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ABSTRACT 

Despite intensive research being conducted on the topic of adaptive filter design 

in general, adaptive filter design in the discrete wavelet transform (DWT) domain with 

specific constraints is still an active research area. The present work investigates the 

advantages and limitations of the design of a 2-chanel perfect-reconstruction wavelet 

filter which is adapted and optimized under minimum energy constraints in a specific 

band. Such a filter can be used with a quantizer and entropy encoder of a wavelet based 

image encoder to give optimum performance. 

An optimal 2-channel conjugate quadrature filter (CQF) bank has been designed 

and optimized using Sequential Quadratic Programming methods. The filter bank 

problem is solved using recently developed optimization techniques for general non-

linear, non-convex functions. The results indicate an improved performance for this 

method compared to the earlier-used Interior-Point optimization method. 
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CHAPTER 1 

INTRODUCTION 

The importance of visual communications has increased significantly in recent 

years with applications in several areas such as image/video databases, digital television 

transmission, and video conferencing. Uncompressed image and video data require 

considerable storage capacity and high bandwidth networks for their transmission. For 

example, an uncompressed color image of size 512x512 pixels with 24 bit color would 

require about 0.8 Mbytes, or a gray level lumbar medical image of size 2000x2500 would 

require 5Mbytes of space. The problem is very acute in cases where it is required to 

handle thousands of such images. Image compression in such a case is the only solution 

to decrease the amount of memory required to store the image and to reduce the 

bandwidth required to transmit the image. Efficient data compression techniques are 

highly essential for superior results. 

1.1 Discrete Wavelet Transform 

In recent years, the discrete wavelet transform (DWT) has become a standard 

technique in image data compression. DWT has high correlation and energy compaction 

efficiency. It has certain other distinct advantages, over other popular transforms, Uke the 

elimination of blocking artifacts and its suitability to the human visual system 

characteristics. 

A wide variety of wavelet-based schemes are available ranging from simple 

scalar-based coding to more complex techniques such as vector quantization and tree 

encoding. A wavelet based image encoder can be classified into three components: 

decomposition of the image using wavelets, quantization of the wavelet coefficients and 

entropy encoding of quantized coefficients. Although in every component there is 

freedom to choose from different options available, they collectively affect the coder 

performance, and the choice of the appropriate wavelet or the filter bank is very crucial. 

This is because if the performance of the wavelet filter is poor, the subsequent steps 



would be expected to perform poorly too. At the same time, if the most appropriate 

wavelet is found, then the overall performance of the coder would be optimum. Most of 

the well known image coding algorithms use a particular filter bank chosen from a 

variety of filters designed and developed over the years. In such algorithms, the same 

filter is used for coding and decoding all kinds of input images, whether it is a natural, 

synthetic or a medical image, which all have very different characteristics. This approach 

may not always give the best overall performance of the coder. Hence it is of significant 

interest to find the best or the optimum wavelet filters in any given case. This work does 

exactly that and it concentrates on the first coder step of designing the wavelet or the 

filter bank. An effective method is presented to find the optimum filter bank adaptively 

for the given input of the image source which depends on the statistics of the input. This 

work is founded on earlier similar work [1] done on adaptive wavelet filter banks. 

Also, designing a filter bank for any appUcation requires that a lot of variables be 

taken into account. The filters can be either finite impulse response (FIR) or infinite 

impulse response (DR). They can be either orthogonal or biorthogonal and perfect 

reconstructing or near perfect reconstructing. Since the application is intended for 

images, the filters have to be compactly supported in time, so that there is time-

localization and hence FIR filters are the obvious choice. The filter bank type that is 

chosen is a 2-channel conjugate quadrature filter (CQF) bank. A CQF bank is very 

similar to the more popularly known quadrature mirror filter (QMF) bank. It has been 

found to have slightly better distortion cancellation and frequency domain characteristics 

[2]. 

1.2 Optimization Technique 

Since a CQF bank design for a given filter order can have many possible 

solutions, the search for the best filter is an optimization problem. The problem is 

formulated by making use of an objective function which is dependent upon the input 

image statistics and various other criteria that imply perfect reconstruction of the image. 



This optimization is performed using the well-known Sequential Quadratic Programming 

(SQP) algorithm. 

SQP is a class of algorithms that solves a given problem by transforming it into a 

quadratic optimization and solves it using standard methods like the quasi-Newton step 

finding method and line-search. The results obtained are subsequently presented. 

The results are based on a comparison of using such optimum filter banks as opposed to 

using standard filter banks like the famous Daubechies filters. The results are also 

compared with the interior point algorithm method used in the earlier work [1]. 

1.3 Outline of the Thesis 

Chapter 2 deals with the wavelet and filter bank theory. A brief note about the 

importance of the application of wavelets to image source encoding is presented. The 

concepts of the CQF bank are noted and the filter design constraints using the perfect 

reconstruction criteria are derived. The complete optimization problem is formulated. 

Chapter 3 deals with the optimization concepts and the classification the various 

optimization techniques, with special emphasis on the Interior-Point and SQP methods. 

The problem, formulated in chapter 2, is classified in terms of convexity and non-

convexity, and then solved using the SQP algorithm. 

Chapter 4 presents the application of the filter bank to image source encoding and 

it includes the results of the tests performed on various images and comparison with the 

earlier-used Interior-Point method. 



CHAPTER 2 

ADAPTIVE WAVELET FILTER DESIGN 

2.1 Wavelet Basics and Equations 

Wavelets are functions defined over a finite interval and have an average value of 

zero [1]. The basic idea of the wavelet transform is to represent any arbitrary 

function f(t) as a superposition of a set of such wavelets or basis functions. These basis 

functions are obtained from a single prototype wavelet called the mother wavelet, by 

dilations or contractions (scaUng) and translations (shifts). 

To formalize the discussion about wavelets and filter banks let us introduce some 

notations that will be used throughout this work. The notations that are most commonly 

used in the literature are used. B'yxeZ,xsR o r x e C , w e denote that x belongs to the 

set of integer, real or complex numbers, respectively. By jce R'^''^ and xe C'^'^ we 

denote that x belongs to the set of real and complex objects, respectively, with M rows 

and A'̂  columns. The symbol [ ] denotes a discrete version of the signal of the continuous 

signal denoted by (). 

The scaUng and wavelet functions are given by: 

m = Y.n^oi.n)(l>{2t-n), (2.1) 

y/{t) = X„ ^ («)< (̂2^ - " ) ' teR. (2.2) 

Functions ̂ {t) and \i/{t) are called as the scaling and the wavelet functions respectively. 

If the scaUng and wavelet functions satisfy Eq.(2.1) and Eq.(2.2) they can be used as 

kernel functions to obtain a wavelet transform of a function f{t). While these equations 

guarantee a multiresolution representation of the function/(O, these equations are not 

sufficient to guarantee that the inverse transform exists, to completely recover the 

original function from the transform coefficients. The minimum requirement for the 

invertabiUty of a transform in terms of its basis is biorthogonaUty of the basis functions. 



in this case the scaling and wavelet functions [1]. In terms of the coefficients hgandiiy, 

the concUtions for complete reconstruction from the inverse wavelet transform are: 

5^^/o(n + 2m)h,(n) = S(m), me Z , (2.3) 

'^J,in-\-2m)h,(n) = Sim), (2.4) 

X „ / i (n + 2m)/io (n) = 0, and (2.5) 

Y^Join + 2m)hi(n) = 0. (2.6) 

Coefficients /g and /j are used in the inverse wavelet transformation. In order for the 

functions (/>(t) and y/(t) to form a bi-orthogonal basis, Eqs.(2.3)-(2.6) have to be 

satisfied. 

2.2 Advantages of Wavelets in Image EncocUng 

The wavelet transform offers a very promising method for image compression. 

Very high compression rates are achieved by using wavelet transforms. A brief 

explanation is given regarding the advantages of using wavelets for image source 

encoding. Wavelets offer certain advantages compared to popular transforms like the 

Discrete Cosine Transform (DCT) and Discrete Fourier Transform (DFT), which do a 

good job in locaUzing the energy in the frequency domain but behave relatively poorly in 

the space domain since they do not admit non-stationary signals [3]. Wavelets, on the 

other hand, admit non-stationary signals offering good locaUzation in both the frequency 

and space domains. Such locaUzation in both frequency and space is very important, 

especially in appUcations like image encocUng since one must be able to analyze the 

image at different scales (which is spatial frequency resolution) and to be able to encode 

the positional locations of the image (which is spatial resolution). 



Like the other transforms available, the wavelet transform reduces the entropy of 

the image, which means that the wavelet coefficient matrix has lower entropy than the 

image it is encoding. Apart from good frequency and space locaUzation, there are also 

fast algorithms available for implementing wavelet transforms. They have high de-

correlation and energy compaction properties. Effects Uke blocking artifacts and aUasing 

cUstortions can be eliminated by designing proper filters. An example of such a blocking 

artifact, called as checker-board artifact, which is caused due to non-smooth scaUng 

function or the low-pass filter, is shown in Fig. 2.1. It is better suited to the human visual 

system since its basis functions are locaUzed both in frequency and space. These 

properties make wavelets very attractive for image compression. A more detailed analysis 

of the wavelet subband coding and its advantages is given in a later chapter. 

Fig. 2.1: An image with an Artifact 

2.3 Wavelets and Filter Banks 

Now let us, briefly, try to understand the relationship between wavelet theory and 

filter banks as appUed to multiresolution analysis. Multirate filter banks are the 

fundamental building blocks for subband decomposition, which can be used for signal 

compression by splitting the input signal into multiresolution frequency bands and then 

cocUng or compressing each of the bands. Since a two-channel filter bank is used, we will 



discuss such a filter bank. Fig. 2.2 shows a two-channel filter bank. Herex[n] is the 

analysis section synthesis section 

4n] 

A h - —-f~»j i 2 <t2 "^ 

K >(12 V 
f i 

4n] 

Fig. 2.2: A 2-channel Filter bank 

input signal and /z ,̂ /ij, /g, f j are the analysis/decomposition and synthesis/reconstruction 

low-pass and high-pass FIR filters, respectively, of length N. It can be shown that the 

perfect reconstruction conditions for the output signal, x[n], in such a case are 

^ ^0 [« + 2'w]/o [«] = ^m], 
n 

^h,[n + 2m\f,[n] = S[m], 
n 

Y,K[n + 2m\f,{n] = 0, 
n 

Y,K[n + 2m\f,[n\ = 0. 

(2.7) 

(2.8) 

(2.9) 

(2.10) 

Eqs.(2.3)-(2.6) and (2.7)-(2.10) are identical and thus the wavelet definitions 

given by Eqs.(2.3)-(2.7) also form a perfect reconstruction filter bank. Thus Fig. 2.2 



represents an implementation of the forward and inverse discrete wavelet transform. 

This work considers perfect reconstruction Conjugate Quadrature Filter (CQF) 

banks since they have been the popular choice recently for sub-band coding of speech 

and image signals for efficient wavelet compression techniques. A CQF is an orthogonal 

filter bank, similar to a Quadrature MUror Filter (QMF) bank, whose low-pass and high-

pass filters form a time reversed pair. The relationships among the filters for a CQF bank 

are given by the following simple time domain relationships [2]: 

h,[n] = (-irh,[N-l-n], (2.11) 

Mn]^-(-irK[n], (2.12) 

Un]^Pi,[N-l-n]. (2.13) 

Thus the filter bank design reduces to designing either the analysis high-pass or 

low-pass filter alone. Let us introduce the concept of the Nyquist(M) condition. A 

sequence c(n) is said to be Nyquist(M) if c(nM) = S(n). The sequence /ij(n) is said to 

satisfy the Nyquist(2) criteria if 

Y^h^(n)h^in + 2m) = S(m). (2.14) 
n 

It can be shown that in a two-channel filter bank, if one of the filters l\ (n) or 

/ig (n) satisfies the Nyquist(2) condition and the other filter is found using Eq.(2.11), then 

the other filter also satisfies the Nyquist(2) and they form an orthogonal, and therefore a 

perfect reconstruction (PR) filter bank. Thus the CQF bank design reduces to just solving 

the Nyquist(2) criteria for iii(n) or /io(«) as in Eq.(2.14). 

2.4 Adaptive Wavelet Filter Design 

Wavelet filter banks have the abiUty to perform multiresolution analysis, wherein 

signals at different frequencies are analyzed at different resolutions. They are designed to 



give good time/space resolution and poor frequency resolution at high frequencies and 

good frequency resolution and poor time/space resolution at lower frequencies [4]. This 

property is very useful since most of the signals (including images) encountered in 

practical appUcations have high frequency components over small areas and low 

frequency components over larger areas. In images, the low frequency spectrum 

represents the smooth and the coarse details which constitute most of the image, whereas 

the high frequency spectrum represents the edges and the finer details which constitute a 

minor portion of most images. The filter bank in Fig. 2.2 spUts the input into high 

frequency and low frequency components, depending on the design of the high-pass and 

low-pass filters. The low-pass output very closely resembles the input and it gives the 

essence whereas the high-pass output gives the detail of the input as shown in the Fig. 

2.3. The low frequency and the high frequency wavelet coefficients are equal in number 

and approximately half the size of the input signal. Thus compression can be achieved by 

reconstructing the input signal by just using the approximate coefficients and discarding 

the detail information, which constitutes only a minor part of the original input. This is 

the basic idea in the compression of signals and images using wavelet filter banks. 

Since Eq.(2.14) has an infinite number of solutions, there are as many ways by 

which orthogonal filters can be designed depending upon the appUcation on hand. The 

knowledge that most of the signals are low-pass processes, that is most of the energy of 

the signals is concentrated in the low frequencies, is the central aspect used in designing 

the desired CQF filter bank. The low-pass output of the CQF bank provides a coarser 

resolution approximation of the input signal and the high-pass output is the finer 

resolution approximation. Due to the nature of the CQF bank, these two outputs are 

orthogonal to each other and that filter bank which provides the maximum energy 

compaction in the low-pass channel, and thus the minimum energy in the high-pass 

channel, results in the minimum approximation error. Since the input can be any random 

2-cUmensional image signal, the output energy is considered as the quaUfying criteria 

instead of the output signal. 



Input x(n) 

VV\AA 
1000 samples 

Lovv' pass 

ho 

1 h, 

High pass 

502 sami pies 

502samiples 

Fig. 2.3: Analysis filter section low-pass and high-pass outputs for the 
sine wave input with high frequency noise added 

This filter bank selection involves the statistics of the input signal, hence making 

the design adaptive, and the filter that produces the minimum error for that input is the 

optimum filter bank for the same input. The detailed analysis of this concept is explained 

in the later chapters. This is the principle for the proposed method for image size 

reduction using an optimum wavelet filter design and execution time reduction, when 

implemented in a Digital Signal Processor [1]. 

Much of the earUer research has been carried using PR-QMF banks in the 

frequency domain. This work is a continuation of the previous work, using an alternative 

approach in which the filter is analyzed in the spatial domain [1], wherein the CQF bank 

is instead used. The space-domain formulation describes the complete set of exact 

reconstruction conditions based on a simple set of matrix operations and avoids any 

notion of frequency selective filtering operations. Such a design methodology provides an 

environment in which many design optimization parameters like energy compaction, 

orthonormal PR requirement, aUasing cUstortion and input statistics can be 

simultaneously optimized using a single design procedure. The design problem is solved 

using a non-Unear optimization technique of Sequential Quadratic Programming and 

Newton's method, which are explained in the next chapter. 

10 



Now we introduce the parameters that have been considered in the optimization of 

the 2-channel CQF bank design. 

2.5 Energy Compaction 

The energy term of the high-pass filter forms the objective function of the 

optimization problem and is the main criterion for the filter bank design. As seen earlier, 

the wavelet distributes the energy of the input signal into low and high frequency 

components and the input is then approximated using the low frequency components. 

Also, as will be seen later in detail, it is possible to redistribute the energy in the low-pass 

and the high-pass channel, so that one channel receives more energy than the other. As 

said earUer, most of the signals and images encountered can be considered to be low-pass 

in nature, and the optimum filter bank for the given input is one that allows maximum 

energy through the low-pass channel and subsequently minimum energy through the 

high-pass channel, since the channels are orthogonal. This ensures minimum distortion as 

the low-pass output approximates the input signal very closely. 

The design is a dual optimization problem, that is, either the low-pass channel 

energy can be maximized or high-pass channel energy can be minimized. Perfect 

reconstruction without aliasing takes place only when the output energy of the high-pass 

filter is zero. When this energy is not zero, there is some loss of information and 

consequently there is some aUasing. The high-pass energy is zero in the ideal case and 

hence in practice it is a lossy type of compression and the optimization tries to minimize 

the error. 

From stochastic process theory, it can be shown that the total high-pass channel 

output energy, <7, , is given by [1] as, 

o! ^^\H,{(ofs^(co)\F,{a>fd(o. (2.15) 
—n 

In the equation above, S^ (co) is the power spectral density of the input signal. 

This formulation is in the frequency domain. Since the design is in the space-domain, the 

equivalent equations are written as shown next. 

11 



(^f=KR^hu h,eR\ (2.16) 

R^ is the NxN symmetric Toeplitz input autocorrelation matrix. S^(0))is the 

Fourier equivalent of the autocorrelation matrix/?^. Eq.(2.16) is the space-domain 

equivalent of the energy in the ampUtude spectrum of the high-pass filter. This 

autocorrelation matrix is the input statistic that the optimization problem uses in selecting 

the optimum filter bank adaptively. The energy term is the objective function and the 

solution, /i,, is the one that minimizes this function along with satisfying the constiaints 

for perfect reconstruction. Other desired properties are also analyzed. 

2.6 Orthonormal PR Requirement 

This requirement is included to obtain the perfect reconstruction condition. This 

concUtion is particularly critical in signal coding applications [5]. The PR concUtion for an 

orthonormal 2-channel PR-CQF bank is nothing but the implementation of the Nyquist(2) 

criterion 

y^}t.(n)h.(n + 2m) = Sim). " ~ ' "" (2.17) 
^ m = 0,l.... 

Eq.(2.17) can be expressed in matrix form as 

hfT^h^=l, (2.18) 

h^T.h,=0, i = 2...^. (2.19) 

Tj is an identity matrix of order N. T., i = 2...—, are a set of symmetric toepUtz 

matrices given by the first row, d^, whose coefficients, ,̂ (n), are 

?,.(«) = 0.5 i f« = 2 r - l (2.20) 

= 0 otherwise. 

12 



2.7 Zero DC High-Pass Filter 

Most of the signals have a significant amount of their energy around the DC 

component. In order to represent this energy in the low-pass function for minimum error, 

the mean of the high-pass function is constrained to be zero. This restricts the function to 

have a zero DC value. This is an additional constraint and is important since the absence 

of this can give rise to artifacts such as the checker board that was discussed earUer. 

X^(«) = 0- (2-21) 
n 

The complete optimization problem can be stated as shown 

Minimize ^ ^xxK (2.22) 

subject to 

2 

^Mn) = 0. 

Tj are as defined as in Eq.(2.20). This is a non-convex optimization problem, 

which is explained in detail in the next chapter. Previous work done on this problem has 

converted this non-convex problem into an equivalent convex one and has made use of 

primal-dual Interior Point optimization techniques for finding the optimum filter vector. 

The present work deals with the problem in its original form, which is non-Unear and 

non-convex, using Sequential Quadratic Programming frame-work along with the 

Newton's method that was used in Interior-Point method. Optimization techniques are 

explained in detail in the next chapter. 

Once the high-pass filter has been designed, the complete filter bank can be easily 

obtained using the Eqs.(2.11)-(2.13). 

13 



CHAPTER 3 

NON-LINEAR NON-CONVEX OPTIMIZATION 

3.1 Optimization Basics 

Optimization problems consist of three basic components. 

1. An Objective Function which we want to minimize or maximize. For instance, 

in a typical wavelet filter design problem, minimization of the reconstruction error is 

desired. Often, it is required to optimize a number of different objectives at once. For 

instance, in the above filter design problem, it would also be required to minimize stop 

band energy, minimize the pass band ripple and maximize pass band energy 

simultaneously. Usually, the cUfferent objectives are not mutually compatible and the 

variables that optimize one objective may be far from optimal for the others. In practice, 

such problems are formulated as single-objective problems by either forming a weighted 

combination of the cUfferent objectives or else replacing some of the objectives by 

constraints. 

2. A set of Unknowns or Variables. The unknowns affect the value of the 

objective function. In the filter design problem above, the unknowns are the impulse 

response or the frequency response coefficients. 

3. A set of Constraints which allow the unknowns to take on certain values but 

exclude others by defining boundaries in the feasible region. In the filter design, we 

would want to impose perfect reconstruction constraints like the Nyquist(2) criterion. 

An Optimization problem is then to: Find the value of the variables that minimize 

or maximize the objective function while satisfying the constraints (if present). To be 

able to classify the optimization techniques, famiUarity with some concept of functions is 

desirable. A set, S , is said to be affine [1] if the Une through any two distinct points in 5 

Ues in S , that is, for any Xj, ̂ 2 e S and any ̂  e i?, we have 

&c,+O.-0)x2eS. 

14 



which impUes that S contains every linear combination of any two points in S, provided 

that the coefficients of the combination sum to one. It can be shown that an affine set 

contains every affine combination of its points. 

A set, C, is said to be convex [6] if the line segment between any two points in C 

UesinC.thatis, foranyxpXj E C and any 0 with0< ^ < 1 , wehave 

6IXi+(l-0)x,sC. (3.1) 

It can be observed that every affine set is also convex since the convex set is a 

subset of the affine space. Fig. 3.1 shows some examples of such sets. 

««mx 

I • '^ i ,^ 

rwt <viiv-fx 

^.r-A 

Fig. 3.1: Convex and non-convex set examples 

It is seen in Fig. 3.1 that points between the Une segment (Xj, JCj) do not Ue in the 

set, and the set is hence non-convex. 

A function, f{x), is said to be convex, if the domain (dom) / is a convex set and 

if for all x, y e / , and 0 with 0 < ^ < 1 , we have 

f(aK -^(l-0)y)< 0nx) + (1 - 0)f(y). (3.2) 

Geometrically it means that the Une segment between (x, /(x)) and (y,fiy)) Ues above 

the graph off , as shown in Fig. 3.2(a). 
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If the function - / is convex, then / is said to be concave. Functions that do not 

satisfy Eq.(3.2) are said to be non-convex. Fig. 3.2(b) gives an example of such a non-

convex function. It can be observed that the convex function has a single minimum, 

called the global minimum, whereas the non-convex function has many local minima and 

a single global minimum. 

V X̂x-) + (l-^)/(>') 

(9c + ( l - 0 v "^ 

Local miidina \ / \ 

Gbbal mirLirrium 

UiLkriowns 

(a) A convex function (b) A non-convex function 

Fig. 3.2: Example of a convex and a non-convex function 

3.2 Classification of Optimization Techniques 

The various classifications of optimization problems are as follows: 

1. Unconstrained or Constrained: 

Unconstrained problems have only an objective function and no constraints. 

These problems are harder to solve since all possible values have to be tested. 

Consti-ained problems are the more common type of optimization problems encountered, 

wherein the feasible region of the objective solutions is restricted by the accompanying 

constiaints. Such problems have a weU defined solution boundary and are a Uttle easier to 

solve compared to unconstrained problems. 

2. Linear or Non-Unear: 

Linear optimization is used to solve a Unear objective subject to Unear constraints. 
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A Non-Unear optimization problem is one which has a non-Unear objective function or 

constiaints or both. These problems are a Uttie harder to solve compared to Unear 

problems. The wavelet filter design problem that has been formulated in the previous 

chapter is non-Unear. 

3. Convex or Non-convex: 

A problem is a convex optimization problem if 

a) The objective is a convex function; 

b) The inequality constraints are convex functions; and 

c) The equaUty constiaints are affine functions. 

If any of these conditions fail, then the problem fails to quaUfy as convex and the 

problem is a non-convex optimization. In a convex problem any solution is the global 

solution, whereas the same is not true in a non-convex problem. Non-convex problems 

are harder to solve and most optimization techniques do not guarantee a global or 

optimum solution. 

3.3 Intioduction to Interior-Point Methods 

An intioduction to the popular method of Interior-Point optimization is given 

here. The earUer work [1] used this method, and some intioduction to it would prove to 

be helpful. As opposed to the simplex method [7] which generates a sequence of feasible 

iterates by repeatedly moving from one vertex of the feasible set to an adjacent vertex 

with a lower value of the objective function, Interior-Point methods start with a point that 

Ues inside the set of feasible solutions and the iterate path strictly remains in the feasible 

region aU the time. The most significant breakthrough in the Linear Programming field 

was made by Karmakar's algorithm [8] in 1984, giving rise to the Interior-Point methods. 

Using the standard form notation for the Unear problem [7], we define the feasible 

set 

P = {xe/?" \A^x = b;x>0} 

and the associated set P^ to be the subset of P satisfying strict non-negativity constiaints 

P^ ={xeR" \A-x = b;x>0} 
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P"" is called the strictly feasible set and its elements are called strictly feasible points. 

Interior-Point methods are iterative methods that compute a sequence of iterates 

belonging to P* and converging to an optimal solution. That is completely different from 

the simplex method, where an exact solution is obtained after a finite number of steps. 

Interior-Point iterates tend to an optimal solution but never really attains it, since the 

optimal solutions do not belong to P^ but to the region P minus P^ . This apparent 

drawback is not really serious since 

Most of the time an approximate solution (with e.g., 10"̂  relative accuracy) is sufficient 

for most purposes 

-A rounding procedure can convert a nearly optimal interior point into an exact optimal 

vertex solution. 

The type of algorithm used in the optimization is the main cUfference between the 

various interior point methods. Although not fully standardized, they are commonly 

cUstinguished as Path-Following algorithms, Affine-ScaUng algorithms, and Potential-

Reduction algorithms [9]. Of these methods. Path-following interior methods are the 

most popular and offer exceUent results both in theory and practice. This method 

encompasses the primal-dual method and is explained in detail in [9,10]. 

The affme-scaUng variant of Karmarkar's algorithm is explained below. This 

algorithm gives a good look at the concept of interior point methods. Details such as the 

initial trial solution are skipped as they do not affect the algorithm. 

The basic idea can be summarized as follows: 

Concept 1: Shoot through the interior of the feasible region toward an optimal solution 

Concept 2: Move in a direction that improves the objective function value at the fastest 

rate. 

Concept 3: Transform the feasible region to place the current trial solution near its center, 

thereby enabUng a large improvement when concept 2 is implemented. 

The affine algorithm is explained [11] using a standard problem defined by the set 

of Eqs.(3.3) and later supplemented with an example. 

The optimization problem is: to find a vector A: as to. 
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Minimize c^x (3.3) 

subject to 

Ax = b. 

x>Q, 

where A = /?'"™' is a real (m x n) matrix and bs R'". 

In the affine-scaling algorithm, the current iterates* is used to determine the next 

iterate J:*"̂ ' as follows: The variables is changed as, 

X =D~^x, 

where 

D-D'' = diagonal(x'') 

is the cUagonal matrix whose (/, j) entiy is jcf , the /"" component of the current iterate x* . 

The constiaints in Eqs.(3.3) become 

A A A 

A x = b and x>0 

where 

and the objective becomes 

where 

A = AD, 

c X , 

c = Dc. 

A 

The current iterate x ttansforms into a vector of ones (denoted as e), 

X .= D X =e. 

The steepest descent dkection is given by 

p ^-P.c, 
A 
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where P, denotes projection onto tiie orthogonal complement of the row space of the 

A 

matrix A . A step in this direction is given as 

A * + l A * A A 

X = X +ap, 

which tianslates into the original variables as, 

^* '̂ =x'' +ap^x'' -ccDP^Dc, 

where 

or = a > 0 is small enough so that jc*"" > 0, so that all the components of x remain 

positive, which is a property of the algorithm. 

a is usually chosen in tiie range [o.9a'™' ,0.99a°^ J, where 

or"^ =max{r>0:x*+pT>o}. 

This is the complete algorithm. The following example [12] is solved using the 

above algorithm. Consider 

Maximize Z = jCj -I- 2.iC2 

subject to 

Xj -I- JCj < 8 , 

jCj, x^ > 0 . 

The solution to this simple problem can be anal5^cally found as Z = 16 at (0,8). 

The algorithm is now appUed to this problem with this knowledge, with an initial trial 

solution chosen as (2, 2) which strictly Ues in the feasible region, as shown in Fig. 3.3 (a), 

which also shows the initial descent direction towards the point (3, 4). Fig. 3.3 (b) shows 

the final solution tiajectory that the algorithm takes for the example. It can be observed 

that the iterates Ue strictly in the feasible region during all the time. 

The primal-dual varies in the sense that the objective is tiansformed into its dual 

using the Lagrangian [13] of the primal problem and then the dual system is solved 

simultaneously. This approach promises faster convergence and is the most popular 
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C 

(0,8) optimal solution 

\ "^^^ 

\ "^ 

• ( 3 , 4 ) \ 

/ \ 

Initial solution \ 

1 

= li5 

8 .X, 

r 
8 

0 

(Q g^ optimal solution 

V 
\ '"•- .solijtion path 

\ \ 

^(2.^S)'\ 

Initial solution 

8 X.^ 

(a) Initial descent direction (b) Trajectory of the algorithm 

Fig. 3.3: Direction and path of the Interior-Point algorithm 

among the Interior-Point methods. 

3.4 Analysis of the Optimization Problem 

The problem defined by the set of Eqs.(2.22) is analyzed and classified in terms of 

convex or non-convex problem. With the optimization theory in place, the original 

optimization problem is again shown below and is analyzed in detail. 

Minimize f =\ ^xx\ 

subject to 

hlT.h,=0. i = 2.. 
N 

(3.4) 

(3.5) 

(3.6) 

(3.7) 
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This problem is shown below to be non-convex. The proof is given by showing 

that the problem fails to be convex as defined above. 

The second order condition definition for a convex function is as stated below: 

If the function / is twice differentiable, that is, its Hessian V^/ exists at each point in the 

domain / , then / is strictly convex if and only if dom / is convex and its Hessian is 

positive definite [6], 

V V ^ O . (3.8) 

In this case, we observe that the objective is twice differentiable and hence its 

Hessian exists. Since 

V V = /?^ (3.9) 

for all values of h, the problem is convex if and only if R^is a positive definite matrix, 

that is, 

R^>0 (3.10) 

A matrix,/?^, is defined to be positive definite, if for any non-negative vector JT , we 

have, 

x^R^x>0 (3.11) 

Eq.(3.11) is equivalent to the objective function in Eq.(3.4). 

The objective in Eq.(3.4) is clearly a non-Unear function due to the presence of 

the /i^term in the form of ii^h. By the property of an autocorrelation matrix, the smaUest 

eigenvalue is positive and thus the matrix R^is positive definite [1]. The objective 

function is convex by definition in Eq.(3.10). Though the objective is convex, the 

problem on the whole is non-convex. The non-convexity comes in due to the constiaints 

and is proved below. 

The feasible region for the problem is defined by the constiaints in Eqs.(3.5)-

(3.7). These constiaints give the possible solution range for h[n], and it has to satisfy 

these constiaints. By including aU the constiaints in the objective, the complete problem 
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is considered. Now the proof to show that convexity fails is simply to show that the plot 

of the objective with the constiaints included is non-convex having more than a single 

minimum. 

The proof is given for a general filter of length Â  = 6. The input is assumed to be 

a 2-D signal, most likely an image of dimension m x n. Let the optimized filter solution 

be, 

ii[n] = [a,b,c,d,e,f] (3.12) 

Let the autocorrelation matrix, /?„, be defined as 

/?„ = 

'11 

'21 

'31 

'41 

'51 

'61 

'12 

'22 

'32 

'23 

'33 

'14 

'24 

'34 

'25 

'35 

'16 

'26 

'36 

^42 

^52 

^62 

^43 

^•53 

^63 

'44 

^54 

'"64 

^•45 

'"55 

' '65 

r,6 

'"56 

'-66 

(3.13) 

As will be seen later, this matrix is a normaUzed symmetric ToepUtz (NxN) 

matrix in image processing appUcations. This autocorrelation matrix is derived using a 1-

D vector, which is calculated either in the horizontal or the vertical directions of the 

image. The autocorrelation vector in the horizontal direction is defined as 

Ŵ = Zp=iS^(^'^)*^(^'^ + ' - l ) ' (3.14) 
jfe=i 

where/(p, it) is a two-cUmensional input, which in this case is a digital image. 

The vector R[i] is normaUzed as 

R[i] = R[i]/max(R). (3.15) 

The autocorrelation matrix then simpUfies as shown below. 
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R,= 

'12 

'13 

'14 

15 

'12 

1 

1 2 

13 

'14 

Is 

'12 

1 

12 

13 

12 

13 

14 

12 

'14 

'13 

'12 

1 

(3.16) 

Also due to the nature of the image coefficient values (0-255 for an 8-bit image), 

the coefficients have the property. 

' ' I 6 < ' ' l 5 < ' ' l 4 < ' ' l 3 < ' " l 2 - (3.17) 

The normaUzed vector coefficients also have the adcUtional property, that 

r,2,ri3....ri6e[0,l]. 

A very typical example of such an autocorrelation matrix of order Â  = 6, as calculated 

for the 'Lena Image' is as shown 

"l.OOOO 0.9965 0.9907 0.9852 0.9801 0.9754" 

0.9965 1.0000 0.9965 0.9907 0.9852 0.9801 

0.9907 0.9965 1.0000 0.9965 0.9907 0.9852 

0.9852 0.9907 0.9965 1.0000 0.9965 0.9907 

0.9801 0.9852 0.9907 0.9965 1.0000 0.9965 

0.9754 0.9801 0.9852 0.9907 0.9965 1.0000 

/?„ = 

In other similar work [5], an autoregressive, order(l), AR(1) source model with 

the correlation coefficient, p = 0.95 ,which is a crude approximation to stiU images is 

used. The correlation sequence of this source is expressed as, 

/?[m] = p""' m = 0,±l,±2,... 

The corresponding toepUtz autocorrelation matrix for the AR(1) approximation is. 
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R.= 

1.0000 0.9500 0.9025 0.8574 0.8145 0.7738 

0.9500 1.0000 0.9500 0.9025 0.8574 0.8145 

0.9025 0.9500 1.0000 0.9500 0.9025 0.8574 

0.8574 0.9025 0.9500 1.0000 0.9500 0.9025 

0.8145 0.8574 0.9025 0.9500 1.0000 0.9500 

0.7738 0.8145 0.8574 0.9025 0.9500 1.0000 

(3.18) 

Now a brief explanation of the various constraints is given in terms of the feasible 

solution that it defines. From the constiaint in Eq.(3.5) we have. 

a'-^b'+c'-^d'+e'+f=l. (3.19) 

The ToepUtz matrices T^ andT^ are given by Eq.(2.20) as. 

p 

h -

T = 
^3 

0 

0 

0.5 

0 

0 

0 

" 0 

0 

0 

0 

0.5 

0 

0 

0 

0 

0.5 

0 

0 

0 

0 

0 

0 

0 

0.5 

0.5 

0 

0 

0 

0.5 

0 

0 

0 

0 

0 

0 

0 

0 

0.5 

0 

0 

0 

0.5 

0 0.5 

0 0 

0 0 

0 0 

0 0 

0 0 

0 0 

0 0 

0.5 0 

0 0.5 

0 0 

0 0 

o ' 

0.5 

0 

0 

0 

0 

for i = 2, (3.20) 

for i = 3, (3.21) 

The set of constiaints in Eq.(3.6), using Eqs.(3.20)-(3.21) are given as 

ac + bd + ce + df =0, (3.22) 
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ae + bf =0. (3.23) 

The constiaint in Eq.(3.7) ensures a zero DC-mean for the high pass filter. Thus, 

a + b + c-i-d + e + f =0. (3.24) 

It is to be noted that the minimum filter length, A ,̂ for an optimized solution 

is Â  = 6. The only solution for the case Â  = 2 is the Haar wavelet filter. Thus filters only 

with lengths Â  >= 4 are considered in this work. 

The problem is now proved to be non-convex as explained earUer. Applying 

Eq.(3.11) to the problem, we have for convexity. 

[a b .f] 

'12 

'13 

'14 

'12 

'12 

'13 

'15 

'13 

1 2 

1 

1 2 

1 3 

1 4 

'14 

'13 

'12 

'12 

'13 

'15 

'14 

'13 

'12 

'15 

1 5 

1 4 

1 3 

1 2 

1 

> 0 , (3.25) 

Eq.(3.25) simpUfies as 

(a^-\-b^+c^+d^+e^+f^) + 2r,,[af] + 2r,,[ae + bf] + 2r,,[ad-\-be + cf] 

+ 2̂ 13 [ac + bd + ce + df] + 2r,2 [ab + bc + cd + de + ef]>0 
(3.26) 

Let us denote f (a, b,c,d,e, f) as 

f(a,b,c,d,e,f) = (fl' +b^ +c^+d^ +e^+f) + 2r,,[an + 2r,,[ae + bn 

+ 2ri4 [ad + be + cf] + 2r^^ [ac -\-bd + ce + df] + 2r,2 [ab -\-be + cd + de-^- ef] 
(3.27) 

This function does not consider the convexity condition in Eq.(3.25). This 

function is further simpUfied by using the constiaints in Eqs.(3.19)-(3.24) and given as. 
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f(a,b,c,d,e,f) = {\-r,^)-2(r^^-r^,)iad + be + cf)-2(r,,-r,,)af. (3.28) 

A complete proof of the simpUfication is given in Appendix A. This is the 

simpUfied objective function with the constiaints included for Â  = 6. This function is 

plotted with possible coefficient values which satisfy all the constiaints. 

Also firom Eq.(3.19), it can be inferred that, 

-l<ad,be,cf,af<l. (3.29) 

This inference is made since the maximum possible value of the square of the filter 

coefficients is unity. 

Fig. 3.4 is a 3-D plot of the function in Eq.(3.28) over the possible filter 

coefficient values. It can be seen in Fig.3.4 that the function has more than a single 

minimum, showing that the problem is highly non-convex for the case ofN = 6. The 

figures show the many local minima solutions to the adaptive filter design. To simpUfy 

plotting. Fig. 3.4 is a plot of the objective function, / , against only the first and the 

second coefficients of the high-pass filters h[l] and /z[2], respectively. The various 

minima are observed to be close to each other and the optimum solution is very close to 

these local solutions. Fig. 3.5 shows the 2-D plot of the same graph above. The objective 

function is plotted against the index values of its vector. 
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0.025 • 

3D Plot of the Objective function 

h[2] coefficients 

h[1] coefficients 

Fig. 3.4: 3-D Objective Plot with/i[l] and /i[2] coefficients 

The earUer work [1] tiansformed the original non-convex problem to convex and 

made use of a primal-dual Interior-Point algorithm. In general, constiained convex 

problems are easier to solve than constiained non-convex problems, since only one 

minimum has to be found, which also happens to be the global solution. However, the 

globally constiained non-convex optimization problem can be solved by fincUng all local 

minima and then determining the global minimum, although the computational cost will 

be higher in this case. Until recently, Interior-Point methods and Sequential Quadratic 

Programming methods were available only for convex problems and the few other 
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Fig. 3.5: 2-D plot of the objective function 

methods available for non-convex problems did not guarantee global convergence and 

these methods were not comparable in speed to algorithms for convex problems. Only 

recently have general non-convex problems been the subject of research [13], and many 

advances have been made which give a very feasible computational performance and also 

almost guarantee global solutions. Such an algorithm is used in solving the problem in its 

original form. 

3.5 SOP Optimization Implementation 

The optimization technique used to solve this problem is discussed in detail. The 

optimization problem is a non-Unear non-convex problem. The problem is solved using 

Sequential Quadratic Programming (SQP) [13] optimization, and it is shown to 

outperform other tested methods in terms of efficiency and accuracy over a large number 

of problems [14]. 

29 



The proposed metiiod also makes use of the Interior-Point optimization principle 

in tiiat the iterate solution path is reshicted to Ue in tiie feasible region. This promises 

faster convergence to the optimal solution compared to otiier metiiods. This SQP metiiod 

for constiained optimization gives the equivalent of Newton's method for unconsttained 

optimization problems. The analysis of the problem is simplified by considering the 

problem as [13], 

Minimize /(/i) = h^R^h (3.30) 

subject to g{h) = 0. 

where functions / and g are known to be smooth and h refers to tiie high-pass filter h^ 

h^h - 1 = 0' 

h^T.h = 0 
8(h) 

Y,h[n] = 0 

i = 2... 
Â  

(3.31) 

The Lagrangian of the problem in Eq.(3.30) is, 

m 

L{h,y) = f(h)-Y,yig,(h), I - 2...— 

2 

(3.32) 

where y is the Lagrangian multipUer vector of the constiaints. 

The optimization routine makes an approximation of the Hessian of the 

Lagrangian in Eq.(3.32) at every iteration using a quasi-Newton method [14]. The 

original problem is then tiansformed into an unconsttained Quadratic Problem (QP) using 

a merit function. 

For such problems reUable solution procedures Uke Newton descent and Une 

search are readily available. The approximate Hessian is used in determining the descent 

conditions. 

Of the various methods available for updating the Hessian, the formula given by 

Broyden, Fletcher, Goldfarb, and Shanno (BFGS) [15,16,17,18] which is popularly used 

in SQP implementation is used here. A positive definite quasi-Newton approximation of 
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tiie Hessian, H, of the Lagrangian in Eq.(3.32) is calculated using the BFGS method 

given as, 

H..i=^.+^-4^. (3-33) 

where s, ^ii.^.-h,. 

.=1 V 1=1 y 

A positive definite Hessian is maintained, providing the term qls^. is positive at 

each update and that H is initiaUzed with a positive definite matrix. If qls^^ is not 

positive, then ĝ  is mocUfied in steps until q\s^ is positive. In the initial phase, the most 

negative element of ^^. * s^ is repeatedly halved until qls^ is greater than a tolerance. If 

the term is not yet positive, then ^^ is modified by adding a vector v multipUed by a 

scalar was, 

qk^(lic+^^ (3-34) 

where 

V,- = Vg, (K,, ).g, {\,,) - Vg, (K )-gi (K) 

if (^J,.w7tO and (?i),.(^Ji ^ 0- i = (l,...m) 

V,. = 0 otherwise, 

and also wis increased systematically until qls,^ is positive. 

Here m = [(N/2)-1] in all cases. The first-order necessary condition for a local 

minimizer, h, ,of the problem in Eq.(3.30) is 

VihlR^K)-Vg{Ky y = 0, (3.35) 

g(K) = 0. 

Vg denotes the Jacobian matrix of the equaUty constiaints. The solutions (ii^, j J of the 

above problem Ue in the interior of tiie feasible region, and form the so-called cential 

path. For a non-linear problem, the first-order conditions gives a local solution but do not 
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guarantee a global solution and hence a merit function is incorporated in the objective 

[13] as 

where 

(l>{h) = h'R^h - g{hf y~{h) + ^c\\g{}i)f , 

y~{h) = [Wg{hyS/g(h)rVgihfh'Rh 

(3.36) 

(3.37) 

c > 0 is the penalty parameter. The merit function guides the iterates of the algorithm to a 

minimum solution. This is achieved by ensuring that the merit function is reduced by the 

penalty parameter at each iterate. 

Newton's method is used of to solve the optimaUty conditions in Eqs.(3.35). At 

the Ic''' iteration, the system of Unear equations to determine the Newton directions is, 

(3.38) ' H, 

yg(h,) 

-^giKY' 

0 

"A/i," 

Ayk. 

'-VL{h„y,) 

giK) 

Fih„y,). 

The Newton direction, Aŵ  = (AA ,̂ Ay J , is then used to find the next iterate. 

W,^l = ^k -^ ^k^^k 
(3.39) 

where Â  = diag {a^lN>ZkD-

Here a^ and '̂̂ t are the step-size in tiie interval [0,1] for tiie iterates h^ and y^, respectively. 

I^ and /„ are identity matrices or order Â  and m, respectively. Furthermore 

a^ = ^max 
i<j<N Ah 

\^:A/ti^><0 (3.40) 

represents tiie maximum allowable step-size, which guarantees tiiat the iterates i^^ always 

remain strictly feasible, for some chosen constant y E (0,1). 

The distance of the current solution from the cential path is measured by the 

EucUdean norm, \F{\ , ŷ  )1|. Once this measure is less than a certain threshold value, the 
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iteration can be terminated. 

The merit function in Eq.(3.36) provides a measure of progress towards an 

optimum solution of the problem in Eq.(3.30). A line-search procedure for adjusting the 

step-lengtiis of tiie variables is used in order to guarantee tiiat tiie function decreases at 

each iterate. The merit function is modified in order to mimimize the computational 

effort of calculating V^(/i J in a standard line search approach. The Une-search 

formulation is, 

^,(a,,)<<^,(0) + /7or,,^,(0) (3.41) 

where 

MO) = V(h'R^hyM, -—[y~(h, +a,,Ah,)-y~Jg,-yfg,Ah, -cjg.f. (3.42) 
0(k.i 

Also (l),{0) = (P{h,), 

y~k ^y~(K)-

Since ^̂  (0) does not require the calculation of the second derivatives of the objective and 

the constiaints, the approximate merit function ^̂  is preferable to the initial merit 

function^ . 

Now we describe the mechanism which ensures that AÂ  is a descent cUrection 

which guarantees the reduction of the merit function and the algorithm is converging 

towards the cential solution. As long as the Hessian of the Lagrangian, //^ , is positive 

definite, the dkection is assured to be descent. Eq.(3.33) and Eq.(3.34) ensure thatHj^ is 

positive definite throughout the algorithm. In order that the function ^j, is reduced at each 

iterate, its fij-st derivative ^̂  (0) should be negative. From Eq.(3.42) it can be noted that 
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this would happen if ĉ ,. large enough. Hence we select tiie value of q , such that tiie 

descent concUtion is satisfied, 

<l>[{Q)<-^[^hlH,^h, +c,,\\g,f\<--^c,,\\g,f < 0 . (3.43) 

The index / represents the number of times the descent condition is checked at 

the/:"" iteration. If Eq.(3.43) is satisfied, the penalty parameter does not increase, that is, 

^k.M = ̂ k.i' Otherwise the penalty parameter is determined as, 

Cjt; = Max{ 2c^., * * * 

Ibf 

II i i 2 ' 

\\Sk\\ 

n .(3.44) 

^AhlH.Ah, +Wg,Ah, - — [y~ih, +0(,,Ah,)-y~Jg,-y~JVg,Ah, 

The new value q ,̂ j of the penalty parameter guarantees that^^ (0) < 0 . Then the 

Une-search concUtion given by Eq.(3.41) is checked for the current values c^._^^ and step-

size a^t,. If it is not satisfied, then the step-size is reduced by choosing a new value or̂ ,̂ ! 

firom the interval[y5iOr̂  ,.,/52^t,<] > where ^^,^2^ (O'l) andy ĵ < ^2 • This process is 

repeated until Eq.(3.41) is satisfied. 

If Eq.(3.43) is satisfied instead, we set the new iterates as, 

K^i=K+(X,,M, (3.45) 

' ' t+1,0 '-jfe.i+l 

This is carried until the norm, ||F(/I^ , y^ )||reaches the desired threshold. 

3.6 SOPAlgoritiim 

The complete algorithm is given below: 

Initially, at the beginning of the li "' iteration, {h,^, y*) is available. 

Set c, 0 >0; p>Q; P„P2^ [0,1] witiiy^i < P2' 
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^^^Zk = 1 aiid the tolerance threshold, T,as 0 < T < k - 3 

Repeat Until: \\F{h,,y,)\\<T. 

Compute//^ using Eq.(3.33) and Eq.(3.34). 

Compute Newton direction (A/i^, Ay^) using Eq.(3.38). 

Set / = 0 and or̂ ,. = a^ as in Eq.(3.40). 

IfEq.(3.43) is satisfied 

Then setc,,.^,=c,,.. 

Else 

Compute c^,.^,fromEq.(3.44). 

Repeat Until: Eq.(3.41) is satisfied. 

Choose a,,w =[A«*,,.A«^*,,J• 

Set i = i-\-l. 

End 

Set /, = 1; /i,^i ^ii^+ a^^^Ali,; ĉ ^̂  g = c,,.,; y,^, = y, +Zk^yk; k^Jc + 1. 

End 

Sample values for the variables are: ĉ  ^ =0;/?, = 0.05; ŷ j - 0.5;/? = le - 3. 

This gives the complete algorithm used for the optimization. The next chapter gives the 

results for the image source encocUng appUcation. 
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CHAPTER 4 

APPLICATION TO IMAGE SOURCE ENCODING 

This chapter deals witii the application of tiie filter bank optimization algoritiim to 

image source input. As shown in the previous chapters, it is possible to redisttibute the 

energy of the image among its sub-bands, so tiiat one sub-band receives most of the 

energy. Since most of tiie natural images have a majority of low frequency spatial 

components (below;r/2), tiiey are considered to be low-pass inputs. 

Since the wavelet ttansform is reversible, the algorithm given in tiie previous 

chapters can be easily extended for the 2D case, as in an image, by computing tiie 

discrete wavelet tiansform along each dimension. This 2D DWT of the image results in 

an average image and three dkectionaUy sensitive detail images. These newly formed 

images are called subbands as shown in Fig. 4.1(b). 

4.1 DWT Analysis of an Image 

Fig. 4.2 shows the wavelet analysis of an image's subbands. In the figure Low-

Low denotes the low-pass sub-band in both the horizontal and the vertical directions of 

the 2-D image. High-High denotes the high-pass sub-band in both the directions. 

Similarly Low-High and High-Low denote corresponding sub-bands in the two 

directions. This gives a single resolution wavelet analysis of the image. For a multi-

resolution representation, just the Low-Low band is considered and split iteratively into 

its respective sub-bands. The present work concentiates on single level resolution 

analysis only, though it can be easily appUed to more levels. This kind of analysis is 

exploited in many wavelet-based lossy compression techniques Uke EZW [19], LBG-VQ 

[20], andHMVQ [21,22,23,24]. 

A brief explanation about the statistical analysis of the subimages obtained after 

the wavelet tiansform is given. It also highUghts the advantage of using such a tiansform 
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( a) Goldhill Image (b) Wavelet decomposed subbands 

Fig. 4.1: Example of wavelet decomposition of an image 

j iQ 
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Low 

High 

& • 

High 

jt/2 

Fig. 4.2: 2-D Wavelet analysis of an image 

in image source encoding appUcations. Figs. 4.3 (a)-(e) shows the histogram of the 

original image and the subimages respectively, which were plotted from the dyadic 

wavelet ttansform on the Goldhill image of Fig. 4.1, with Daub 4 filters. The 
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Fig. 4.3: Histograms of an image and its subimages 
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normalized histogram, or pdf, of a subimage provides such statistical information about 

the coefficients of the subimage as tiie mean and variance of its distribution [25]. The 

histograms of the subimages shown in Figs. 4.3 (b)-(e) are very typical and can be 

observed with various other similar images. The histograms of the subimages in Fig. 4.3 

(b)-(e) correspond to the respective subbands in Fig. 4.2. We note that the approximate 

coefficient cUstribution in the Low-Low subband follows the histogram of the original 

image very closely, and thus contains most of the image information. The detail 

subimage histograms on the other hand are very narrow and have fewer coefficients. 

Compared to the pdf of the original image, which is normally multimode and also 

(Ufficult to analyse, the detail cUstributions are single mode and quite narrow. Its variance 

is low and its mean is zero indicating that there are many wavelet coefficients with low 

values. Thus by (iiscarcUng the detail coefficients, about 3/4'*' of the image size is reduced 

and at the same time, most of the energy is retained by the approximate coefficients, 

which results in minimum cUstortion. This Low-Low subband containing almost the same 

information as the original, can now be subjected to vector quantization techniques with 

high-fideUty reconstruction abiUty as in [21]. 

As pointed out in the earlier chapters, the coding performance of wavelet based 

image cocUng depends on the choice of the wavelets [26]. The optimal wavelet basis for 

the given image, which depends on the image statistics, would give the maximum coding 

gain (which is explained later) and the best decomposition in the Low-Low subband. 

Such a subband system depends upon the frequency selectivity of the filter bank that is 

designed. In order to obtain perfect decorrelation of interband coefficients of the 

subbands to have perfect reconstruction, the filter banks have to be ideal with infinite 

duration basis functions. Such an infinitely long impulse response would provide high 

frequency locaUzation. At the same time it is very important, in visual signal processing, 

to have spatial locaUzation, which impUes that the impulse response of the filter cannot 

be very long. Various other properties that determine the performance of the wavelet 

filter bank are cUscussed. 
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4.2 Image Dependent Statistics 

A large sampUng of images having varying activity levels has been tested and the 

results of the output image and the filter bank have been tabulated. One of the ways to 

determine the activity level is to calculate tiie Spectral Flatness Measure (SFM) [27] of 

the given image. This quantity measures tiie redundancy as observed in the structure and 

the shape of tiie given power spectial density (PSD) function. This measure gives the 

overall activity of the image and is given as the ratio of the geometric mean and the 

aritiimetic mean of the samples of the PSD. For two dimensional digital images, it is 

given as [24] 

SFM = 

R-l C-\ 
\IRC 

1=0 ;=0 

1 K-1 C-1 
(4.1) 

i=0 ;=0 

where F{i, j) is the (/, j)"' Fourier Transform of the RxC dimensional unage I. The SFM 

has a dynamic range of [0,1]. The inverse of the SFM gives the precUctabiUty measure of 

the image and has a range of [l,oo]. A totally flat spectrum has a SFM value of 1 and is 

related to a completely unpredictable image. On the other hand, a SFM value of 0 is 

related to a completely precUctable image, that is, an image having all pixels except one 

with the same value A lower SFM value incUcates a more predictable image, which 

means that the energy of the image is concenttated in fewer wavelet coefficients and 

hence gives better performance. Active images (with SFM close to 1) are cUfficult to 

compress as they contain a large number of details and lower spatial redundancy. A much 

easier way to comprehend this measure is to use the spectial activity measure (SAM), 

which is the inverse of the SFM. 

1 
SAM = 

SFM 

The SAM is used more often than the SFM. The SAM value indicates 

proportionally the precUctabiUty of a given image. Images which have a SAM value of 
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close to 1 are highly unpredictable compared to those having values towards infinity. 

Anotiier measure for an image statistic is the Spatial Frequency (SF) [28], which 

gives the SFM equivalent in the spatial domain. It gives the overall activity in the spatial 

domain and is given in Appendix B. Higher values of SF mean that tiie image contains 

relatively larger components in the high frequency area. 

It is important to consider the order of the wavelet filter used. A higher order filter 

impUes good frequency locaUzation and thus higher energy compaction. Also a higher 

order increases the regularity of the wavelet. Regularity of a wavelet filter represents the 

amount of smoothness that can be imposed. At the same time, a lower filter order would 

have better time locaUzation and thus preserve edge information better, which can be 

crucial. A proper intermecUate choice has to be made to give the best results. A measure 

of this is given by the Time-Frequency LocaUzation [26] as described in Appendix B. 

Another popular measure of performance is the Transform Coding Gain (TCG) 

[3]. It is a measure of energy compaction of the tiansform. It is given as, 

^ ^ ^ l/2(cr,^+o-^) 

This term is the ratio of the arithmetic mean of the energy, a'^., in each subband to 

the geometric mean. 

4.3 Results 

The algorithm was appUed to a large sample of images, and the results follow. 

CQF filters can be designed for any order to satisfy the Nyquist (2) criteria. Also there is 

an unique filter bank for order N -2, corresponding to the Haar wavelet transform, hence 

A'̂  = 4is the shortest case for which there are many solutions. The results are compared 

with Daubechies filters, also referred to as Max Flat filters, since the low-pass filter has 

the maximum number of zeros at CD-TT corresponding to Z = - l in the Z-plane for the 

low-pass filter or maximum number of zeros at ft; = 0 corresponcUng to Z = Ifor the high-

pass filter [29]. As was shown in [30], Daubechies Max Flat filters of length Â  = 4 have 

the optimum energy compaction and aUasing distortion under frequently met assumptions 
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on tiie autocorrelation sequence. All tiie results are compared witii Daubechies (Daub) 

filters only. Also, since the filter lengtii has to be neitiier too short nor too long to have a 

satisfactory frequency and time locaUzation, tests were Umited to the longest lengtii 

ofA^ = 24. 

Fig. 4.4 shows the tiansform coding gain comparison between the adaptive and 

optimized filter and Daub filter for various filter lengths. It can be seen tiiat for filter 

order of Â  = 4, the adaptive filter is the same as the Daubechies filter. This can also be 

confirmed from the tabulated results in Table 4.1 for all the tested images. This 

observation confirms two results. 

1. For filter order N = 4, there is only a single solution for the perfect reconstruction 

criteria. 

2. Since Daubechies filters give the optimum energy compaction for length Â  = 2, the 

optimizing algorithm successfuUy finds better filters than the Daubechies filters. This can 

further be observed in the Table 4.1, which shows that the adaptive filter performs better 

than the Daubechies in more than 90% of the cases. It can also be noted that the gain does 

not increase considerably beyond the filter order A/̂  = 10 . 

This can also be observed in the Fig. 4.5, which is the plot of the PSNR values of 

the reconstructed Mandrill image from the approximation wavelet coefficients for various 

filter lengths. It is seen that the performance of the adaptive filter is the same as the 

Daubechies filter for Â  = 4. Beyond that length, the adaptive filter gives a better PSNR 

than the Daubechies filter, thus fincUng better solutions. Since the problem is non-convex, 

further tests would be required to determine if the obtained solutions are indeed global. 

The Mandrill image performs poorer when compared to the other images having a lower 

spatial frequency value, as seen in Table 4.3, since it has a high SF value. This 

performance does not come as a surprise and is as expected. Similarly, the Stiaw image 

performs poorly, as it has a lot of edge or high frequency information compared to the 

other tested images. 

This observation is further sttengthened by the plot in Fig. 4.6 of the max PSNR 

values of the 25 tested images against the respective SF values. Except for a very few 
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Transform Gain Vs Filter order for Lena Image 
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-k- Daub 
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Filter order (N) 

Fig. 4.4: Plot of TCG versus Filter order for Lena Image 

cases, the general tiend is decreasing PSNR values as the SF value increases. Since a 

higher SF value incUcates high edge information, a lot more reconstruction aUasing takes 

place as more of the high frequency information is discarded by the low-pass filter. 

19 BB 
PSNR Vs Filter order for Mandrill Image 

- 0 - Adaptive 
Daub 

4 B 10 12 14 IB 18 20 22 24 

Filter order (N) 

Fig. 4.5: Plot of PSNR versus Filter order for MandriU Image 
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The result of the SQP optimization is also compared to similar work done earlier 

[1] using Interior-Point optimization, and is shown in Table 4.1. It can be seen that the 

current SQP method performed better in terms of both the MSE and the PSNR values 

for the four standard images. Another improvement is in the computational time of the 

algorithm, which averages about 13 seconds using the Interior-Point method and just 2.5 

seconds using the SQP method (using Daubechies filter as the starting point) described. 

All the tests were performed using a 1.54 GHz AMD Athlon and 480 MB RAM 

computer. 

The present method performed better for aU images considered except the 

MandriU image. The performance improvement has been significant in a few cases and 

marginal in a few. Though exact comparison data in terms of the computational time is 

not available, the SQP method seems to perform better compared to the Interior point 

method in speed too. Hence, an overall improvement has been achieved in the present 

case compared to the earlier method. 
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Table 4.1: Comparison of results for Interior point and SQP methods 

Image 

Lena 

Goldhill 

Mandrill 

Peppers 

Filter 

Order 

N=4 

6 

8 

4 

6 

8 

4 

6 

8 

4 

6 

8 

Interior Point Method 

Optimized 

MSE 

27.80 

22.61 

20.88 

54.80 

53.31 

48.64 

275.6 

271.9 

264.8 

53.89 

48.18 

38.75 

Optimized 

PSNR 

33.69 

34.59 

34.93 

30.74 

30.86 

31.26 

23.72 

23.79 

23.90 

30.82 

31.30 

32.24 

SQP Method 

Optimized 

MSE 

22.82 

17.65 

16.13 

41.13 

36.40 

35.26 

698.4 

683.8 

679.5 

35.86 

21.67 

17.73 

Optimized 

PSNR 

34.55 

35.66 

36.05 

32.0 

32.52 

32.66 

19.69 

19.79 

19.81 

32.59 

35.06 

35.65 

An explanation of the use of the autocorrelation i?^, used in the objective 

function, is given here. For images, the autocorrelation vector is the sequence created by 

shifting either the columns or the rows, depending on whether it is the horizontal or the 

vertical autocorrelation desired, and then an averaging is performed [1]. Eqs.(3.14)-

(3.15) give the mathematical form of the operations described above for the horizontal 

sequence. The vertical autocorrelation sequence is formed the same way, but by shifting 

rows instead of colunms. Sttictly speaking, the filter that is optimized using the 

horizontal autocorrelation sequence is tiie optimal filter in only the horizontal dkection, 

and the filter optimized using the vertical autocorrelation sequence is optimal in the 

vertical direction only. This is not a problem, since we can design separable filters, 

which means we construct an optimal filter bank consisting of eight (four filters in each 
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dimension) instead of four filters. Frequently, the horizontal and vertical autocorrelation 

sequences £u-e significantly correlated, and the filters optimized using only the horizontal 

or vertical autocorrelation sequence will perform well in both dimensions for almost all 

the images. This was the observation and is also shown in Table 4.2, which gives the 

results of the algorithm when the horizontal and vertical directions were used 

alternatively for the autocorrelation sequence. At N=4, the difference was zero and was 

very small for other cases and can be considered negligible. Though this test was 

performed for only four images, the observation can be extended to almost all the 

images. This takes care of the direction to be considered for the sequence. 

Another area of interest from the point of the optimization method is the starting point of 

the algorithm. It is known [1] that the solution of the problem l\R^1\ —> min for any 

symmetric matrix is the eigenvector of R^ that corresponds to the smallest eigenvalue of 

R^. Since h^RJ\ is the output energy of the signal that passes through the filter 1\ (n), 

andii[R^h^ >0,R^ is positive definite, i.e., its smallest eigenvalue (equal to the value of 

the output energy) is greater than zero. This impUes that the optimal solution is the 

eigenvector corresponding to the smallest eigenvalue, or in the vicinity of it. With this 

knowledge, the starting point was chosen to be the above eigenvector to obtain the 

optimum filter. 

To be able to quaUfy the results obtained by tiie above method, a comparison was 

made with a different starting point. The obvious choice was using the Daubechies filters 

as the starting point, since they are known to be maximally flat filters and having the 

maximum number of zeros aico = 7i foxa given length of the low-pass filter. The results 

of the comparison are given in Table 4.3. The results come as Uttle surprise, as the 

Daubechies filters aUnost always perform better in finding the optimum solution when 

compared to tiie eigenvector starting points. The performance gain is as high as 54% for 

tiie Daubechies filters in some cases. The Daubechies filters give a better and also a more 

consistent output for various filter lengths. The Daubechies filters tiius become the 

obvious choice for the starting point and all the tests were performed with them. 
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Table 4.2: Comparison of the results by using either the horizontal or the 
vertical autocorrelation of the image 

Image 

Lena 

Goldhill 

Mandrill 

Peppers 

Filter 

order 

N=4 

6 

8 

10 

12 

N=4 

6 

8 

10 

12 

N=4 

6 

8 

10 

12 

N=4 

6 

8 

10 

12 

Horizontal 

M S E 

22.8209 

17.6597 

16.1357 

15.4870 

15.0266 

41.1269 

36.3962 

35.2614 

34.6027 

33.9859 

698.4679 

683.8821 

679.5712 

680.0534 

682.4979 

35.8618 

20.2854 

17.7156 

20.9640 

24.9685 

PSNR(dB) 

34.5475 

35.6610 

36.0529 

36.2311 

36.3622 

31.9895 

32.5202 

32.6578 

32.7397 

32.8178 

19.6893 

19.7810 

19.8085 

19.8054 

19.7898 

32.5845 

35.0590 

35.6472 

34.9161 

34.1569 

Vertical correlation 

MSE 

22.8209 

17.6537 

16.1488 

15.7735 

16.0518 

41.1269 

36.3054 

35.2378 

34.5988 

34.0159 

698.4679 

683.8636 

679.5439 

680.0227 

682.9625 

35.8618 

20.2490 

17.8995 

21.2096 

24.8443 

PSNR(dB) 

34.5475 

35.6625 

36.0494 

36.1515 

36.0756 

31.9895 

32.5311 

32.6607 

32.7402 

32.8140 

19.6893 

19.7811 

19.8086 

19.8056 

19.7868 

32.5845 

35.0668 

35.6024 

34.8655 

34.1785 

% change 

0 

0.0042 

0.0097 

0.2197 

0.7882 

0 

0.0335 

0.0089 

0.0015 

0.0116 

0 

0.0005 

0.0005 

0.0010 

0.0152 

0 

0.0222 

0.1257 

0.1449 

0.0632 
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Table 4.3: Comparison of the results by using either the Daub filters or the 
eigenvector corresponding to minimum eigenvalue as starting point 
for the optimization algorithm. 

Image 

Lena 

Goldhill 

Mandrill 

Peppers 

Filter 
order 

N=4 

6 

8 

10 

12 

N=4 

6 

8 

10 

12 

N=4 

6 

8 

10 

12 

N=4 

6 

8 

10 

12 

Daub filters as starting 
point 
MSE 

22.8209 

17.6597 

16.1357 

15.4870 

15.0266 

41.1269 

36.3962 

35.2614 

34.6027 

33.9859 

698.4679 

683.8821 

679.5712 

680.0534 

682.4979 

35.8618 

20.2854 

17.7156 

20.9640 

24.9685 

PSNR(dB) 

34.5475 

35.6610 

36.0529 

36.2311 

36.3622 

31.9895 

32.5202 

32.6578 

32.7397 

32.8178 

19.6893 

19.7810 

19.8085 

19.8054 

19.7898 

32.5845 

35.0590 

35.6472 

34.9161 

34.1569 

Min. Eigen vector as 
starting point 
MSE 

41.5349 

22.7218 

16.1508 

34.4626 

281.834 

41.1287 

164.292 

241.863 

34.7742 

65.0287 

714.504 

687.086 

742.750 

971.479 

780.961 

41.0345 

22.3782 

19.4359 

32.4916 

20.2369 

PSNR(dB) 

31.9467 

34.5664 

36.0489 

32.7573 

23.6309 

31.9894 

25.9746 

24.2951 

32.7182 

29.9998 

19.5908 

19.7607 

19.4224 

18.2565 

19.2045 

31.9993 

34.6325 

35.2447 

33.0131 

35.0694 

% change 
in PSNR 

8.1411 

3.1667 

0.0111 

10.604 

53.875 

0.0003 

25.200 

34.421 

0.0657 

9.3934 

0.5028 

0.1027 

1.9879 

8.4841 

3.0477 

1.8288 

1.2315 

1.1420 

5.7644 

-2.602 
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Some results are now given in Figs. (4.7)-(4.9) showing the frequency spectrums 

of the input image and the Low-Low subband reconstiucted image and the relationship 

between the activity level of the image and the performance. Images with varying spatial 

activity level were chosen and their respective spectia and the autocorrelation matrices 

are plotted. The spatial frequencies and the spectial activity measures of the three images 

considered are (4.76) and (215.48) for tiie Spine image, (28.47) and (379.8) for tiie Barb 

image and (76.53) and (18.65) for the Stiaw image, respectively. As mentioned earUer, 

higher the SF value, the more high frequency information in the form of edges is present 

in the spatial domain of the image and the lesser its predictabiUty, which can be easily 

seen in the images shown. The Stiaw image has the most edge information compared to 

the other two images. Higher the SAM value, higher the high frequency information in 

the image's Fourier domain, which is seen in the ampUtude spectia of the autocorrelation 

matrices of the images. The spectrum of the Barb image consists of the highest edge 

information as compared to the Stiaw and the Spine image. The Sttaw image has the 

smoothest spectrum of the three images since it has the lowest SAM value. The SF value 

determines the reconstruction error in terms of the PSNR values, as is seen in Table 4.4. 

The Spine image gives the highest PSNR compared to the Barb and the Stiaw images. 

The optimized PSNR of the three reconstructed images are in the range of 45, 25 and 19 

dB respectively. 
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Fig 4.7: Analysis of the Spine image 
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Fig 4.8: Analysis of the Barb image 
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Fig 4.9: Analysis of the Straw image 

52 



Now a comparison of the filters obtained with the standard Daubechies filters is 

made. Fig. 4.10 (a)-(f) shows the results of the comparison made between the optimized 

high pass filter for the Straw image for TV = 10 and the Daubechies high pass filter. As 

mentioned earlier, Daubechies filters are known to have the maximum number of zeros 

at Z = 1 for the high-pass filter. It can be seen from the Fig. 4.10(f) that there is one zero 

at Z = 1 in the pole-zero plot of the Daubechies filter. Similarly a zero is also present in 

the pole-zero plot of the adaptive filter. But Table 4.4 confirms that the adaptive filter 

performs better than the Daub filters for all filter lengths. The amplitude spectrums of 

the filters show that the adaptive filter has a better cut-off than the Daubechies filter. 

This improvement in the performance of the Adaptive filter is expected since it 

redistributes the energy of the input image according to the image statistics, whereas the 

Daubechies filter has a fixed set of filters for any input. Table 4.4 shows the results of all 

the tested images for various filter lengths. 
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Fig. 4.10: Comparison of the Adaptive filter and the Daub high-pass filters for the Straw 
image 
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Table 4.4: Results for various filter lengths applied to different images 

Image 

Spine 

House 

Lena 

Peppers 

Couple 

Goldhill 

Aerial 

Barb 

Camera 

-man 

Mandrill 

Straw 

SF 

4.76 

9.14 

13.27 

14.41 

15.14 

15.42 

16.75 

28.47 

29.30 

62.26 

76.53 

SAM 

1 

SFM 

215.48 

1170.22 

924.28 

263.62 

347.90 

195.77 

257.80 

379.80 

120.0 

26.99 

18.65 

Filter 

Adap 

Daub 

Adap 

Daub 

Adap 

Daub 

Adap 

Daub 

Adap 

Daub 

Adap 

Daub 

Adap 

Daub 

Adap 

Daub 

Adap 

Daub 

Adap 

Daub 

Adap 

Daub 

N = 4 

MSE 

2.00 

2.00 

5.93 

5.93 

22.82 

22.82 

35.86 

35.86 

40.0 

40.0 

41.12 

41.12 

21.52 

21.52 

168.6 

168.6 

147.0 

147.0 

698.4 

698.4 

954.8 

954.8 

PSNR 

dB 

45.11 

45.11 

40.40 

40.40 

34.54 

34.54 

32.59 

32.59 

32.10 

32.10 

31.99 

31.99 

34.80 

34.80 

25.86 

25.86 

26.46 

26.46 

19.69 

19.69 

18.34 

18.34 

TCG 

25.59 

25.59 

37.82 

37.82 

15.42 

15.42 

14.26 

14.26 

12.90 

12.90 

12.43 

12.43 

23.40 

23.40 

4.89 

4.89 

6.50 

6.50 

3.38 

3.38 

3.18 

3.18 

N = 6 

MSE 

2.02 

2.26 

3.18 

3.22 

17.66 

18.91 

20.28 

21.68 

33.62 

35.77 

36.39 

37.69 

12.71 

12.72 

199.6 

168.4 

135.3 

140.2 

683.8 

687.2 

772.4 

842.0 

PSNR 

dB 

45.06 

44.59 

43.10 

43.06 

35.67 

35.36 

35.06 

34.77 

32.87 

32.59 

32.53 

32.36 

38.39 

37.08 

25.14 

25.86 

26.82 

26.66 

19.79 

19.76 

19.26 

18.87 

TCG 

27.77 

27.32 

43.02 

42.95 

17.08 

16.65 

15.16 

14.97 

14.05 

13.64 

13.13 

12.94 

33.82 

30.30 

5.56 

4.84 

6.82 

6.71 

3.40 

3.39 

3.49 

3.35 

N = 8 

MSE 

2.16 

2.16 

3.01 

3.03 

16.13 

17.31 

17.71 

17.73 

30.72 

32.71 

35.26 

36.33 

9.80 

9.80 

190.2 

168.8 

133.1 

138.6 

679.5 

682.0 

724.2 

785.3 

PSNR 

dB 

44.78 

44.77 

43.34 

43.32 

36.06 

35.74 

35.65 

35.64 

33.26 

32.98 

32.66 

32.52 

39.48 

38.21 

25.34 

25.85 

26.89 

26.71 

19.81 

19.79 

19.54 

19.18 

TCG 

28.16 

28.14 

45.36 

45.33 

17.80 

17.28 

15.50 

15.29 

14.48 

14.06 

13.37 

13.18 

40.39 

35.36 

5.58 

4.81 

6.93 

6.82 

3.41 

3.39 

3.58 

3.45 

(NOTE: Adap:- Adaptive Filter; Daub:- Daubechies Filter) 
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Table 4.4: (continued) 

Image 

Spine 

House 

Lena 

Peppers 

Couple 

Goldhill 

Aerial 

Barb 

Camera 

-man 

Mandrill 

Straw 

N = 1 0 

MSE 

1.76 

1.76 

3.59 

3.60 

15.48 

16.55 

20.96 

21.08 

28.78 

30.42 

34.60 

35.60 

7.21 

9.10 

173.2 

169.3 

130.8 

136.9 

680.0 

682.6 

689.5 

754.7 

PSNR 

dB 

45.67 

45.66 

42.57 

42.56 

36.23 

35.98 

34.92 

34.89 

33.54 

33.30 

32.74 

32.61 

39.55 

38.53 

25.74 

25.84 

26.97 

26.76 

19.81 

19.78 

19.75 

19.35 

TCG 

28.65 

28.64 

46.68 

46.66 

18.20 

18.19 

15.62 

15.46 

14.74 

14.32 

13.49 

13.32 

44.68 

39.09 

5.61 

4.79 

7.0 

6.89 

682.4 

3.40 

3.65 

3.51 

N = 1 2 

MSE 

1.31 

1.31 

3.95 

3.96 

15.02 

16.07 

24.96 

25.81 

27.91 

29.27 

33.99 

35.01 

7.44 

8.85 

182.2 

169.7 

129.8 

133.8 

3.41 

685.5 

680.4 

737.0 

PSNR 

dB 

46.95 

46.95 

42.16 

42.15 

36.36 

36.06 

34.16 

34.01 

33.68 

33.46 

32.82 

32.68 

39.42 

38.66 

25.52 

25.83 

27.0 

26.86 

19.79 

19.77 

19.81 

19.45 

TCG 

28.97 

28.95 

47.52 

47.50 

18.41 

17.92 

15.79 

15.58 

14.94 

14.51 

13.57 

13.40 

46.58 

41.86 

5.62 

4.77 

7.0 

6.93 

683.5 

3.40 

3.68 

3.56 

N=14 

MSE 

1.05 

1.05 

3.67 

3.68 

14.65 

15.64 

26.03 

28.55 

27.85 

29.19 

33.69 

34.46 

6.80 

7.86 

214.2 

170.1 

127.6 

130.4 

3.41 

686.8 

681.5 

723.8 

PSNR 

dB 

47.90 

47.89 

42.48 

42.47 

36.47 

36.18 

33.98 

33.57 

33.68 

33.47 

32.86 

32.75 

39.81 

39.17 

24.83 

25.82 

27.10 

26397 

19.78 

19.76 

19.80 

19.53 

TCG 

29.19 

29.18 

48.08 

48.06 

18.59 

18.10 

15.84 

15.65 

15.04 

14.64 

13.60 

13.46 

48.0 

43.95 

5.74 

4.76 

7.01 

6.97 

682.6 

3.40 

3.69 

3.59 

N=16 

MSE 

1.09 

1.09 

2.93 

2.94 

14.48 

15.28 

27.40 

27.44 

28.03 

29.63 

33.30 

34.02 

5.30 

6.24 

206.4 

170.5 

125.3 

127.9 

3.42 

685.6 

669.5 

712.5 

PSNR 

dB 

47.73 

47.72 

43.46 

43.45 

36.53 

36.29 

33.76 

33.74 

33.66 

33.41 

32.91 

32.81 

40.89 

40.17 

24.99 

25.81 

27.15 

27.06 

19.79 

19.77 

19.88 

19.60 

TCG 

29.36 

29.35 

48.48 

48.46 

18.71 

18.24 

15.72 

15.71 

15.16 

14.75 

13.64 

13.51 

49.9 

45.56 

5.77 

4.75 

7.01 

6.99 

3.42 

3.41 

3.72 

3.61 
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Table 4.4: (continued) 

Image 

Spine 

House 

Lena 

Peppers 

Couple 

Goldhill 

Aerial 

Barb 

Camera 

-man 

Mandrill 

Straw 

N = 18 

MSE 

1.35 

1.35 

2.09 

2.09 

14.33 

15.01 

22.81 

22.83 

28.10 

29.94 

33.28 

33.79 

4.78 

4.80 

187.5 

171.0 

123.3 

126.6 

680.7 

682.6 

660.2 

701.9 

PSNR 

dB 

46.83 

46.82 

44.93 

44.92 

36.57 

36.36 

34.54 

34.54 

33.65 

33.37 

32.91 

32.84 

41.34 

41.31 

25.40 

25.79 

27.22 

27.10 

19.81 

19.78 

19.94 

19.66 

TCG 

29.49 

29.48 

48.77 

48.76 

18.80 

18.35 

15.77 

15.77 

15.24 

14.83 

13.64 

13.54 

46.91 

46.80 

5.61 

4.74 

7.10 

7.01 

3.42 

3.41 

3.73 

3.63 

N = 20 

MSE 

1.61 

1.61 

1.55 

1.55 

14.17 

14.84 

18.25 

18.26 

27.79 

29.68 

33.77 

33.79 

4.16 

4.18 

180.5 

171.6 

122.4 

126.5 

678.1 

679.3 

652.1 

691.6 

PSNR 

dB 

46.03 

46.03 

46.23 

46.21 

36.62 

36.41 

35.51 

35.51 

33.70 

33.40 

32.85 

32.84 

41.94 

41.91 

25.57 

25.78 

27.26 

27.10 

19.82 

19.81 

19.99 

19.73 

TCG 

29.60 

29.58 

49.0 

48.99 

18.88 

18.43 

15.80 

15.80 

15.31 

14.90 

16.58 

13.56 

47.87 

47.79 

5.67 

4.73 

7.12 

7.02 

3.42 

3.41 

3.73 

3.64 

N = 22 

MSE 

1.71 

1.72 

1.63 

1.63 

14.09 

14.75 

17.24 

17.24 

27.30 

28.89 

33.87 

33.89 

4.43 

4.44 

192.1 

172.2 

122.9 

127.4 

676.0 

677.2 

647.8 

684.0 

PSNR 

dB 

45.78 

45.77 

46.0 

45.99 

36.64 

36.44 

35.77 

35.77 

33.77 

33.52 

32.84 

32.83 

41.67 

41.65 

25.30 

25.77 

27.24 

27.07 

19.84 

19.82 

20.01 

19.78 

TCG 

29.66 

29.67 

49.18 

49.17 

18.88 

18.50 

15.83 

15.83 

15.35 

14.94 

13.60 

13.59 

48.65 

48.58 

5.81 

4.72 

7.13 

7.04 

3.42 

3.41 

3.74 

3.66 

N = 24 

MSE 

1.64 

1.60 

2.22 

2.22 

13.95 

14.69 

19.85 

19.86 

36.85 

27.97 

33.92 

33.93 

5.20 

5.21 

197.1 

172.6 

124.0 

128.3 

675.9 

677.5 

645.8 

681.2 

PSNR 

dB 

46.03 

46.07 

44.66 

44.64 

36.69 

36.45 

35.16 

35.15 

33.85 

33.66 

32.83 

32.82 

40.97 

40.95 

25.19 

25.75 

27.20 

27.04 

19.84 

19.82 

20.02 

19.79 

TCG 

29.75 

29.74 

49.32 

49.31 

18.92 

18.56 

15.86 

15.86 

15.35 

15.0 

13.61 

13.60 

49.28 

49.22 

5.87 

4.71 

7.14 

7.05 

3.42 

3.41 

3.75 

3.67 
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Summarizing the test results for the reconstruction from the Low-Low subband, it 

can be stated that optimized filters are found that produce better MSE and PSNR than 

the Daubechies Maxflat filters. However, there is a chance that they will perform worse 

than the Maxflat filters in some cases (one out of twelve test cases). The absolute values 

of PSNR, in general, are in excess of 30 dB (except for very high SF measure images 

like the Mandrill image). This makes the adaptively designed filters acceptable to be 

used in a complete encoder scheme. 

Here is a summary of the main points of this chapter. An adaptive two-channel 

PR-CQF bank design problem was considered. PR-CQF constraints were introduced to 

keep aliasing at a low level while minimizing the energy in the higher frequency 

subbands. The optimization technique that would solve the given problem was 

implemented. The tests conducted have shovra that the minimization of energy in the 

higher subbands leads to minimization of aliasing. Various relationships between the 

performance of the images and the statistics of the images are developed and shown. 

The tests have shown that the minimum of the energy in the higher subband under CQF 

constraints is sufficient to provide acceptable distortion of the images reconstructed 

from the Low-Low subband only. The results are compared with the well-known 

Daubechies filters and an improved performance is observed. It is of special interest to 

note that in a few cases, even though the optimization always find a better solution 

compared to the starting point, the Daubechies filter give a better PSNR value than the 

adaptive filter. This inference can be confirmed by the values of the energy term of the 

high-pass filter, tabulated for a few images in Table 4.5. The table gives the values of 

the energy and the corresponding PSNR for 4 images as shovwi. It can be noted, in the 

case of the Barb image, that even though the PSNR values of the Daubechies filter are 

better, the energy values of the Adaptive filter are yet lower. The energy values of the 

Adaptive filter are better in all of the cases, thus confirming that the optimization indeed 

finds a better solution. It is also to be noted that the PSNR values may not be the best 

way to determine the quality of the results obtained, as seen in the case of the Barb 

image. Nevertheless the algorithm finds a better solution in terms of minimization 
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Table 4.5: Comparison of the high-pass channel energy values of the 
Daubechies and the Adaptive filters for various images 

Image 

Lena 

Goldhill 

Barb 

Mandrill 

Filter 
order 

N=4 

6 

8 

10 

12 

N=4 

6 

8 

10 

12 

N=4 

6 

8 

10 

12 

N=4 

6 

8 

10 

12 

Daub Filter 

hJKA 

0.0021 

0.0018 

0.0017 

0.0016 

0.0016 

0.0032 

0.0030 

0.0029 

0.0028 

0.0028 

0.0212 

0.0215 

0.0218 

0.0220 

0.0222 

0.0449 

0.0444 

0.0443 

0.0441 

0.0441 

PSNR 

(dB) 

34.5475 

35.3650 

35.7481 

35.9406 

36.0698 

31.9895 

32.3686 

32.5285 

32.6166 

32.6885 

25.8613 

25.8690 

25.8579 

25.8433 

25.8318 

19.6893 

19.7602 

19.7930 

19.7891 

19.7706 

Adaptive Filter 

hiKA 

0.0021 

0.0017 

0.0016 

0.0015 

0.0015 

0.0032 

0.0029 

0.0028 

0.0028 

0.0027 

0.0212 

0.0164 

0.0162 

0.0160 

0.0159 

0.0449 

0.0443 

0.0441 

0.0440 

0.0439 

PSNR 

(dB) 

34.5475 

35.6610 

36.0529 

36.2311 

36.3622 

31.9895 

32.5202 

32.6578 

32.7397 

32.8178 

25.8613 

25.1303 

25.3398 

25.7444 

25.5231 

19.6893 

19.7810 

19.8085 

19.8054 

19.7898 

% 
improvement 
in energy 
value 

0 

5.5556 

5.8824 

6.2500 

6.2500 

0 

3.3333 

3.4483 

0 

3.5714 

0 

23.7209 

25.6881 

27.2727 

28.3784 

0 

0.2252 

0.4515 

0.2268 

0.4535 

of the output high-pass channel energy. 
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CHAPTER 5 

CONCLUSIONS 

The present work has contributed to the adaptive filter bank design for image 

processing applications. The design methods for optimal perfect reconstruction two-

channel filter banks for image size reduction have been investigated. The perfect 

reconstiuction conditions are derived from the Nyquist(2) criteria. When the aliasing 

energy component, which is the energy through the high-pass filter channel, was kept 

at an acceptably low value by introducing perfect reconstruction constraints into the 

optimization problem adaptively, the filter banks provide lower distortion than non-

adaptive filters, like the Daubechies filters, when the images were reconstructed from 

their LL subbands. This work has primarily focused on investigating the advantages 

and limitations of the adaptive wavelet filter when compared to standard filters. 

Various measures for the image statistics are discussed and the results analyzed. 

Summarizing the results obtained, we conclude that: 

1. Adaptive filters were successfully found using various starting points. 

2. For A'̂  = 2, the only solution to the optimization problem is that of the Haar filter. 

3. For A'̂  = 4 , the adaptive filter was the same as the Daubechies filter. For this case 

the algorithm did not find a better solution and it converged to the starting point. 

4. ForN > 4, the optimization performed better than the Daubechies filter in more 

than 90% of cases when the PSNR values were compared, it gave a lower energy 

value of the high-pass channel in all 100% of cases compared to the Daubechies 

filter. 

Future scope in improving and applying this work could be: 

1. A few other optimality criteria can also be included such as constrained non-linear 

phase response of the filter and uncorrelatedness of subband signals. These 

constraints can improve the performance of the optimization. Although this work 

has been done in the area of image encoding, the adaptive filter design algorithms 
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presented in this work can find application in other general areas of image/signal 

processing. 

2. The optimization technique can be used for a wider range of applications, 

like possibly in Edge detection by concentrating the energy in the 

High-High subbands 
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(A.l) 

APPENDIX A 

OBJECTIVE FUNCTION DERIVATION 

Proof of Eq.(3.27) 

Eq.(3.26) is 

f(a,b,c,d.e,f) = {a^ -\-b^ +e^ +d^ +e^ + f^) + 2r,^{af\ + 2r,,[ae + bf] 

+ 2;-| Jflffi? -\-be + cf] -I- 2r^^[ac -\-bd -i-ce + df]-^- lr^2 [̂ ^ + be-ir cd-^ de + ef] 

From Eqs.(3.18),(3.21),(3.22),(3.23) we have 

f{a,b,e,d,e,f) = 1 + 2r^^{af] + 2r, J a J + be-^ cf] -\- 2r,2[a6 -\-be + cd-\-de + ef] (A.2) 

Now consider, 

(a + 6 + c + ̂  + e + / ) ' = (a ' + ft' + c ' + £/' + e' + / ' ) + 2[ae + ae + bd 

-^bf-\-ee + df]-\- 2[ab -^ ad + af + be + be +cd + cf + de + ef] = Q 

since (a + Zj + c-i-J-t-e-h/) = 0 fromEq.(3.21) 

(A.3) 

Eq.(A.3) simplifies as 

ab + be + cd + de + ef = -\l2-ad-af-be-cf (A. 4) 

Substituting Eq.(A.4) in (A.2), we get Eq.(3.27) 

f{a,b,c,d,e,f)^{\-r,2)-2{r,2-r,,){ad + be + ef)-2{r,2-r,M (A.5) 
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APPENDIX B 

DEFINITION OF SOME IMAGE DEPENDENT STATISTICS 

Spatial Frequecny (SF) is defined as [28], 

SF = .Jp'+Q' (B.l) 

where, P = J - ^ t £ [/(/, j) - Hi, j -1)] ' 

e=^^i;Z[/o-,7)-/(/-i,y)r 

The Joint Time-Frequency Localization (TFL) is defined as [26], 

where. 

TFL = a„a^ (B.2) 

1 - 2 

where, a^ =—^(n-n)^\h[n]\ 
E „ 

1 1 "f - 2 

a = \(CO-O))^\H(O))\ dco 

" ElTT _i ' ' 

1 2 

« = — ̂  n\h[n]\ , the centre of mass of the sequence 
E „ 

1 " I <y = {o)\H{e^'") J<» , the centre of mass in frequency domain 

1 °° ' 

£ = Xl^[«]r = f|^(^)| '^^ ' is the total energy of the sequence 
« ^ ^ - a > 

The TFL of any wavelet is lower bounded by 0.5. 
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The Transform Coding Gain (TCG) for an orthogonal transform is defined as the ratio of 

the arithmetic mean of the energy, cr̂ ,̂ in each subband to the geometric mean [3], 

1 N-\ 

(B.3) TCG=—-^=' 
N-\ 

Y\-] 
\/N 

For a 2-channel PR-QMF Filter bank, Eq.(B.3) reduces to 

. 2 

TCG 
O", (B.4) 

U2^2 11/2 ' 

where a^, al and aj^ are the variances of the input, the low-pass band and the high-pass 

band respectively. 

The input variance in such a case is expressed as, 

cj'^=l/2{c7l+al). (B.5) 

The output energy of the low-pass and the high-pass filters are defined as, 

ĉ i =h,R^hl, and 
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