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ABSTRACT 

This paper develops two new adaptive wavelet transforms based 
on the lifting scheme. The lifting construction exploits a spatial- 
domain, prediction-error interpretation of the wavelet transform 
and provides a powerful framework for designing customized trans- 
forms. We use the lifting construction to adaptively tune a wavelet 
transform to a desired signal by optimizing data-based prediction 
error criteria. The performances of the new transforms are com- 
pared to existing wavelet transforms, and applications to signal 
denoising are investigated. 

1. INTRODUCTION 

The discrete wavelet transform (DWT) provides a very efficient 
representation for a broad range of real-world signals. This prop 
erty has been exploited to develop powerful signal denoising and 
estimation methods [I]  and extremely low-bit-rate compression al- 
gorithms [2]. 

The Id DWT represents a real-valued discrete-time signal in 
terms of shifts and dilations of a lowpass scaling function and a 
bandpass wavelet function [2]. The DWT decomposition is mul- 
tiscale: it consists of a set of scaling coefficients ~‘[n], which 
represent coarse signal information at scale j = 0, and a set of 
wavelet coefficients dJ [n], which represent detail information at 
scales j = 1,2, . . . , J .  The forward DWT has an efficient imple- 
mentation in terms of a recursive multirate filterbank based around 
a lowpass filter h and highpass filter g. The inverse DWT em- 
ploys an inverse filterbank with lowpass filter h and highpass filter 
9. For special choices of h and g, we have h = h and 5 = g, 
and the underlying wavelet and scaling and wavelet functions form 
an orthonormal signal basis. Otherwise, these functions form a 
biorthogonal basis [2]. 

The economy of the wavelet transform stems from the fact 
that the DWT tends to compress real-world signals into just a 
few coefficients of large magnitude. Compression follow from 
the “vanishing moments” property of wavelets, which guarantees 
that the wavelet coefficients of low-order polynomial signals are 
zero [2]. Thus, if a signal is exactly polynomial, then it can be 
completely described using scaling coefficients alone. In more re- 
alistic situations, the signal will not be polynomial, but may be 
well-approximated by a piecewise polynomial function. Because 
wavelet functions also have localized support, most of the wavelet 
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coefficients of such a signal will be zero except those correspond- 
ing to wavelets having support near the breakpoints of the polyno- 
mial segments. 

It is fruitful to view the DWT as a prediction-error decompo- 
sition. The scaling coefficients at a given scale 0’) are “predictors” 
for the data at the next higher resolution or scale 0’ - 1). The 
wavelet coefficients are simply the “prediction errors” between the 
scaling coefficients and the higher resolution data that they are at- 
tempting predict. This interpretation has led to a new framework 
for DWT design known as the lifting scheme [3]. 

In this paper we use lifting to design customized DWTs that 
adapt to match the signal under consideration. We develop two 
new multiscale analysis techniques - scale-adapted transforms 
and space-udaptedtransforms. The fundamental idea in both cases 
is to adapt the prediction to minimize a data-based e m r  criterion. 
While other adaptive transform techniques have been proposed in 
the literature [4,5,6], the adaptive transforms developed here are 
new, particularly in their use of the lifting programme. 

The paper is organized as follows. In Section 2, we review 
the basic lifting construction and describe a variant of the basic 
scheme. In Section 3, we develop the two new adaptive DWTs us- 
ing the lifting construction. In Section 4, we apply the new DWTs 
to signal denoising and demonstrate that the adapted DWTs can 
perform significantly better than standard wavelet denoising meth- 
ods in several interesting cases. We close in Section 5 with con- 
cluding remarks and plans for future work. 

2. THE LIFTING CONCEPT 

Lifting, a space-domain construction of biorthogonal wavelets de- 
veloped by Sweldens [3], consists of the iteration of the following 
three basic operations (see Figure 1): 

Split: Divide the original data into two disjoint subsets. For ex- 
ample, we will split the original data set z[n] into ze[n] = 
z[2n], the even indexed points, and z,[n] = z[2n + 11, the 
odd indexed points. 

Predict: Generate the wavelet coefficients d[n] as the emor in pre- 
dicting z,[n] from ze[n] using prediction operator P: 

Update: Combine ze[n] and d[n] to obtain scaling coefficients 
c[n] that represent a coarse approximation to the original 
signal r[n]. This is accomplished by applying an update 
operator U to the wavelet coefficients and adding to ze[n]: 
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2.2. Update Design 

M Split xe[n] 

Figure 1 : Lifiing stage: Split, Predict. Update. 

These three steps form a l@ng srage. Iteration of (he lifting 
stage on the output c[n] creates the complete set of DWT scaling 
and wavelet coefficients .'[.I and dJ[n].' 

The lifting steps are easily inverted, even ifP andU are non- 
k u r  or spuce-varying. Rearranging (1) and (2). we have 

21. RedictorDesign 

I)picaUy, the prediction operator P is a linear shift-invariant filter, 
with L transform P(z).  In Figure 2. we illustrate a symmetric. 
N E 4-point predictor P ( z )  = pi z-' + pz + p3z + plz'. By 
tracing the contribution of zc[n] and z,[n] through the trm to the 
point qn]. we can find the equivalent filter that would be applied 
to the original data z[n]. In vector form, we have 

g = [-PI$ 0, -4, 1, - ~ 3 ,  0, -p4IT. (4) 
(Note the zeros at the positions corresponding to odd points in the 
original data, except for the 1 in the center.) 

Figure 2 Prediction fijtering. An N = 4 point linear pmfiction 
filter P( z )  yields the prediction vector g shown across the ttop. 

Rocall that the goal of the prediction step is to eliminate all 
low-order polynomials from ~ [ n ]  in creating the wavelet coef- 
ficients. For a linear predictor. this is easily accomplished by 
the following simple procedure. Form the N x (2N - 1) ma- 
trix V whose rows are the monomial signals: [VJm,, = n"', 
n = -(N - l), . . . , (A' - 1). m = 0.1,. . . , N - 1. (We make 
the convention 0' = 1.) Now, for the predictor to suppress all 
polynomials up to N - 1st order, we require that 

vg = 0. (5) 
This set of linear equations is  readily solved. since V forms the 
first N rows of a Vandermonde matrix, which is always invertible 
IS]. Upon recognizing that the solution lives in an N-dimens,ional 
subspace, we can rewrite (5 )  in a simpler form in terms of a new 
N x N matrix Vo and p the vector of coefficients of the prediction 
filter P ( z )  

(6) 

' In fact, a8 wave~et transforms can be facto& into a series of lifting 

vop = [1,0,. . . I O]T. 

stages (with perhaps multiple predicts and updates per stagc) [i']. 
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The (linear) update filter U ( z )  creates c[n] by updating each ze[n] 
with the nearest fi wavelet coefficients d[n] from either side. The 
update order fi can be chosen independently of N; however, the 
prediction coefficients Pk must be fixed prior to determining the: 
update filter in the standard lifting programme. 

In Figure 3, we trace the contribution of the original t,[n] and 
~ o [ n ]  to each c[n] for an N = 2 point predict followed by an 
N = 4 point update with U ( z )  = UAZ-'+ UZZ-'  + u3 + u4z. 
In vector form, we have the equivalent filter h at the top of the 
Figure, Note that h is a function of both the update coefficients uk 

and the prediction coefficients pk . 

Figure 3: Update filtering. An N = 2 point finearpredict followed 
by an fi = 4 point linear update yields the update vector h shown 
across the top. 

The update filter vector h should pass low-order polynomials 
into c[n] while attenuating high-order polynomials. Conversely, 
we can design the mirror update filter vector (defined as & = 
(-l)"h.,) to suppresslow-order polynomials. For the example in 
Figure 3. we have 

Since the N = 2 prediction coefficients are already deter- 
mined, there are fi = 4 unknowns (the update coefficients U&) in 
g. Solution of 

In summary, we design the prediction step to eliminate the 
low-order polynomial signal structure. leaving only the high-order 
details. We design the update to preserve the low-order polynomial 
signal structure at the next coarser scale? 

= 0 as in (5)  yields the update coefficients. 

2.3. The Updatelhedict Programme 

In the lifting framework of Figure 1, the update structure depends 
on the predictor structure. Hence, if 'P is space-varying or nonlin- 
ear, then so is U. and the design procedure of Section 2.2 becomes 
unwieldy. A crafty detour around this problem is to perform the 
update step first, followed by the prediction [9]. The relevant equa- 
tions then become 

After designing a linear update filter to preserve the first $ low- 
order polynomials in the data (as in Section 2.1). we can apply any 

'In order to normalize the energy of the underlying scaling and wavelet 
functions, we actudly output 2 - 1 1 2 d [ ~ )  and Z'12c[n] from the lifting 
stage. 



space-varying or nonlinear predictor without affecting ithe coarse 
approximation c(n). 

Since the updatefpredict lifting stage creates c[n] prior to 4.1. 
the prediction operator can be designed to optimize performance 
criteria other than polynomial suppression capability. For exam- 
ple. the predictor could be a median filter, In Section 3.2. we will 
exploit this flexibility to design space-varying predictors that adapt 
to the characteristic of the signal. 

3. ADAPTIVE LIFTING 

The lifting approach to wavelet design gives us a great deal of 
flexibility. In principle, we can use any linear, nonlinear, or space- 
vacying predictor and update, and the lifting construction ensures 
that the nsulting transform is invertible. We now investigate the 
capabilities of the lifting approach for adaptive lifting DVVTs that 
optimize data-based prediction measuces to match the characteris- 
tics of a given signal. The motivation behind these new tramforms 
Is that bctttr predictors will lead to more efficient signal tcpnsen- 
tations. Since the compnssion abilities of signal transfonmations 
UT key to successful signal pmxssing algorithms [I], the adaptive 
traasfonns derivtd hen have the potential to improve transform- 
based pnxxssing. 

3.1. We-Adaptive 'IkanSCorms 

In Section 2. we derived the lifting constnrction based on a poly- 
nomial signal suppression/pnservation argument However. we 
alluded to nonlinear schemes based on other than polynomial pre- 
diction, For wcample. we could design a pndictor for -in tcx- 
tural components, such as periodic patterns. More generally, we 
can kc the signal itself dictate the structure of the predictor. 

In a scale-adapted transform (SCAT). we adapt the preaictor in 
each lifting stage in order to match signal structure at the culm- 
rpoading scale. The basic idea is to use a linear N-point ptdiaor, 
but m j u h  that it suppress polynomials only up to M < Nth or- 
der. The remaining N - M degrees of fncdom are then used 
to adapt the predictor to the signal. Specifically. at each sale 
we optimize the predictor over the N - M degrees of freexiom 
to minimize the spatially-averaged squared prediction emr. This 
optimization produces predictors that can match both polynomial 
and non-polynomial signal st~cturc. For example, if the signal 
contains a wlar texture, then a relatively low-order adaptive pre- 
diaor of this form may be able to match the texture much better 
than a pure polynomial predictor of the same order. 

Tbe Optimitation itself is a straightfoward N-dimensional 
coNQBiDcd kast squares pmblem - the constraint being that we 
roquin tbe pdictor to suppnss M < Nth-order polynomials. 
Let ~0 denote the odd-indexed data we wish to predict and let L, 
[&],,,& = ze[n - k], be a matrix composed of the even-indexed 
data usad in the prediction. The vector of prediction mrs is then 
€5- bY 

e = x0-L~. (9) 
Our objective is to find the prediction coefficients that mini- 

mizc the sum of s q u d  prediction m r s  eTe while satisfying the 
M < N polynomial constraints. Thus, we solve 

min llx,, - Xcp1l2 subject to (6). 
P 

with Vo an M x M matrix determined as in Section 21. ?he 
optimal prediction coefficients for this constrained least squares 

problem can be efficiently computed using the QR factorization 
method (8, p. 5671. 

The optimal predictor effectively "locks-on" to the dominant 
signal structure at each scale. The wavelet coefficients 4.1 then 
represent the variations of the signal-froh this structure. Once 
the optimal predictor is determined, the update is designed using 
the methods of Section 2.2 to ensure that the dominant coarse- 
scale (low-frequency) structure is preserved in the come signal 
approximation that is used at the next scale. 

3.2. Space-Adaptive lkansforms 

In addition to a scale-by-scale optimization, lifting permits us to 
inrCantaneouSry adapt the predictor to the signal and change the 
wavelet basis functions at each mint and scale. In a space-adapted 
transform (SPAT), we employ the update/predict framework of 
Section 2.3 and choose a pmiictor from a suite of p d i c t w  to 
minimize each 44 value. 

Our adaptive algorithm petforms a a = 1 point updat~, and 
then for each n chooses thc NE {1,3,5,7} point prediction that 
minimizes the value qn]. We choose this ( N ,  E )  pair, because the 
undaiying wavelet functions arc relatively s m t h  and the synthe- 
sis functions have small side-bands (91. A demonstration of the 
S p m  applied to a step edge is shown in Figure 4. The transform is 
able to lock-on to the dominant signal structure at each point, and 
avoid discontinuities and other high-order polynomial phenomena 
that would decnase the quality of pndiction. 

1 3 5 7 7 7 7  

h' 

i X-O%O-XOXO X O  KO K6 
7 7 7 7 5 3 1  

Figure 4: In the SPAT the order N of tk pndictor varies with 
space n to minimizc the wavelet coefficient value 4.1. Abovc 
each ~[n] we give the companding choice N(n). As the pre- 
dictor appmaches an edge, it decxasa N (chooses wavelets of 
smaller spatial support) in order to avoid the edge. 

4. NUMERICALEXPERIMENTS 

In this section, we compart the performance of the new adaptive 
transforms with some of the standard Daubcchies wavelets. n o  
experiments arc performed. Fit. we compare the entropies of 
the coefficient distributions of teyeral well-known test signals to 
assess the lmcl of compaction afforded by the new transforms. 
Second, we compare the performance of the new transforms in a 
signal denoising application. 

4.1. Entropy Comparison 

The entropy of the transform coefficient distribution is a common 
measure of thc efficiency of a signal transfonn (51. If we collec- 
tively denote the scdig and wavelet coefficients by (wi}. then 
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the entropy is defined as 

Signal 

assuming the normalization ci lzuil’ = 1. 
Table 1 compares the entropies of the Daubechiesd (DS) and 

Daubechies-2 (Haar) DWTs to thzse obtained using the ScAT and 
SPAT. The ScAT used an N = N = 4 lifting construction, with 
A4 = 3 vanishing moments enforced. The first four signals, 
Doppler, Blocks, Bumps, and HeaviSine, are standard test signals 
introduced in [l]. The last signal, DoppelBlock, is a concatenation 
of the Doppler signal and the Blocks signal (hence it contains both 
smooth and edgy signal elements). All signal were 1024 samples 
long. The entropies in Table 1 show that both adaptive transforms 
perform nearly as well (or better) than the better of the D8 or the 
Ham in each test case. 

MSE by Algorithm 
0 8  I Haar I ScAT I SPAT 

Table 1 : Entropy results for various signals and transforms. 

Signal Entropy by Algorithm 
D8 I Haar I ScAT I SDAT 

DoppelBlockl 3.543 I 3.597 I 3.414 I 3.149 

4.2. Denoising Comparison 

Because DWTs provide such a parsimonious representation for 
wide classes of signals, the DWT has proved to be a powerful tool 
for noise removal. The basic “wavelet denoising” programme [ 11 
is described as follows. We observe L samples {~[n]} of an un- 
known function f with additive i.i.d. Gaussian noises {~[n]}: 

z[n] = s[n] +q[n], n = O , l , .  . . , L - 1. (12) 

We compute the DWT of 5 and apply a “soft-threshold” nonlinear- 
ity to the wavelet coefficients. The soft-threshold sets very small 
coefficients to zero and reduces all other coefficients by a fixed 
amount proportional to the standard deviation of the noise. The in- 
verse DWT of the thresholded coefficients produces a “denoised” 
signal. For a more information see [I]. 

Table 2 provides the mean-squared error (MSE) performance 
of the four transforms and five signals discussed in Section 4.1 
above. In this experiment, noise of standard deviation 0.1 x 
maxn 13[n]1 was added to each of the test signals. The MSEs in 
Table 2 show again that both adaptive transforms perform nearly 
as well (or better) than the bettcr of the D8 or the Haar in each test 
case. 

5. CONCLUSIONS 

This paper has described two new adaptive DWTs basedon the lift- 
ing scheme. We used the lifting construction to adaptively match 
the DWT to a given signal based on data-based error criteria. Com- 
parisons in entropy measures and signal denoising demonstrate the 
potential utility of the new transforms. 

Table 2: Denoising: MSE for various signals and transforms. 

Doppler i 0.0483 j 0.0733 i 0.0459 i O:OSZI 
Blocks 1 0.4428 I 0.3598 I 0.4084 I 0.3661 
Bumps 1 0.4014 I 0.4403 I 0.3949 I 0.4102 

HeaviSine I 0.1966 I 0.4404 I 0.1990 I 0.2107 
I I I I 

DoppelBlock I 0.1 1 1  1 I 0.1065 I 0.1 110 I 0.0966 

Many variations on the ideas presented here can be made to de- 
velop new adaptive DWTs. For example, a logical next step would 
be to combine the ScAT and SPAT into a scale and space adap- 
tive transform. We also note that the new transforms are easily ex- 
tended to images (a similar lifting construction exists for higher di- 
mensional data). Finally, in this paper we have only examined the 
potential of the new transforms for signal denoising, but they may 
also improve algorithm performance in other applications, such as 
signal compression [9], detection, and classification. 
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