five of the eight test func-
tions, Doppler, Bumps, Blocks, Spikes and Blip, the estimator has better pre-
cisions with sample size n than VisuShrink with sample size 2n for all n
from 512 to 8192 (see Table 1). BlockJS also yields better results than TI
denoising in most cases, especially when the underlying function has signifi-
cant spatial variability. BlockJS is comparable to SureShrink in terms of the
mean squared error. See Table 1 and Figure 1. The BlockJS reconstruction
does not contain spurious fine-scale structure that is sometimes contained in
SureShrink reconstruction [see Cai (1998)].

Different combinations of wavelets and signal-to-noise ratios yield basically
the same results. As an illustration of this, Table 1 gives numerical results
for SNR = 7 using Daubechies compactly supported wavelet Symmlet 8. Ta-
ble 1 reports the average squared error over 20 replications with sample sizes
ranging from n = 512 to n = 8192. Figure 1 provides a graphical comparison
of the mean squared error of BlockJS with those of the other three estima-
tors. In Figure 1, the vertical bars represent the ratios of the MSEs of each
estimator to the corresponding MSE of BlockJS. The higher the bar the better
the relative performance of BlockJS.

It would be interesting to compare the numerical performance of BlockJS
with that of the block thresholding estimator of Hall, Kerkyacharian and Pi-
card (1999). However, their method requires the selection of smoothing pa-
rameters, block length and threshold level, and no specific criterion is given
for choosing the parameters in finite sample cases. We therefore leave explicit
numerical comparison for future work.

8. Discussion. BlockJS can be modified by averaging over different block
centers. Specifically, for each given 0 ≤ i ≤ L−1, partition the indices at each
resolution level j into blocks

�jb� = ��j� k�� �b− 1�L+ i+ 1 ≤ k ≤ bL+ i�
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Table 1
Mean squared error from 20 replications �SNR = 7�

n BlockJS Visu Sure TI n BlockJS Visu Sure TI

Doppler HeaviSine
512 0.756 1.838 0.984 1.438 512 0.370 0.395 0.361 0.323
1024 0.424 1.188 0.564 0.886 1024 0.217 0.290 0.236 0.223
2048 0.236 0.781 0.352 0.541 2048 0.129 0.204 0.138 0.154
4096 0.121 0.424 0.182 0.292 4096 0.099 0.117 0.080 0.091
8192 0.060 0.259 0.105 0.169 8192 0.059 0.078 0.051 0.062

Bumps Blocks
512 1.758 5.835 1.187 4.034 512 1.562 3.569 1.335 2.746
1024 0.929 3.610 0.977 2.342 1024 0.949 2.290 0.836 1.847
2048 0.528 2.211 0.547 1.354 2048 0.584 1.615 0.648 1.253
4096 0.391 1.160 0.343 0.712 4096 0.501 0.883 0.367 0.696
8192 0.210 0.707 0.210 0.418 8192 0.290 0.620 0.268 0.461

Spikes Blip
512 0.274 0.502 0.256 0.268 512 0.258 0.455 0.364 0.369
1024 0.149 0.339 0.114 0.155 1024 0.150 0.335 0.235 0.253
2048 0.106 0.265 0.086 0.110 2048 0.090 0.229 0.132 0.161
4096 0.068 0.191 0.060 0.075 4096 0.069 0.139 0.095 0.096
8192 0.053 0.151 0.046 0.055 8192 0.038 0.085 0.053 0.061

Corner Wave
512 0.170 0.208 0.187 0.152 512 0.395 1.402 0.277 0.339
1024 0.077 0.114 0.086 0.086 1024 0.178 0.782 0.155 0.203
2048 0.040 0.072 0.045 0.054 2048 0.098 0.461 0.092 0.117
4096 0.036 0.036 0.036 0.035 4096 0.060 0.060 0.060 0.028
8192 0.018 0.018 0.018 0.018 8192 0.044 0.044 0.037 0.014

In the original BlockJS estimator, we take i = 0. Define f̂
�i�
n to be the version

of f̂∗
n for a given i and set

f̂∗∗
n =

L−1∑
i=0

f̂
�i�
n

/
L


The estimator f̂∗∗
n often has superior numerical performance, at the cost of

higher computational complexity. This technique was also used in Hall, Peneu,
Kerkyacharian and Picard (1997).

The James–Stein estimator has been used in wavelet function estimation
by Donoho and Johnstone (1995). The estimator, WaveJS, is constructed by
applying the James–Stein estimator resolution-level-wise, so it is not local
and does not have the spatial adaptivity enjoyed by the BlockJS estimator
introduced in the present paper. Indeed, the main purpose of Donoho and
Johnstone’s introduction of the WaveJS procedure is to show that a linear
estimator does not perform well even it is an adaptive and nearly ideal linear
estimator [see Donoho and Johnstone (1995)].

We have focused on the James–Stein estimator in the present paper. The
block thresholding method can be used with other types of shrinkage esti-
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Fig. 1. Comparison of MSEs. For each signal the bars are ordered from left to right by the sample
sizes �n = 512 to 8192�. The higher the bar the better the relative performance of BlockJS.

mators in normal decision theory, for example, estimators of the forms θ̂ =
�1 − λ1σ

2/�λ2 + S2��+y or θ̂ = �1 − c�S2�/S2�+y. In this sense, block thresh-
olding serves as a “bridge” between traditional normal decision theory and
the recent adaptive wavelet estimation. This bridge enables us to utilize the
rich results developed in the decision theory for wavelet function estimation.
On the other hand, block thresholding methods can also be used in other sta-
tistical function estimation problems such as density estimation and linear
inverse problems. We will address these applications elsewhere.

Finally, we note that in the present paper the adaptivity of the BlockJS
estimator is discussed only in terms of the rate of convergence; the constant
factor is not considered. The exact asymptotic risk is unknown for a general
Besov class. In the special case of Sobolev classes, Efromovich and Pinsker
(1984) constructed an adaptive estimator using Fourier series, which is simul-
taneously asymptotically sharp minimax, and Efromovich (1998) developed
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an estimator that is sharp optimal for estimating both the function and its
derivatives over Sobolev classes.

9. Proofs. We shall prove Theorems 1, 3, 4 and 5. Theorem 2 follows from
Theorem 1 and some algebra and the proof of Theorem 6 is straightforward.
The proof of Theorems 7 and 8 is similar to that of Theorems 3, 4, and 5.

The proof of Theorems 3 and 4 uses the sequence space approach introduced
by Donoho and Johnstone (1998). A brief description of the approach and an
equivalent result in sequence space is presented in this section. The proof of
the equivalent result in a sequence estimation problem is also given in this
section.

Proof of Theorem 1. Let xi = µi + σzi, i = 1� 
 
 
 �L, and let µ̂i = �1 −
λLσ2/S2�+xi, where S2 = �x�2 and λ ≥ 1 is a constant. Denote R�µ̂� µ� σ� =
Eσ�µ̂ − µ�2

2, and µ∗ = µ/σ . Since R�µ̂� µ� σ� = σ2R�µ̂∗� µ∗�1�, it suffices to
consider only the case σ = 1 and to show

E�θ̂− θ�2
2 ≤ �µ�2 ∧ λL+ 4P�χ2

L > λL�

The (positive part) James–Stein estimator is weakly differentiable; Stein’s
formula for unbiased estimate of risk yields

E�µ̂− µ�2
2 = E �Sure�x�L� λ���(9.1)

where

Sure�x�L� λ� = L+ λ2L2 − 2λL�L− 2�
S2

I�S2 > λL�

+ �S2 − 2L�I�S2 ≤ λL�
(9.2)

is Stein’s unbiased risk estimate. Simple algebra yields

Sure�x�L� λ� ≤ max�λL−L+ 4�L�(9.3)

and it follows from (9.3) trivially,

E�µ̂− µ�2
2 ≤ λL+ 4P�χ2

L > λL�(9.4)

for λ ≥ 1 and L ≥ 4. The inequality (9.4) can be verified directly for the cases
of L = 1, 2 and 3 using the specific noncentral chi-square distributions. For
the sake of brevity we omit the proof. It remains to be shown

E�µ̂− µ�2
2 ≤ �µ�2 + 4P�χ2

L > λL�
(9.5)

It follows from (9.1) and (9.2) that

E�µ̂− µ�2
2 = �µ�2 +E

[
λ2L2 − 2λL2 + 4λL

S2
−S2 + 2L

]
I�S2 > λL�


Let µ∗ = �µ�2/2, then E�µ̂− µ�2
2 is a function of µ∗, L and λ. S2 = ∑

x2
i has

a noncentral χ2-distribution with density

f�y� =
∞∑
k=0

µk
∗e

−µ∗

k!
fL+2k�y��(9.6)
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where fm�y� = �1/2m/28�m/2��ym/2−1e−y/2 is the density of a central χ2-
distribution. Write

G�µ∗�L� λ� = E

[
λ2L2 − 2λL2 + 4λL

S2
−S2 + 2L

]
I�S2 > λL�


It is easy to see that G�0�L� λ� ≤ 4P�χ2
L > λL�. So it suffices to show that

G�µ∗�L� λ� is decreasing in µ∗. Denoting by Ym a central χ2 variable with
degrees of freedom m and using (9.6) as the density of S2, we have

G�µ∗�L� λ� =
∞∑
k=0

µk
∗e

−µ∗

k!
E

[
λ2L2 − 2λL2 + 4λL

YL+2k
−YL+2k+2L

]
I�YL+2k >λL�

≡
∞∑
k=0

µk
∗e

−µ∗

k!
gk


Since

∂G�µ∗�L� λ�
∂µ∗

=
∞∑
k=0

µk
∗e

−µ∗

k!
�gk+1 − gk��

it is thus sufficient to show gk+1 − gk ≤ 0 for all k ≥ 0. Some algebra yields
that for L > 2,

gk+1 − gk =
(

2λL
L+ 2k

− 2
)
P�YL+2k > λL�

− 2λL�λL−L+ 2k+ 2�
�L+ 2k��L+ 2k− 2� P�YL+2k−2 > λL�


(9.7)

It is easy to see that gk+1−gk ≤ 0 when λ ≤ L+2k. For the case of λ > L+2k,
we appeal to the following lemma on chi-square tail probabilities.

Lemma 1.

P�χ2
n+2 ≥ T� ≤ T

n

(
1 + 2

T− n

)
P�χ2

n ≥ T� if T > n
(9.8)

Applying (9.8) to (9.7), it yields gk+1 − gk ≤ 0 when λ > L+ 2k. Therefore,
when L > 2, G�µ∗�L� λ� is decreasing in µ∗. Hence G�µ∗�L� λ� ≤ G�0�L� λ� ≤
4P�χ2

L > λL�� and (9.5) follows:

E�µ̂− µ�2
2 = �µ�2 +G�µ∗�L� λ� ≤ �µ�2 + 4P�χ2

L > λL�

The cases of L = 1 and L = 2 can be verified directly; we omit the proof here.

Inequality (3.12) follows from (3.11) and the following lemma on the bounds
of the tail probability of a central chi-square distribution.

Lemma 2. The tail probability of χ2
L has the following lower and upper

bounds:

2
5λ

−1 L−1/2 �λ−1 eλ−1�−L/2 ≤ P�χ2
L ≥ λL� ≤ 1

2 �λ−1 eλ−1�−L/2(9.9)
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With L = log n and λ∗ = 4
50524, Lemma 2 yields

P�χ2
L > λL� ≤ 1

2
�λ−1eλ−1�−L/2 ≤ 1

2n



The inequality (3.12) now follows from (3.11). ✷

Asymptotically equivalent estimation problem in sequence space. We shall
prove Theorems 3 and 4 by using the sequence space method introduced by
Donoho and Johnstone (1998). A key step is to use the asymptotic equivalence
results presented by Brown and Low (1996a) and to approximate the problem
of estimating f from the noisy observations in (4.1) by the problem of estimat-
ing the wavelet coefficient sequence of f contaminated with i.i.d. Gaussian
noise.

Donoho and Johnstone (1998) show an equivalence result on the white noise
model and the nonparametric regression over the Besov classes Bα

p�q�M�.
When the wavelet ψ is r-regular with r > α and p�q ≥ 1, then a simul-
taneously near-optimal estimator in the sequence estimation problem can be
applied to the empirical wavelet coefficients in the function estimation problem
in (4.1), and will be a simultaneously near-optimal estimator in the function
estimation problem. For further details about the equivalence and approxi-
mation arguments, see Donoho and Johnstone (1995, 1998) and Brown and
Low (1996a). For approximation results, see also Chambolle, DeVore, Lee and
Lucier (1998).

Under the correspondence between the function and sequence estimation
problems, it suffices to consider the following estimation problem in sequence
space.

Suppose we observe sequence data,

yjk = θjk + n−1/2εzjk� j ≥ 0� k = 1�2� 
 
 
 �2j�(9.10)

where zjk are i.i.d. N�0�1�. The mean vector θ is the object that we wish
to estimate. The accuracy of estimation is measured by the expected squared
error R�θ̂� θ� = E

∑
j� k�θ̂−θ�2. We assume that θ is known to be in some Besov

body (s
p�q�M� = �θ� �θ�bsp�q ≤ M�, where the norm is defined as in (5.1). Make

the usual calibration s = α+1/2−1/p. The minimax rate for estimating θ over
the Besov body (s

p�q�M� is n−2α/�1+2α� as n → ∞ [see Donoho and Johnstone
(1998)].

We now apply a BlockJS-type procedure to this sequence estimation prob-
lem. Let J = �log2 n�. Divide each resolution level j0 ≤ j < J into nonover-
lapping blocks of length L = �log n�. Again denote (jb) the bth block at level
j. Now estimate θ by θ̂∗ with

θ̂∗jk =


yjk� for j ≤ j0�

�1 − λ∗Ln−1ε2/S2
�jb��+ yjk� for jk ∈ �jb�� j0 ≤ j < J�

0� for j ≥ J


(9.11)

We have the following minimax results for this estimator.
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Theorem 9. Let θ̂∗ be given as in (9.11), then

sup
(s

p�q�M�
E�θ̂∗ − θ�2

2

≤
{
Cn−2α/�1+2α�� for p ≥ 2�
Cn−2α/�1+2α��log n��2−p�/�p�1+2α��� for p < 2 and αp ≥ 1


(9.12)

The results of Theorems 3 and 4 follow from this theorem and the equiva-
lence argument. See also Donoho and Johnstone (1995).

Proof. We begin by stating the following elementary inequalities without
proof.

Lemma 3. Let x ∈ R
m and 0 < p1 ≤ p2 ≤ ∞. Then the following inequali-

ties hold:

�x�p2
≤ �x�p1

≤ m1/p1−1/p2�x�p2

(9.13)

Let y and θ̂∗ be given as in (9.10) and (9.11), respectively. Then,

E�θ̂∗ − θ�2
2 = ∑

j<j0

∑
k

E�θ̂∗jk − θjk�2 +
J−1∑
j=j0

∑
k

E�θ̂∗jk − θjk�2 +
∞∑

j=J

∑
k

θ2
jk

≡ S1 +S2 +S3


(9.14)

Denote by C a generic constant that may vary from place to place. It is clear
that the first term S1 is small,

S1 = 2j0n−1ε2 = o�n−2α/�1+2α��
(9.15)

First consider the case p ≥ 2. Since θ ∈ (α
p�q�M�, so 2js�∑2j

k=1 �θjk�p�1/p ≤ M.

Lemma 3 yields that for p ≥ 2,
∑2j

k=1 �θjk�2 ≤ M22−j2α. Hence,

S3 =
∞∑

j=J

2j∑
k=1

θ2
jk ≤

∞∑
j=J

M22−j2α ≤ Cn−2α = o�n−2α/�1+2α��
(9.16)

Now let us consider the term S2. Denote by β2
�jb� = ∑

k∈�jb� θ
2
jk the sum of

squared coefficients within the block �jb�. Let J1 = ��1/�1 + 2α�� log2 n�. So,
2J1 ≈ n1/�1+2α�. The BP oracle inequality (3.12) yields

S2 =
J−1∑
j=j0

∑
k

E�θ̂∗jk − θjk�2 ≤ λ∗
J−1∑
j=j0

∑
b

�β2
�jb� ∧Ln−1ε2� + 2n−1ε2

≤ λ∗
J1−1∑
j=j0

∑
b

Ln−1ε2 + λ∗
J−1∑
j=J1

∑
b

β2
�jb� + 2n−1ε2 ≤ Cn−2α/�1+2α�


(9.17)

By combining (9.17) with (9.15) and (9.16), we have

E�θ̂∗ − θ�2
2 ≤ Cn−2α/�1+2α� for p ≥ 2
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Now let us consider the case p < 2. Since θ ∈ (α
p�q�M� and p < 2, Lemma

3 yields
∑2j

k=1 �θjk�2 ≤ M22−j2s. The assumption αp ≥ 1 implies that S3 is of
higher order,

S3 =
∞∑

j=J

2j∑
k=1

θ2
jk ≤

∞∑
j=J

M22−j2s ≤ Cn−2α−1+2/p = o�n−2α/�1+2α��
(9.18)

Now we consider the term S2. First we state the following lemma without
proof.

Lemma 4. Let 0 < p < 1 and S = �x ∈ R
k� ∑k

i=1 x
p
i ≤ B� xi ≥ 0�

i = 1� 
 
 
 � k�. Then for A > 0,

sup
x∈S

k∑
i=1

�xi ∧A� ≤ BA1−p


Again denote β2
�jb� =

∑
k∈�jb� θ

2
jk. The BP oracle inequality (3.12) yields

S2 =
J−1∑
j=j0

∑
k

E�θ̂∗jk − θjk�2 ≤ λ∗
J−1∑
j=j0

∑
b

�β2
�jb� ∧Ln−1ε2� + 2n−1ε2
(9.19)

Let J2 be an integer satisfying 2J2 � n1/�1+2α��log n��2−p�/p�1+2α�. Then

λ∗
J2−1∑
j=j0

∑
b

�β2
�jb� ∧Ln−1ε2� ≤

J2−1∑
j=j0

∑
b

λ∗Ln
−1ε2

≤ Cn−2α/�1+2α��log n��2−p�/p�1+2α�


(9.20)

Note that
∑

b�β2
�jb��p/2 ≤ ∑

k�θ2
j� k�p/2 ≤ M2−jsp. Lemma 4 yields

λ∗
J−1∑
j=J2

∑
b

�β2
�jb� ∧Ln−1ε2� ≤ Cn−2α/�1+2α��log n��2−p�/p�1+2α�
(9.21)

We complete the proof by putting (9.15) and (9.18)–(9.21) together:

E�θ̂∗ − θ�2
2 ≤ Cn−2α/�1+2α��log n��2−p�/p�1+2α�
 ✷

Proof of Theorem 5. For simplicity, we give the proof for Hölder classes
1α�M� instead of local Hölder classes 1α�M�t0� δ�. Also we will ignore the
fact that the mean θ′j� k in (4.3) is not exactly, but only approximately, the true
wavelet coefficients of f. The approximation error is of higher order than the
minimax risk, therefore it is negligible. See Cai and Brown (1998) for details.

First note that for Hölder classes 1α�M� there exists a constant C > 0 such
that for all f ∈ 1α�M�,

�θj�k� = ��f�ψj�k
� ≤ C2−j�1/2+α�
(9.22)

The proof of the theorem makes use of the following elementary inequality.
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Lemma 5. Let Xi be random variables, i = 1� 
 
 
 � n
 Then

E

( n∑
i=1

Xi

)2

≤
( n∑

i=1

�EX2
i �1/2

)2


(9.23)

Now applying inequality (9.23), we have

E�f̂∗
n�t0� − f�t0��2

= E

[ 2j0∑
k=1

�ξ̂j0k
− ξj0k

�φj0k
�t0� +

∞∑
j=j0

2j∑
k=1

�θ̂jk − θjk�ψjk�t0�
]2

≤
[ 2j0∑
k=1

�E�ξ̂j0k
− ξj0k

�2φ2
j0k

�t0��1/2

+
J−1∑
j=j0

2j∑
k=1

�E�θ̂jk − θjk�2ψ2
jk�t0��1/2 +

∞∑
j=J

2j∑
k=1

�θjkψjk�t0��
]2

≡ �Q1 +Q2 +Q3�2


Since we are using wavelets of compact support, there are at most N basis
functions ψjk at each resolution level j that are nonvanishing at t0, where
N is the length of the support of the wavelets φ and ψ. Denote K�t0� j� =
�k� ψj�k�t0�  = 0�. Then �K�t0� j�� ≤ N
 It is easy to see that both Q1 and Q3
are small,

Q1 =
2j0∑
k=1

�E�ξ̂j0k
− ξj0k

�2�1/2�φj0k
�t0�� = O�n−1��(9.24)

Q3 =
∞∑

j=J

2j∑
k=1

�θjk��ψjk�t0�� ≤
∞∑

j=J
N�ψ�∞2j/2C2−j�1/2+α� ≤ Cn−α
(9.25)

We now consider the second term Q2. Applying Lemma 3 and the BP oracle
inequality (3.12), and using (9.22), we have

Q2 ≤
J−1∑
j=j0

∑
k∈K�t0� j�

2j/2�ψ�∞�E�θ̂jk − θjk�2�1/2

≤ C
J−1∑
j=j0

2j/2��2−j�1+2α� ∧Ln−1ε2� +Ln−2ε2�1/2

≤ C�log n/n�α/�1+2α�


(9.26)

Combining (9.24), (9.25) and (9.26), we have

E�f̂∗
n�t0� − f�t0��2 ≤ C�log n/n�2α/�1+2α�
 ✷
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APPENDIX

Four of the eight test functions, Doppler, HeaviSine, Bumps and Blocks are
from Donoho and Johnstone (1994). Blip and Wave are from Marron, Adak,
Johnstone, Neumann and Patil (1998). All of the test functions are normalized
so that each function has s
d
�f� = 10. Formulas of Spikes and Corner are
given below.

Spikes� f�x� = 15
6676
[
e−500�x−0
23�2 + 2 e−2000�x−0
33�2 + 4 e−8000�x−0
47�2

+ 3 e−16000�x−0
69�2 + e−32000�x−0
83�2]



Corner� f�x� = 62
387
[
10x3�1 − 4x2�I�0�0
5��x� + 3�0
125 − x3�x4I�0
5�0
8��x�

+ 59
443�x− 1�3I�0
8�1��x�
]

Fig. 2. Test functions.
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