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Adaptive Wavelet Graph Model for Bayesian
Tomographic Reconstruction

Thomas Frese, Member, IEEE, Charles A. Bouman, Fellow, IEEE, and Ken Sauer, Member, IEEE

Abstract—We introduce an adaptive wavelet graph image
model applicable to Bayesian tomographic reconstruction and
other problems with nonlocal observations. The proposed model
captures coarse-to-fine scale dependencies in the wavelet tree by
modeling the conditional distribution of wavelet coefficients given
overlapping windows of scaling coefficients containing coarse scale
information. This results in a graph dependency structure which
is more general than a quadtree, enabling the model to produce
smooth estimates even for simple wavelet bases such as the Haar
basis. The inter-scale dependencies of the wavelet graph model are
specified using a spatially nonhomogeneous Gaussian distribution
with parameters at each scale and location. The parameters of this
distribution are selected adaptively using nonlinear classification
of coarse scale data. The nonlinear adaptation mechanism is based
on a set of training images. In conjunction with the wavelet graph
model, we present a computationally efficient multiresolution
image reconstruction algorithm. This algorithm is based on
iterative Bayesian space domain optimization using scale recursive
updates of the wavelet graph prior model. In contrast to per-
forming the optimization over the wavelet coefficients, the space
domain formulation facilitates enforcement of pixel positivity
constraints. Results indicate that the proposed framework can
improve reconstruction quality over fixed resolution Bayesian
methods.

Index Terms—Bayesian tomography, image reconstruction,
wavelet-based image modeling.

I. INTRODUCTION

A MAJOR challenge for Bayesian image reconstruction
methods is the design of image prior models that accu-

rately account for edges as well as uniform and textured regions
in images, yet result in tractable estimation algorithms. In com-
parison to Markov random field (MRF) priors, multiresolution
models can improve accuracy and increase computational
efficiency. However, little work has been done on applying
multiresolution prior models to Bayesian tomographic recon-
struction and other problems with nonlocal observations. In
addition, a well known problem with many multiresolution
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approaches is that the resulting estimates exhibit blockiness
which is usually the result of a quadtree dependency structure.
In this work, we address these issues by introducing an adaptive
wavelet graph prior model. The inter-scale dependencies of
this model are not limited to a quadtree structure, resulting
in smooth estimates even for simple wavelet bases such as
the Haar basis. In conjunction with this model, we propose a
fast, iterative multiresolution reconstruction algorithm that can
incorporate space domain constraints such as positivity, and
thus, is applicable to Bayesian tomographic reconstruction.

Markov random field priors [1]–[3] have enjoyed con-
siderable success in Bayesian image reconstruction [4] and
restoration [1]. However, MRF approaches are typically limited
to modeling very local interactions in images. Several MRF
potential functions have been proposed that provide good edge
preservation without explicitly modeling edges [5]–[11]. In
comparison to MRF priors, multiresolution methods can im-
prove reconstruction quality and offer fast and robust estimation
algorithms [12]–[17]. Multiresolution models better account
for long range interactions and can more easily be designed to
separately account for edges, smooth and textured regions.

In recent years, multiresolution techniques have been de-
veloped which use linear system models on trees [12]–[14],
[18]–[23]. Nonlinear extensions of those methods have been
applied to image restoration with both Gaussian and Poisson
noise [16], [17], [24]–[26]. Other methods have been developed
for image segmentation [27]–[30]. Most of the existing work
on multiresolution techniques has focused on applications
where the observations are spatially localized. Typically, the
observations are assumed to be conditionally independent
given the local state of the model [12], [16]–[18], [20], [21].
For this class of problems, the application of multiresolution
models defined on quadtrees is very appealing because it
leads to noniterative, scale-recursive estimation and realization
algorithms.

Little work, however, has been done on applying mul-
tiresolution Bayesian estimation to problems with nonlocal
observations as encountered in tomographic reconstruction.
Perhaps, this is because positivity constraints, which are
essential in tomographic reconstruction, are difficult to enforce
in the wavelet domain. In [31], Wuet al. used a wavelet prior
for MAP reconstruction of tomographic data. Their prior is
based on a space-variant simultaneous autoregressive (SAR)
model whose coefficients are extracted using anisotropic
diffusion. Nowak and Kolaczyk have proposed a tomographic
reconstruction technique using a wavelet prior [25], [26]. Their
approach uses the expectation maximization (EM) algorithm
to decouple the estimation problem from the linear projection
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transformation of the observations [6]. The quadtree structure
of their model allows for closed-form EM updates; however,
since the overall EM technique remains iterative, the compu-
tational benefit of using a quadtree structure is less clear. For
the Poisson case, their approach is limited to the Haar wavelet
basis. Saquibet al.proposed a prior model for tomography that
used a multiresolution pyramid representation [32]. However,
a disadvantage of this pyramid representation is that different
scales contain redundant information. This makes formulation
of a consistent Bayesian estimator difficult.

A general problem for multiresolution models formulated on
quadtrees is blockiness of the resulting estimates [20], [21],
[28], [33]–[36]. Specifically, nodes that are spatially adjacent
can be far apart in the quadtree so that their correlation is poorly
modeled. A popular fix is to average multiple estimates obtained
for different spatial alignments of the tree or wavelet basis [33],
[36], [37]. More elegant approaches have used trees with nodes
corresponding to overlapping portions of the image domain [35]
or have performed state augmentation to account for the depen-
dencies of general wavelet bases from within a quadtree struc-
ture [23]. These approaches have in common that their data
representation is highly overcomplete which can make accurate
modeling of sampled data difficult.

A more direct way to avoid blockiness is to use a dependency
structure that is more general than the quadtree. For image
segmentation, Bouman and Shapiro [28] have used a pyramidal
graph where each node depends on a fixed size window at the
next coarser scale. Katoet al. proposed a fully three-dimen-
sional (3-D) MRF where each node’s neighborhood consists
of adjacent nodes at the same scale and its quadtree parent
[27], [38]. A disadvantage of violating the tree constraint is
that Bayesian reconstruction must be performed iteratively as
compared to the recursive algorithms available for quadtree
models. For applications such as tomographic reconstruction
this is not a limitation since the forward model requires iterative
optimization in any case.

In this work, we develop a stochastic multiresolution frame-
work for Bayesian image reconstruction for problems with spa-
tially nonlocal measurements. We propose a wavelet graph prior
model in combination with a computationally efficient multires-
olution reconstruction algorithm applicable to iterative tomo-
graphic reconstruction.

The basic concept of the proposed wavelet graph model is
to exploit dependencies of wavelet coefficients across scales.
We capture these dependencies by modeling the wavelet coef-
ficients at each scale and location as a function of a window of
scaling coefficients at the same scale. This structure has several
important implications: First, by conditioning the wavelet coef-
ficients on overlapping windows of scaling coefficients, the de-
pendencies are not limited to a quadtree structure. Secondly, the
structure is such that the optimal wavelet graph model for a sta-
tionary process is homogeneous at each scale, resulting in a sub-
stantial reduction in the number of model parameters. Finally,
the model is causal in scale, not overcomplete, and each wavelet
coefficient is a function of only a few scaling coefficients. The
resulting prior is not suitable for noniterative scale-recursive op-
timization; however, it allows for very efficient iterative opti-
mization using scale recursive updates.

The conditional distributions of the wavelet coefficients are
modeled using a spatially nonhomogeneous Gaussian distribu-
tion with image-adaptive parameters. As compared to a fully
nonlinear approach, the Gaussian model is suitable for global
optimization in a Bayesian framework while the adaptation can
account for nonlinear dependencies. The parameter adaptation
is based on nonlinear classification of coarse scale data. The
classifiers and class parameters used for the adaptation are ob-
tained using training data. The training procedure allows the
overall model to incorporate characteristics of typical recon-
structions as prior information.

The proposed multiresolution reconstruction algorithm com-
putes a coarse-to-fine scale sequence of Bayesian MAP esti-
mates. Each estimate in the sequence is computed with fixed
adaptation of the wavelet graph model followed by re-adapta-
tion. The MAP estimates are computed in the space domain
using scale-recursive updates of the multiresolution prior. The
space domain formulation of the optimization is essential for ap-
plication of our approach to tomographic reconstruction since it
allows positivity constraints to be enforced independently of the
wavelet basis.

The paper is organized as follows. Sections II-A and B in-
troduce the image model and develop the overall structure of
the multiresolution reconstruction algorithm. Section II-C pro-
vides a detailed discussion of the space domain optimization al-
gorithm. Section II-D describes our implementation of the non-
linear classifiers used for the adaptation of the multiresolution
prior. Section III discusses the application of the proposed prior
to tomographic reconstruction and Section IV provides experi-
mental results.

II. I MAGE MODEL AND MULTIRESOLUTION

RECONSTRUCTIONALGORITHM

A. Wavelet Graph Model

To define the notation for the wavelet decomposition, con-
sider the one-dimensional (1-D) case. Letbe the -dimen-
sional vector of the image pixel values in raster order and let

denote the pixel value at location. We now consider the
class of wavelet decompositions that can be computed using the
recursions

(1)

(2)

where , , is the lowpass analysis
filter, and is the highpass analysis filter. We assume both
and to have finite support. In this notation, denotes the
scaling coefficient and the wavelet or detail coefficient at
scale and location . An illustration of this decomposition is
shown in Fig. 1.

In the following, we will assume an resolution wavelet de-
composition. The nonovercomplete wavelet transform ofis
then specified by the wavelet coefficients and the
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Fig. 1. Wavelet decomposition in 1-D forL = 4 resolution levels. The wavelet transform of the original imagex = x is given byz = (z ; . . . ; z ; x ).

coarsest scale scaling coefficients . Using matrix notation,
the resolution wavelet transform of can be written as

...
(3)

where for simplicity of notation, we suppress the dependence of
the wavelet transform matrix on . Note, that the transform
vector includes the scaling coefficients .

The basic concept of our image model is to exploit the depen-
dencies of the wavelet coefficients across scales. To formulate
the approach, we write the distribution in terms of the
conditional distribution at each scale given the information at
all coarser scales

(4)

Since the scaling coefficients contain exactly the same in-
formation as , we may rewrite (4) as

(5)
where is a function of . The distri-
bution assumption for is typically not important due to the
high signal-to-noise ratio at the coarsest resolution. Therefore,
we assume that is uniformly distributed.1 Thus, we can
write

(6)

1For applications wherex is not guaranteed to be within a compact set,
the uniform distribution ofx is improper. However, in our experience, this
does not cause practical problems with the model. For tomography applications,
x is within a compact set since its components are nonnegative and bounded
from above by a constant proportional to the maximum emission rate or dosage
used with the data acquisition system.

To obtain a practical model, we assume the wavelet coef-
ficients at different locations to be conditionally independent
given the scaling coefficients at the same scale. Furthermore,
we assume the wavelet coefficients at each location only to de-
pend on a small window of scaling coefficients. Letdenote a
spatial location at a given scalesuch that is the vector
of the wavelet coefficients at location. For the two-dimen-
sional (2-D) case, has three components corresponding to
the high–low, low–high, and high–high coefficients of a sepa-
rable wavelet decomposition. We then defineas a window
with finite support centered at positionwith circular boundary
conditions. Then is the set of scaling coefficients within the
window at resolution . Further, let denote the set of all
locations of the wavelet decomposition at scale. Using this
notation, our assumptions are that the are conditionally in-
dependent and that depends only on . Applying these
assumptions to (6) results in the model

(7)
We will call any model of the form (7) a wavelet graph
model. Fig. 2 illustrates the spatial dependencies of the model
(7) for the case of a 1-D signal and a three point window

. In this case, the conditional distri-
bution of depends only on the three scaling coefficients

.
An important advantage of the structure (7) is that the optimal

wavelet graph model for a stationary process is homogeneous.
By homogeneous, we mean that

for some functions that do not depend on. The following
theorem, proven in Appendix A, makes the previous statement
precise.

Theorem 1: Let be a 1-D discrete-time
random process that is circularly stationary, i.e., and

have the same distribution. Let and

for be the wavelet decomposition of as
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Fig. 2. Spatial dependencies for the 1-D case. Using a prediction window@s = fs� 1; s; s + 1g, each wavelet coefficientz depends on the three scaling
coefficientsfx ; x ; x g. Notice that the scaling coefficientsx contain all the information at coarser scalesl > n.

specified by (1) and (2) using circular boundary conditions and
let be a wavelet graph model of the form (7) with

where the are parameters of the model. Assume there exists
a unique minimizer of the relative entropy (Kullback–Leibler
distance)

(8)

Then, is not a function of , implying a homogeneous
wavelet graph model .

The property stated in this theorem greatly simplifies param-
eter estimation since we only need to estimate a single set of pa-
rameters at each scale. In general, this would not be the case if
we conditioned the inter-scale dependencies on wavelet coeffi-
cients instead of the window of scaling coefficients. This homo-
geneity property is very important since it dramatically reduces
the number of free parameters in the model, thereby allowing
practical model estimation from sampled data. In Section II-D,
we will use this property to justify the design of a single non-
linear classifier for each scale.

We first consider the case of a spatially nonhomogeneous
Gaussian model. In this case, the conditional distributions

must be of the form

(9)

where is a matrix, is a column vector, is a positive
definite matrix, is a scaling constant, and denotes the
norm such that . We note that for this model, the
conditional mean of is an affine function of given by

(10)

and when , the conditional covariance of is given by
. Consequently, the model is parameterized by
and a global scaling constant for each scale

. The scaling constants will play an important role later by
allowing us to use the same adaptation mechanism for different
amplitude scalings of the image. Assuming the wavelet trans-
form is orthonormal, then , and we may express

as

(11)

(12)

where . The model (12) is used as the prior
distribution for the Bayesian reconstruction of .

To formulate a multiresolution reconstruction algorithm, we
also want to directly calculate coarse scale reconstructions using
the prior model only for coefficients at scales coarser than the
reconstruction scale. Thus, we define a coarse scale prior model
for the direct reconstruction of the scaling coefficients at
scale as

(13)

(14)

Given noisy measurements and a physical data model
, we obtain the data model at

scale as

(15)
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Fig. 3. Illustration of the multiresolution reconstruction algorithm. Starting at the coarsest scalel = L, we calculate a coarse-to-fine scale sequence of MAP
estimatesx . Each estimatex takes into account the contributions of the adapted prior model atall coarser scalesn > l. After computingx , we initialize
the parameters� and re-adapt� for n > l.

where denotes the interpolation from scaleto scale . The
interpolation is obtained as the wavelet reconstruction of

assuming that for .
Based on (14) and (15), the Bayesian MAP estimateof

the scaling coefficients at scale is the solution to the opti-
mization problem

(16)
We have included the positivity constraint since it is
important for tomographic reconstruction. Note that for the spe-
cial case , expression (16) is the standard MAP equation
for the image .

B. Spatially Adaptive Multiscale Reconstruction

We use a multiresolution algorithm to perform the image re-
construction and to adaptively select the parameters of the linear
model. As illustrated in Fig. 3, the basic concept of the multires-
olution algorithm is to compute a sequence of Bayesian MAP
estimates from coarse to fine scale. The algorithm starts with
the reconstruction of the scaling coefficients at the coarsest
scale and then successively performs the reconstructions at
the finer scales . At each step in this sequence,
the current reconstruction is used to initialize the model param-
eters at the next finer scale and to re-adapt the parameters at the
coarser scales. Let denote the vector of model parameters at
location and scale

(17)

After computing the MAP reconstruction at scale , we up-
date all the parameters for . These new parameters
are then used to reconstruct at the next finer scale.

We update the parameters using a nonlinear classifica-
tion method derived from recent work in image interpolation
[39]. More specifically, we update by applying the non-
linear operator to the window of scaling coefficients

(18)

Note that based on Theorem 1, we can use a single for
all locations at scale . The normalization by in (18) is

Fig. 4. Summary of multiresolution reconstruction algorithm.

included to account for possible scaling of the image . To
obtain a robust estimate, we compute the 10% trimmed mean
[40] of over the approximate support of the active image
region

(19)

The nonlinear operators are obtained during a training
phase. The structure of the and the training procedure
are explained in Section II-D.

The coarse-to-fine scale multiresolution reconstruction algo-
rithm is summarized in Fig. 4. Note that the final fine scale re-
construction produced by this algorithm is not a conventional
MAP estimate. Rather, it is a MAP estimate with respect to a
data dependent prior. This prior is the spatially nonhomoge-
neous linear model at all scales with the parameters obtained
in the last adaptation step.

C. MAP Optimization for Gaussian Wavelet Graph Model

In this section, we describe a computationally efficient
implementation of the MAP optimization in step 3(c) of
Fig. 4. The MAP optimization is performed for the Gaussian
wavelet graph prior model with fixed model parameters

and . The parameter selection is
described in Section II-D.

The positivity constraint, , is an essential component
of the MAP optimization equation (16). However, enforcement
of positivity can be very difficult in the wavelet domain, partic-
ularly for general wavelet transforms. Fig. 5 illustrates our ap-
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Fig. 5. The image is modeled in the wavelet domain but the MAP optimization
is performed in the space domain. This allows the positivity constraint to be
easily enforced.

proach for solving this problem. The optimization is performed
in the space domain, while the prior model is formulated in the
wavelet domain and the system model is formulated in the pro-
jection domain. This makes enforcement of positivity simple.
Another advantage of space domain optimization is that it sim-
plifies the forward model in tomography. This is because the
transformation from to is generally less sparse than the trans-
formation from to .

In the following, we derive the space domain MAP optimiza-
tion algorithm. Since (16) has the same structure for any, we
develop the algorithm for reconstruction at the finest scale .
This allows us to simplify the notation by omitting the super-
script and writing . The solutions for are
obtained using the same algorithm as described at the end of
this section.

To derive the optimization algorithm, define matrices as
the subsets of the inverse wavelet transform such that

...
(20)

Further, let denote the rows of such that
. Using this notation, we can rewrite (10) as

(21)

To simplify the notation, let us define ,
, and . Furthermore, let , , and

denote the parameters for all locationsand all scales . We
can then re-write the model (12) as

(22)

(23)

where . Given the space domain formulation (23),
a variety of optimization strategies can be used to perform the
constrained optimization of (16). In the following, we derive a
coordinate descent strategy which is the focus of our work.

To optimize with respect to a single pixel value,
we need the first and second derivatives with respect to. Let
us define as the prediction error of the linear model in
the wavelet domain

(24)

Fig. 6. General formulation of the iterative coordinate descent (ICD)
optimization algorithm for space domain MAP reconstruction using the
Gaussian wavelet graph prior model. The prediction errors" are kept as a state
vector. The setS = S denotes the set of image pixels at scalen = 0.

Based on (23), we can then write the gradient as

(25)

(26)

If we now let denote the unitary vector in direction, we can
write the first derivative as

(27)

(28)

(29)

where denotes theth column of . Similarly, for the
second derivative we obtain

(30)

(31)

Notice that is the derivative of the prediction errors
in the wavelet domain with respect to. Let us define

, then

(32)

(33)

The prior can now be written as a function of the pertur-
bation of pixel

(34)

Using (34), we can apply a standard iterative coordinate de-
scent (ICD) [41], [42] algorithm in to iteratively optimize
the MAP equation (16) with respect to a single pixel at a time.
Fig. 6 summarizes the basic steps of the ICD optimization al-
gorithm for MAP reconstruction using the Gaussian wavelet
graph prior model. The prediction errorsare kept as a state
vector. The set denotes the set of image pixels at scale

. The positivity constraint is enforced by limiting in
step 2(c) to values . If the update in step 2(c) is per-
formed exactly and the log-posterior function is strictly convex
and continuously differentiable, the constrained ICD optimiza-
tion will converge to a global minimum. However, we use a
Newton–Raphson procedure for the update in step 2(c) which
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Fig. 7. Illustration of ICD update computation for pixelx using a Haar wavelet basis and a 3-point window@s. To updatex , only the nodes in the set~S ,
shown in circles, must be considered. Each nodeN for n > 0 contains the variablesz ; x ; " as well as the temporary variablesdz anddx
required for the computation of the ICD update.

in practice has robust convergence. See [43] for the details of
the convergence analysis with Newton–Raphson updates.

In the following, we derive a computationally efficient imple-
mentation of the ICD algorithm by incorporating our model as-
sumptions of conditional independence and limited spatial sup-
port. For illustration, we augment the tree structure of the linear
model as shown in Fig. 7 for the 1-D case. In this representation,
each tree node contains the wavelet coefficients , the
scaling coefficient as well as the current prediction error

. In addition, contains the
temporary variables and . These variables are the
derivatives of and with respect to the pixel value
that is currently being updated in the space domain. To com-
pute and , let denote the subset of the wavelet
transform such that . Further, let denote the
decimation operation used to obtain the scaling coefficients
from the original image , so that

(35)

For the update of pixel value , we compute and as

(36)

(37)

The notation in (36) is for the 1-D case, where both and
are scalars. For the 2-D case, is the three-component

vector containing the derivatives corresponding to the high–low,
low–high, and high–high components of . Define as
the vector with components for . Using this nota-
tion, we can write as

(38)

To compute efficiently, we want to consider only the loca-
tions for which is nonzero. Let us define the sets

as

or (39)

Notice, that the sets , are only a function of
the wavelet transform . The change is nonzero only at

locations whose prediction window includes nodes in . We
define the set of these locations as

for some (40)

(41)

The last equation is a result of the symmetry of the prediction
window. Notice, that since the prediction window includes
, we have such that both and
for and consequently for .

Fig. 7 illustrates the definitions of and for the specific
example of a 1-D Haar wavelet decomposition.

We can now compute the nonzero components ofas

(42)

The first and second derivatives and are then given by

(43)

(44)

The derivatives and are used to perform the MAP opti-
mization with respect to in steps 2(c) and 2(d) of Fig. 6. After
updating , the state variables are updated as

(45)

for . This completes the efficient implementa-
tion of the iterative coordinate descent optimization. Note that

, , and are not data dependent
but are only a function of. If desired, these variables can be
precomputed and stored for all. Fig. 8 summarizes the opti-
mization algorithm.

While this development assumes optimization at the finest
scale , the same algorithm can be used for the coarse scale
reconstructions for . To optimize (16) for , we
treat scale as if it were the finest scale . Thus, instead of
iterating over the pixel locationsat fine scale, we now index
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Fig. 8. Detailed algorithm for efficient ICD updates using wavelet graph
model. The operations marked with(�) can be pre-computed. Excluding
the forward model term of step 2(f), the computational complexity is order
N(logN) for one full update of̂x .

over . The state variables as well as the
directions are computed using the wavelet
transform of and are computed for only.

The computational complexity associated with the op-
timization of the linear image model is on the order of

multiplications for one full update of ,
where is the number of image pixels at the reconstruction
scale and is the number of coefficients in the
window . For the special case of a Haar wavelet basis, this
complexity reduces to . The details can be
found in Appendix B.

Note, that the concept of optimizing the Gaussian wavelet
graph model in the space domain is general and not limited to
the ICD algorithm. Specifically, given (23) and (26), other op-
timization methods such as preconditioned conjugate gradient
(PCG) [44] can be used instead of ICD. In our experimentation,
however, we have found that PCG with preconditioner as in [44]
is not well suited for use with the multiresolution algorithm in
Fig. 3 due to poor convergence of the PCG algorithm for non-
constant initialization.

D. Nonlinear Classifiers for Parameter Selection

The nonlinear operators used for the parameter selec-
tion (18) are obtained using a method derived from recent work
in image interpolation [39]. The selection of is performed
by first classifying the input vector into a class and
then selecting as a parameter vector associated with this
class. To simplify the notation, we denote the parameter vector
associated with class as , . Let

denote the classifier at scale. The classification and pa-
rameter assignment can then be written as

(46)

(47)

The classifiers and parameters are obtained
during a training phase. For our implementation, we use a
tree-based agglomerative clustering method which is described
in detail in Appendix C. To summarize the approach, we initially
partition the space of training samples
by performing a vector quantization (VQ) on . For
each cluster , we then calculate the filters as the
minimum mean square error linear predictors for . Starting
with this initial partitioning, we then form a cluster tree by
merging pairs of clusters in a greedy fashion. At any given
stage, we combine the two clusters whose merging results in
the smallest increase in prediction error on the training set.
Thus we form a binary tree where each node is associated with
its optimal linear prediction filter for the conditional mean. To
not overfit the classification model, we perform optimal tree
pruning [45], [46] using a second data set for cross-validation.

The matrices are computed as

(48)

where is the conditional sample covariance for class(see
Appendix), and is a regularization parameter. The effect
of is similar to that of the scale parameter of a Gaussian
Markov random field (GMRF) prior. Smaller values ofimply
stronger regularization resulting in smoother images whereas
larger values will result in less regularized, noisier images. In
practical applications, can be adjusted experimentally.

We have found it to be advantageous to constrain the classi-
fiers and the linear model predictors to only
depend on , that is the difference between and
its center scaling coefficient. This constraint makes the model
invariant to additive shifts in the gray value of the image and
therefore improves robustness of training on smaller training
sets. The details are listed in Appendix C.

III. T OMOGRAPHICRECONSTRUCTION

In this section, we discuss the application of the proposed
model to Bayesian tomographic reconstruction. First, we
present the statistical data models for both
emission and transmission tomography using the exact Poisson
counting statistics [42]. Let denote the vector of photon
counts for all projections at different angles and displace-
ments. Furthermore, let be the tomographic projection
matrix so that denotes the vector formed by itsth row. For
transmission tomography, the log-likelihood may
then be written as

(49)

where denotes the dosage. For emission tomography, the log-
likelihood is given by

(50)
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Both (49) and (50) have the common form

(51)

where the are convex and differentiable.
Based on the this model, we can compute the coarse scale

data models for . Combining (15) and
(51), we obtain

(52)

(53)

where . Thus, the coarse scale data models are
equivalent to a standard model of the form (51) with a projec-
tion matrix whose columns are linear combinations of the
columns of .

To derive the MAP optimization for the tomographic data
model, we write the equations for the emission case only, how-
ever, all methods analogously apply to the transmission case.
Since the form of is the same for any, we
simplify the notation by omitting the superscripts. To imple-
ment the optimization of Section II-C we need to solve

(54)

where the constraint enforces positivity in the space
domain. The basic concept of the ICD algorithm [41], [42] is to
solve (54) using a Newton–Raphson strategy. Importantly, the
algorithm exploits the sparse nature of the projection matrix
by maintaining a state vector of the current forward pro-
jection of . Given , we can write the first and second deriva-
tives and of with respect to the pixel value

as

(55)

(56)

Based on this notation, the second order approximation to
with respect to is

(57)

Thus, the constrained Newton–Raphson update of (54) is given
by

(58)

The state vector can be updated efficiently using
for .

IV. EXPERIMENTAL RESULTS

In this section, we compare the proposed algorithm to two
fixed-resolution Bayesian methods using Markov random field
prior models and to convolution backprojection (CBP). The

comparison is based on two sets of simulated emission tomog-
raphy data; the first is a bar-phantom used for quantitative
comparison of the algorithms in terms of reconstruction bias
and noise variance, and the second is a more realistic case used
for comparison of visual reconstruction quality, mean square
error, and computational efficiency.

The wavelet graph model (WGM) was implemented using an
orthonormal 2-D Haar wavelet decomposition with reso-
lution levels. Two different training sets were used. For each set,
the training samples were obtained by computing the wavelet
decomposition of the training images. The number of recon-
struction iterations was a fixed function of scale such that

iterations were performed for the reconstruction at scale.
Note, that the convergence speed could potentially be improved
by using a stopping criterion based on the change in successive
values of the log-posterior (16) at each scale. However, since
for MAP reconstruction in general, very small changes of the
log-posterior can result in large visual differences, we prefer
to run a fixed number of iterations at each scale. For the eval-
uation of reconstruction quality, the number of iterations was
set to be very large to insure complete convergence at each
scale. The convergence behavior as a function ofis shown
in Section IV-C.

To demonstrate how the wavelet graph structure by itself
can reduce the blockiness commonly encountered with Haar
wavelet models, we also implemented a spatially homogeneous
linear version of the wavelet graph model. The linear model
uses no adaptation and only a single parameter vector at each
scale such that .

The two fixed resolution MAP reconstruction algorithms
were based on a Gaussian Markov random field (GMRF) and
a generalized Gaussian Markov random field (GGMRF) prior
model, respectively. The GGMRF [10] is an edge-preserving,
spatially homogeneous MRF that uses a nonquadratic penalty
term. For the results shown here, the generalized Gaussian
parameter was set to . The algorithms used ICD
optimization with a large, fixed number of iterations to insure
complete convergence. The CBP algorithm was implemented
using a ramp filter and a generalized Hamming filter with
frequency response
for where denotes the ideal ramp filter.

A. Bar Phantom Results

Simulated emission data were generated using the bar
phantom shown in Fig. 9(a) of size 115 115 pixels with
values of 1.0 for the bars and 0.02 in the background. The
image was embedded into a zero background of size 256256
pixels which was forward projected at 128 angles and 256
displacements. The projection beam was assumed to be an
ideal line. The data samples were formed by Poisson random
variables with the appropriate means. The average number of
counts per projection was 83.

Two different training sets were used for the proposed
algorithm; the first set consisted of 40 MRI images of size
256 256 pixels and was intended to capture typical character-
istics of medical images; the second set added 3000 amplitude
and rotational variations of a bar phantom to demonstrate how
the proposed method can be adapted whena priori knowledge
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(a) (b)

Fig. 9. Bar phantom and magnified high frequency region of sample
reconstructions. (a) Bar phantom and (b) magnified reconstruction of the
high-frequency region (rotated). Top: Fix-res. MAP, GMRF prior. Middle:
Fix-res. MAP, GGMRFp = 1:2. Bottom: Adaptive wavelet graph model,
trained on MRI and bar images.

about special characteristics of the phantoms is available. The
phantom shown in Fig. 9(a) was not included in the training.
Because of the discrete nature of the second training set, we
increased the value of in (70) of Appendix C to to
obtain reliable covariance parameters. The window was
set to 3 3 coefficients.

For quantitative comparison of the different algorithms, we
calculated reconstruction bias and variance for the reconstructed
image using the fact that the original phantom is constant
along columns. We first calculated and as the mean and
variance of the th column in the reconstruction . Bias and
variance were then computed as

(59)

(60)

where is the value of theth column in the original phantom
and is the number of columns.

Bias and variance were computed for each reconstruction
technique as a function of the regularization parameter. For the
wavelet graph model, the parameterin (48) was varied in
the range , for the MRF priors the scale parameter
was varied in the range , and for CBP reconstruction a
ramp filter and a Hamming filter with cutoff were used.
The proposed algorithm was initialized with a constant image
and performed a fixed number of reconstruction
iterations at scale. The fixed resolution ICD MAP algorithms
were initialized with a CBP reconstruction and performed 40
iterations.

Fig. 10(a) shows a comparison of the results for the adaptive
wavelet graph model and the two fixed resolution Bayesian
methods. Each plot corresponds to the bias/variance curve of
a single reconstruction method as a function of the regular-
ization parameter. The upper left hand corner of the graphs
corresponds to strong regularization (high bias, low variance)
whereas the lower right hand corner corresponds to weak
regularization (low bias, high variance). The results indicate
that the adaptive wavelet graph model trained on the set of MRI
images performed significantly better than the GMRF method
and performed comparably to the GGMRF based method.

(a)

(b)

Fig. 10. Bias-variance reconstruction performance of each algorithm as a
function of regularization parameter. The triangles in (a) correspond to the
bias-variance values for the sample reconstructions in Fig. 9(b).

While the GGMRF performed best in the low variance region,
its residual bias in the high variance region was slightly higher,
introducing bias even when very little regularization is applied.
When trained on the combination of bar phantoms and MRI
images, the adaptive wavelet graph model outperformed both
fixed resolution Bayesian methods. The smooth shape of the
curve for the adaptive wavelet graph model indicates that the
reconstructions are not overly sensitive to small variations of

, but rather, smoothly depend on the regularization parameter.
Fig. 9(b) shows the magnified high frequency region of sample
reconstructions corresponding to the bias/variance points
marked by triangles in Fig. 10(a). The adaptive wavelet graph
model reconstruction better resolves the high frequency bars
than the two fixed resolution Bayesian reconstructions.

Fig. 10(b) shows the bias/variance curves for the linear, non-
adaptive, wavelet graph model in comparison to fixed resolu-
tion ICD with a GMRF prior and to CBP. Trained on the set of
MRI images, the linear wavelet graph model performed compa-
rably to the GMRF method. When trained on the combination of
bar phantoms and MRI images, the linear wavelet graph model
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(a) (b) (c)

(d) (e) (f)

Fig. 11. (a) Original phantom and reconstructions: (b) convolution backprojection, RMSE= 24:64; (c) fixed resolution MAP with GMRF prior, RMSE= 23:0;
(d) proposed algorithm using linear wavelet graph model, RMSE= 23:59; (e) fixed resolution MAP with GGMRF prior, RMSE= 22:21; and (f) proposed method
using adaptive wavelet graph model, RMSE= 22:6.

achieved lower bias at equal variance as compared to the GMRF
result.

B. Medical Image Phantom Results

Simulated emission data were generated from the magnetic
resonance imaging (MRI) reconstruction image in Fig. 11(a).
The 256 256 pixel image with mean 0.32 was forward pro-
jected at 128 angles and 256 displacements, assuming a field of
view of 20 cm and using Poisson noise. To better illustrate the
deblurring potential of the algorithm, we assumed a projection
beam with triangular profile of width 2.34 mm which is three
times the projection spacing. The average number of counts per
projection was 235.

The adaptive and linear wavelet graph models were trained on
the same set of 40 MRI images used for the bar phantom results.
The phantom in Fig. 11(a) was not included in the training. The
size of the window was set to 5 5 coefficients.

The regularization parameter for each reconstruction algo-
rithm was adjusted manually to minimize reconstruction mean
square error; this resulted in for the CBP Ham-
ming filter, for the GMRF prior, for the
GGMRF prior, for the linear wavelet graph model,

and for the adaptive wavelet graph model. For each
algorithm, a large number of iterations was used to insure com-
plete convergence; specifically, for the proposed
method with constant initialization and 500 iterations for the
fixed resolution ICD algorithms with CBP initialization.

The CBP reconstruction in Fig. 11(b) is noisy in the uniform
image regions and contains blurry edges. The GMRF MAP re-
construction in Fig. 11(c) is less noisy than the CBP; however,
the quadratic regularization function of the Gaussian MRF re-
sults in blurred edges. The linear wavelet graph model recon-
struction (d) is slightly sharper than GMRF result (c) but con-
tains some blocking artifacts and has higher RMSE. However,
considering that this is a spatially homogeneous linear model
using a Haar wavelet prior without shift-averaging, the recon-
struction is surprisingly smooth, confirming the advantage of
the wavelet graph structure. Fig. 11(e) shows the fixed resolu-
tion GGMRF MAP reconstruction. The result has sharper edges
as compared to the GMRF case (c) and achieves the lowest mean
square error of all four methods. Visually, however, the recon-
struction (e) is of poor quality since it suffers from consider-
able loss of detail. The reconstruction using the adaptive wavelet
graph model in Fig. 11(f) is superior to that of the other four
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(a)

(b)

Fig. 12. Error convergence of the proposed algorithm compared to fixed
resolution MAP reconstructions with GMRF and GGMRF prior models.
(a) CBP initialization and (b) constant initialization.

methods. In comparison to the GMRF case (c), the reconstruc-
tion (f) contains sharper edges while the noise in the uniform re-
gions is better suppressed. The mean square error is lower than
for the GMRF case (c) but higher than for the GGMRF result
(e). In comparison to (e), however, the proposed method pre-
serves more detail.

C. Computational Efficiency Comparison

Reconstruction error convergence was compared for the pro-
posed algorithm, fixed resolution ICD, and for a preconditioned
conjugate gradient (PCG) MAP reconstruction algorithm for
tomographic data which was developed in [44]. The PCG
algorithm uses the GMRF prior model and was implemented
with preconditioner and bent line search exactly as in [44] but
did not use a factorization of the tomographic projection matrix

which can potentially speed-up computation in practical
applications [44].

Fig. 12 shows the reconstruction error convergence for the
different algorithms as a function of CPU-time on a 700 MHz
Pentium III. The plots correspond to reconstructions of the
data set in Fig. 11. The reconstruction error was calculated as
the RMSE to the ground truth image. For ICD and PCG, the
CPU-time was measured after each iteration; for the proposed
method each data point corresponds to the total execution
time of the algorithm for a certain . Fig. 12(a) shows the
convergence results when all algorithms are initialized to the
CBP reconstruction of Fig. 11(b). ICD and PCG converge
very quickly, particularly for the GMRF prior. The proposed
algorithm has slightly slower convergence. The RMSE curves
for the proposed algorithm and for PCG reach a minimum
followed by a slight increase for larger CPU-time. This is
not surprising since the RMSE measure favors the slightly
oversmoothed intermediate results over the visually superior
converged reconstructions.

Fig. 12(b) shows the convergence results when all recon-
struction algorithms were initialized to a constant image.
The constant was calculated from the projection data as

to match the number of total measured
counts. This initialization is typically used for PCG in practice.
For this case, the fixed resolution ICD algorithm has slow
convergence due to the slow low-frequency convergence of the
ICD algorithm [41]. The proposed algorithm converges fastest,
indicating that the multiresolution technique can provide a
computational advantage in cases where an initialization with
the correct low-frequency behavior is not available. Specifi-
cally, the multiresolution approach allows us to use an ICD
optimization technique without requiring a CBP initialization.
This is an advantage for systems with noncircular geometry
[47] or limited angle problems where CBP initializations are
not easily obtained.

Since the computation of the proposed algorithm is largely
dominated by the forward model, the size of the windowfor
the wavelet graph model has a limited effect on efficiency. For
the data set in Fig. 11, a window of size 55 as compared to
3 3 results in a 35% increase in CPU-time for the same.

V. CONCLUSIONS

We propose a wavelet graph prior model in conjunction with a
multiresolution Bayesian reconstruction algorithm applicable to
tomographic reconstruction. The wavelet graph prior model has
a dependency structure that is more general than a quadtree. This
enables the model to produce smooth estimates even for a Haar
wavelet basis. Furthermore, the wavelet graph structure is such
that the optimal model for a stationary process is homogeneous,
resulting in a substantial reduction in the number of model pa-
rameters. The multiresolution reconstruction algorithm uses the
wavelet graph prior model but performs a sequence of MAP op-
timizations in the space domain. The space domain formulation
allows us to efficiently enforce the pixel positivity constraint and
to preserve the sparseness of the tomographic projection oper-
ator. Our experimental results indicate that the proposed frame-
work can improve reconstruction quality over commonly used
fixed resolution Bayesian methods.
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APPENDIX A
PROOF OFTHEOREM

First note that is a circularly stationary random process
for each resolution . This results from the assumption
that is circularly stationary together with the form of the
recursions (1) and (2). Next, notice that

...

where is a fixed matrix, where is such that the support of the
kernels and in (1) and (2) is within and the centered
window is of length . Based on the previous equa-
tion and the fact that is a circularly stationary process, the
distribution of does not depend on. Using
the assumption that exists and is
unique, we write

Since neither the nor the distribution of
depend on ,

is not a function of . This proves the theorem.

APPENDIX B
COMPUTATIONAL COMPLEXITY

The number of multiplications for optimizing the wavelet
graph model with respect to a single scaling coefficient is

proportional to the size of the set , where the

are as defined in (40). For a general wavelet transform, the
size of the sets as defined in (39) is proportional to

. Define , then

(61)

(62)

Based on (41), the size of the setis upper bounded by
where denotes the number of coefficients in the fixed

size window . Therefore, and conse-
quently steps (42)–(45) can be executed in order
multiplications. Thus, the complexity for a full update of
is order . For a Haar wavelet decomposition,
this reduces to since contains only a single
node at each scale. The complexities for the 1-D and the 2-D
case are the same.

APPENDIX C
TREE-STRUCTUREDNONLINEAR CLASSIFIER

In this section, we describe the agglomerative clustering
method used to obtain the classifiers and the parameter
vectors for class . For the classifier at scale, we assume
a training set . We then define a normalized
training set with samples
and where is the matrix that eliminates
the zero center component of and is the identity
otherwise. Thus, has one fewer component than . Since
the training is performed separately for each scale, we
simplify the notation by omitting the dependence on. Our
objective is to form a classification tree for such that each
tree node is associated with a MMSE linear predictor to predict

from . We first perform a vector quantization (VQ) of
with a pre-specified, fixed number of clusters, currently
150, 100, 100, 50, 50 for scales through .

The distance metric for the VQ is the Euclidean distance. The
number of iterations for the VQ is set to a constant value,
currently . The next step is to compute the MMSE
linear predictors for the VQ clusters. Let denote
the clusters. Define and as the means and

and as the covariance matrices of the samples
in cluster with respect to and . Let denote the
cross-covariance of the samples in cluster. We then compute
a MMSE linear predictor for cluster as

(63)

(64)

(65)

Further, the total prediction error of cluster over the
training set is obtained as

(66)
Now consider merging two clusters and into a new

cluster with MMSE predictor and
prediction error . The total increase in prediction error due
to the merging is . Merging clusters
based on minimum increase in prediction error is not sensible
for small clusters whose linear predictor may be over-parame-
terized such that . To merge small clusters in a mean-
ingful way, we introduce a regularization term based on
cluster distance

(67)
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where is a small regularization constant and denotes the
number of samples in cluster. We then define the cost function

for the merging of and as

(68)

Starting with the initial VQ partitioning, we successively
combine the two clusters whose merging results in the
smallest . This results in a binary tree where each node
is associated with its optimal linear prediction filter for .
The leaves of the tree are the VQ clusters. To not overfit the
classification model, we perform optimal tree pruning [45],
[46] using a second data set for cross-validation. The pruning
set is classified into the tree by assigning each data
sample to the closest VQ cluster and to all of its parents in the
tree. The prediction error for the pruning samples in each node
is computed using the node filters computed on the training set.
The tree is then pruned in a bottom-up fashion by considering
all nodes at each level before moving up by one level. If the
prediction error for a node filter is lower than the combined
errors in the leaves of the subtree originating at this node,
the model is considered overparameterized and the subtree is
effectively removed by marking its nodes as pruned.

The covariance parameter for each tree node is computed
as a linear combination of the conditional covariance of the
pruning samples in classand the expected conditional covari-
ance over the entire pruning set. Let be the conditional
covariance matrix of the pruning samples in class

(69)
where is the number of pruning samples that fall into node.
Further, let use define as the expected conditional covariance
over the entire pruning set
where is the set of tree leaves after discarding the pruned
nodes and is the total number of samples in the pruning set.
We then compute the covariance parameterfor node as

(70)

where is a small constant. The term is added to impose a
lower limit on the . For our experimentation, we use a fixed
value except for one case where the training set of
discrete images requires a larger value of .

In order to perform the classification (46) at runtime, we
first find the VQ cluster with minimum Euclidean distance to

. We then follow the tree upwards until we
reach the first node that is not marked pruned. This node corre-
sponds to the class and contains the associated parameter
vector .

ACKNOWLEDGMENT

The authors would like to thank Dr. N. C. Rouze for his valu-
able comments.

REFERENCES

[1] S. Geman and D. Geman, “Stochastic relaxation, Gibbs distributions and
the Bayesian restoration of images,”IEEE Trans. Pattern Anal. Machine
Intell., vol. PAMI-6, pp. 721–741, Nov. 1984.

[2] J. Besag, “On the statistical analysis of dirty pictures,”J. R. Statist. Soc.
B, vol. 48, no. 3, pp. 259–302, 1986.

[3] R. Chellappa and A. Jain, Eds.,Markov Random Fields: Theory and
Applications. New York: Academic, 1993.

[4] E. Levitan and G. Herman, “A maximuma posterioriprobability ex-
pectation maximization algorithm for image reconstruction in emission
tomography,”IEEE Trans. Med. Imag., vol. MI-6, pp. 185–192, Sept.
1987.

[5] A. Blake and A. Zisserman,Visual Reconstruction. Cambridge, MA:
MIT Press, 1987.

[6] T. Hebert and R. Leahy, “A generalized EM algorithm for 3-D Bayesian
reconstruction from Poisson data using Gibbs priors,”IEEE Trans. Med.
Imag., vol. 8, pp. 194–202, June 1989.

[7] P. J. Green, “Bayesian reconstruction from emission tomography data
using a modified EM algorithm,”IEEE Trans. Med. Imag., vol. 9, pp.
84–93, Mar. 1990.

[8] R. Stevenson and E. Delp, “Fitting curves with discontinuities,” inProc.
1st Int. Workshop Robust Computer Vision, Oct. 1–3, 1990, pp. 127–136.

[9] D. Geman and G. Reynolds, “Constrained restoration and the recovery
of discontinuities,”IEEE Trans. Pattern Anal. Machine Intell., vol. 14,
pp. 367–383, Mar. 1992.

[10] C. A. Bouman and K. Sauer, “A generalized Gaussian image model for
edge-preserving MAP estimation,”IEEE Trans. Image Processing, vol.
2, pp. 296–310, July 1993.

[11] S. Brette, J. Idier, and A. Mohammad-Djafari, “Scale invariant Markov
models for Bayesian inversion of linear inverse problems,” inMaximum
Entropy and Bayesian Methods, J. Skilling and S. Sibisi, Eds. Norwell,
MA: Kluwer, Mar. 1992, pp. 199–212.

[12] M. Basseville, A. Benveniste, K. C. Chou, S. A. Golden, R. Nikoukhah,
and A. S. Willsky, “Modeling and estimation of multiresolution sto-
chastic processes,”IEEE Trans. Inform. Theory, vol. 38, pp. 766–784,
Mar. 1992.

[13] M. Basseville, A. Benveniste, and A. Willsky, “Multiscale autoregres-
sive processes—Part I: Schur–Levinson parametrizations,”IEEE Trans.
Signal Processing, vol. 40, pp. 1915–1934, Aug. 1992.

[14] , “Multiscale autoregressive processes—Part II: Lattice structures
for whitening and modeling,”IEEE Trans. Signal Processing, vol. 40,
pp. 1935–1954, Aug. 1992.

[15] K. C. Chou, S. Golden, and A. S. Willsky, “Multiresolution stochastic
models, data fusion and wavelet transforms,”Signal Process., vol. 34,
pp. 257–282, Dec. 1993.

[16] R. D. Nowak, “Multiscale hidden Markov models for Bayesian image
analysis,” Michigan State Univ., East Lansing, Tech. Rep. 004-98, 1998.

[17] M. S. Crouse, R. D. Nowak, and R. G. Baraniuk, “Wavelet-based sta-
tistical signal processing using hidden Markov models,”IEEE Trans.
Signal Processing, vol. 46, pp. 886–902, Apr. 1998.

[18] K. Chou, A. Willsky, A. Benveniste, and M. Basseville, “Recursive
and iterative estimation algorithms for multi-resolution stochastic
processes,” inProc. 28th Conf. Decision and Control, vol. 2, Tampa,
FL, Dec. 13–15, 1989, pp. 1184–1189.

[19] B. Claus and G. Chartier, “Multiscale signal processing: Isotropic
random fields on homogeneous trees,”IEEE Trans. Circuits Syst. II,
vol. 41, pp. 506–517, Aug. 1994.

[20] M. R. Luettgen, W. C. Karl, and A. S. Willsky, “Efficient multiscale reg-
ularization with applications to the computation of optical flow,”IEEE
Trans. Image Processing, vol. 3, pp. 41–64, Jan. 1994.

[21] P. W. Fieguth, W. C. Karl, and A. S. Willsky, “Efficient multiresolution
counterparts to variational methods for surface reconstruction,”Comput.
Vis. Image Understand., vol. 70, pp. 157–176, May 1998.

[22] A. B. Frakt and A. S. Willsky, “Efficient multiscale stochastic realiza-
tion,” in Proc. IEEE Int. Conf. Acoust., Speech, Signal Processing, vol.
4, Seattle, WA, May 12–15, 1998, pp. 2249–2252.

[23] K. Daoudi, A. B. Frakt, and A. S. Willsky, “Multiscale autoregressive
models and wavelets,”IEEE Trans. Inform. Theory, vol. 45, pp.
828–845, Apr. 1999.

[24] H.-C. Yang and R. Wilson, “Adaptive image restoration using a mul-
tiresolution Hopfield neural network,” inProc. 5th Int. Conf. Image Pro-
cessing Applications, Edinburgh, U.K., July 4–6, 1995, pp. 198–202.

[25] R. D. Nowak and E. D. Kolaczyk, “A multiscale MAP estimation
method for Poisson inverse problems,” inProc. 32nd Asilomar Conf.
Signals, Systems, Computers, vol. 2, Pacific Grove, CA, Nov. 1–4,
1998, pp. 1682–1686.

[26] , “A statistical multiscale framework for Poisson inverse prob-
lems,” IEEE Trans. Inform. Theory, vol. 46, pp. 1811–1825, Aug. 2000.

[27] Z. Kato, M. Berthod, and J. Zerubia, “Multiscale Markov random field
models for parallel image classification,” inProc. Int. Conf. Computer
Vision, Berlin, Germany, May 1993, pp. 253–237.



770 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 11, NO. 7, JULY 2002

[28] C. A. Bouman and M. Shapiro, “A multiscale random field model for
Bayesian image segmentation,”IEEE Trans. Image Processing, vol. 3,
pp. 162–177, Mar. 1994.

[29] M. L. Comer and E. J. Delp, “Segmentation of textured images using
a multiresolution Gaussian autoregressive model,”IEEE Trans. Image
Processing, vol. 8, pp. 408–420, Mar. 1999.

[30] J.-M. Laferte, P. Perez, and F. Heitz, “Discrete Markov image modeling
and inference on the quadtree,”IEEE Trans. Image Processing, vol. 9,
pp. 390–404, Mar. 2000.

[31] Z. Wu, G. T. Herman, and J. A. Browne, “Edge preserving reconstruction
using adaptive smoothing in wavelet domain,” inProc. IEEE Nucl. Sci.
Symp. Med. Imaging Conf., vol. 3, San Francisco, CA, Oct. 31–Nov. 6,
1993, pp. 1917–1921.

[32] S. S. Saquib, C. A. Bouman, and K. Sauer, “A nonhomogeneous MRF
model for multiresolution Bayesian estimation,” inProc. IEEE Int. Conf.
Image Processing, vol. 2, Lausanne, Switzerland, Sept. 16–19, 1996, pp.
445–448.

[33] P. W. Fieguth, W. C. Karl, W. S. Willsky, and C. Wunsch, “Multires-
olution optimal interpolation and statistical analysis of TOPEX/PO-
SEIDON satellite altimetry,”IEEE Trans. Geosci. Remote Sensing, vol.
33, pp. 280–292, Mar. 1995.

[34] J.-M. Laferte, F. Heitz, P. Perez, and E. Fabre, “Hierarchical statistical
models for the fusion of multiresolution image data,” inProc. Int. Conf.
Computer Vision, Cambridge, MA, June 20–23, 1995, pp. 908–913.

[35] W. W. Irving, P. W. Fieguth, and A. S. Willsky, “An overlapping tree ap-
proach to multiscale stochastic modeling and estimation,”IEEE Trans.
Image Processing, vol. 6, pp. 1517–1529, June 1997.

[36] R. D. Nowak, “Shift invariant wavelet-based statistical models and1=f
processes,” inIEEE DSP Workshop, 1998.

[37] R. Coifman and D. Donoho, “Translation invariant de-noising,” inLec-
ture Notes in Statistics: Wavelets and Statistics. New York: Springer-
Verlag, 1995, pp. 125–150.

[38] Z. Kato, M. Berthod, and J. Zerubia, “A hierarchical Markov random
field model and multitemperature annealing for parallel image classifi-
cation,”Graph. Models Image Process., vol. 58, pp. 18–37, Jan. 1996.

[39] C. B. Atkins, C. A. Bouman, and J. P. Allebach, “Tree-based resolution
synthesis,” inProc. Image Quality, Image Capture Systems Conference
(PICS ’99), Savannah, GA, Apr. 25–28, 1999, pp. 405–410.

[40] E. L. Lehmann,Theory of Point Estimation. New York: Wiley, 1983.
[41] K. Sauer and C. A. Bouman, “A local update strategy for iterative re-

construction from projections,”IEEE Trans. Signal Processing, vol. 41,
pp. 534–548, Feb. 1993.

[42] C. A. Bouman and K. Sauer, “A unified approach to statistical tomog-
raphy using coordinate descent optimization,”IEEE Trans. Image Pro-
cessing, vol. 5, pp. 480–492, Mar. 1996.

[43] J. Zheng, S. Saquib, K. Sauer, and C. A. Bouman, “Parallelizable
Bayesian tomography algorithms with rapid, guaranteed convergence,”
IEEE Trans. Image Processing, vol. 9, pp. 1745–1759, Oct. 2000.

[44] J. Qi, R. M. Leahy, C. Hsu, T. H. Farquhar, and S. R. Cherry, “Fully
3D Bayesian image reconstruction for the ECAT EXACT HR+,” IEEE
Trans. Nucl. Sci., vol. 45, pp. 1096–1103, June 1998.

[45] S. B. Gelfand, C. S. Ravishankar, and E. J. Delp, “An iterative growing
and pruning algorithm for classification tree design,”IEEE Trans. Pat-
tern Anal. Machine Intell., vol. 13, pp. 163–174, Feb. 1991.

[46] L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone,Classification
and Regression Trees. Belmont, CA: Wadsworth, 1984.

[47] N. C. Rouze, W. Winkle, and G. D. Hutchins, “IndyPET—A high reso-
lution, high sensitivity dedicated research scanner,” inProc. IEEE Nucl.
Sci. Symp. Med. Imaging Conf., vol. 3, Seattle, WA, Oct. 24–30, 1999,
pp. 1460–1464.

Thomas Frese (S’94–M’01) received the
Dipl.-Ing. degree in electrical engineering from the
Ruhr-Universität Bochum, Bochum, Germany, in
1996. He received the Ph.D. degree in electrical and
computer engineering from Purdue University, West
Lafayette, IN, in May 2001.

He is currently an Associate with McKinsey &
Company, Chicago, IL.

Charles A. Bouman (F’01) received the B.S.E.E.
degree from the University of Pennsylvania,
Philadelphia, in 1981, and the M.S. degree in elec-
trical engineering from the University of California
at Berkeley in 1982. He received the M.A. and Ph.D.
degrees in electrical engineering from Princeton
University, Princeton, NJ, in 1987 and 1989, under
the support of an IBM Graduate Fellowship.

From 1982 to 1985, he was a Staff Member in
the Analog Device Technology Group, Lincoln
Laboratory, Massachusetts Institute of Technology,

Cambridge. In 1989, he joined the faculty of Purdue University where he is a
Professor in the School of Electrical and Computer Engineering. His research
interests include statistical image modeling and analysis, multiscale processing,
image rendering, document image databases, and mobile environments for
printing, and imaging using PDAs and notebook computers via emerging
wireless technologies. He is particularly interested in the applications of
statistical signal processing techniques to problems such as document image
segmentation and compression, tomographic reconstruction, optical inverse
problems, and high-quality printing and rendering. His research has resulted
in new methods for image rendering, halftoning, and display that have been
widely used in commercial products. He has authored over 30 full journal
publications, over 90 conference publications, and is an inventor on five
issued patents. He has performed research for numerous government and
industrial organizations including National Science Foundation, the U.S. Army,
Hewlett-Packard, Xerox, NEC Corporation, Apple Computer, and Eastman
Kodak. He is Vice President of Publications for the IS&T Society.

Dr. Bouman is a member of SPIE and IS&T. He has been an Associate Editor
for the IEEE TRANSACTIONS ONIMAGE PROCESSING, and is currently an Asso-
ciate Editor for the IEEE TRANSACTIONS ONPATTERN ANALYSIS AND MACHINE

INTELLIGENCE. He has also served as Awards Chair for the ICIP 1998 organizing
committee, Co-Chair of the SPIE/IS&T conferences on Visual Communications
and Image Processing 2000 (VCIP), and a member of the IEEE Image and Mul-
tidimensional Signal Processing Technical Committee.

Ken Sauer (S’84–M’85) was born in Decatur, IN.
He received the B.S.E.E. degree in 1984 and the
M.S.E.E. degree in 1985 from Purdue University,
West Lafayette, IN, and the Ph.D. from Princeton
University, Princeton, NJ, in 1989 as an AT&T
Foundation Fellow.

He is currently an Associate Professor of electrical
engineering at the University of Notre Dame, Notre
Dame, IN. His studies statistical methods for tomo-
graphic image estimation and other nondestructive
evaluation problems, numerical optimization, and

stochastic image modeling.


