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ABSTRACT

In this paper we propose a feature-based wavelet representa-
tion for image classification and visualization. The work is
primarily motivated by the need to classify quickly and ef-
ficiently large multispectral satellite images, and possibly to
perform the classification task directly on compressed data.
We propose a multiresolution approach based on a special
class of adaptive wavelets which allows the extraction of
salient features without loosing accuracy.

1. INTRODUCTION

Typically, classification involves feature extraction and rep-
resentation, class modeling and parameter estimation. These
steps are highly interdependent, since the choice of features
influences the conditions under which a classifier operates
and vice versa.

In fact, feature extraction is generally applicable to a
wide range of imagery and tasks. It allows the identifica-
tion of relevant features. Hence, the effective use of feature
extraction can improve general analysis and interpretation of
data. For classification, the goal of feature extraction is to
produce a condensed information able to discriminate be-
tween different classes. The extracted attributes generally
correspond to models produced by human experts; automatic
selection procedures can also be added to reduce features re-
dundancy or irrelevance.

Some of the most common feature extraction methods are
principal component analysis, discriminant analysis feature
extraction, and decision boundary feature extraction. These
methods are usually referred to as statistic-based feature ex-
traction [1]. In the context of image classification, typically
extracted features correspond to textural and geometrical in-
formation. The textural part can be represented using clas-
sical wavelets based features (Gabor, QMF), statistics from
co-occurrence matrices (Haralick coefficients [12]) or pa-
rameters estimated from Gaussian Markov Random Fields
(GMRF [15]) models. The geometrical one traditionnaly
comes from shape or contour analysis.

In the meantime, in the past two decades, the wavelet
transform has been successfully applied in several applica-
tions, among which, feature extraction and classification.
Due to their scale-space localization properties, wavelet
transforms (and their variants such as wavelet packets) have
proven to be an appropriate starting point for classification,
specially for texture images, since classical wavelet trans-
forms present some limitations when dealing with geomet-
rical structures such as edges. Moreover, in [2, 3] it is sug-
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gested that the choice of filters in the wavelet transform can
be an important issue even for texture images.

In this paper, an adaptive wavelet transform [4] is applied
to extract the physical features of remote sensing images. An
algorithm based on non-linear approximation of this adaptive
representation is used to identify significant features directly
in the transformed domain. An important characteristic of
our approach is that the transform preserves salient features
so that the image can be analyzed and visualized at low reso-
lutions while providing a compact representation. Moreover,
the resulting decomposition can be directly used for nearly
lossless compression of remore sensing images, thus allow-
ing to jointly achieve efficient storing and browsing capabil-
ities.

This paper is organized as follows. In the next section,
we briefly describe the adaptive wavelet scheme used to rep-
resent the input images. In Section 3, we propose a feature
extraction algorithm based on selecting the largest amplitude
wavelet coefficients along the different scales and orienta-
tions as the important features for classification. In Section 4,
we describe the classification method used in the simulations
results, which are presented in Section 5. Concluding re-
marks are given in Section 6.

2. ADAPTIVE WAVELET REPRESENTATION

Our wavelet decomposition uses an adaptive update lifting
step, followed by a fixed prediction step, such as illustrated
in Fig. 1.
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Figure 1: 2D adaptive wavelet decomposition.

The input image bands x, ys1 , ys2 and ys3 are the
polyphase components of an original image x0: x(m,n) =
x0(2m,2n), ys1(m,n) = x0(2m,2n + 1), ys2(m,n) = x0(2m +

1,2n), ys3(m,n) = x0(2m + 1,2n + 1). The output x′ corre-
sponds to the approximation band, whereas y′s1

, y′s2
, y′s3

are
the detail bands corresponding to different orientations (hor-
izontal, vertical and diagonal, respectively).

In the update step, D is the so-called decision map which
uses inputs from all four bands, and whose output is a binary



decision parameter d ∈ {0,1} which governs the choice of
the update step. More precisely, if dn is the output of D at
location n = (m,n), then the updated value x′(n) is given by

x′(n) = a dnx(n)+
J

å
j=1

m dn, jy j(n) , (1)

with y j(n) = ys j (n+ l j) , s j ∈ {s1,s2,s3}, l j ∈ L. Here L is a
window in Z

2 centered around the origin. Note that the filter
coefficients depend on the decision dn. In particular,

dn = D
(

v(n)
)

= [p
(

v(n)
)

> T ] ,

where [P] returns 1 if the predicate P is true, and 0 other-
wise; p is a seminorm, T is a threshold and v(n) ∈ IRJ is the
gradient vector with components v j(n) = x(n)− y j(n), j =
1, . . . ,J. Thus, our method builds lifting structures able to
choose between two different update filters, the choice be-
ing triggered by the local gradient information of the input.
If the gradient is large (in some seminorm sense) it chooses
one filter, if it is small the other. We assume that the filter
coefficients satisfy:

a d +
J

å
j=1

m d, j = 1 and a d 6= 0 , for d = 0,1.

It is easy to show that the gradient vector at synthesis v′(n)∈
IRJ with components v′j(n) = x′(n) − y j(n), j = 1, . . . ,J,
is related to v(n) by means of the linear relation v′(n) =
Adv(n) , where Ad = I −ubT

d , I is the J×J identity ma-
trix, and u = (1, . . . ,1)T , bd = (m d,1, . . . , m d,J)

T are vectors
of length J. The superindex ‘T’ denotes transposition. For
brevity, we will henceforth suppress the argument n in our
notation and write, e.g., x,y j rather than x(n),y j(n), respec-
tively.

If p(v) ≤ T at the analysis step, then the decision equals
d = 0 and v′ = A0v. If, on the other hand, p(v) > T , then
d = 1 and v′ = A1v. We can have perfect reconstruction if we
are able to recover the decision d from the gradient vector at
synthesis v′. For simplicity, we shall restrict ourselves to the
case where d can be recovered by thresholding the seminorm
p(v′), i.e., the case that d = [p(v) > T ] = [p(v′) > T ′], for
some T ′ > 0. In [4] we have analyzed perfect reconstruction
conditions for various seminorms p. An interesting case is
the weighted ℓ2-norm:

p(v) =
(

J

å
j=1

l jv2
j

)1/2
, with l j > 0. (2)

In this case,

C1: perfect reconstruction holds if b0,b1 are collinear with
the weights l = (l 1, · · · , l J)

T , and |a 0| ≤ 1 ≤ |a 1|.

The combination of the adaptive update lifting with a
fixed prediction lifting yields an adaptive wavelet decompo-
sition step mapping x0 into x′,y′ = {y′s1

,y′s2
,y′s3

}. We obtain
an adaptive multiresolution wavelet decomposition by iterat-
ing such wavelet steps. That is, we can use the approxima-
tion x′ as the input for another wavelet decomposition step
and obtain x′′,y′′. Then, we can repeat this for x′′, and so on.
Thus, iteration of K steps results in a K-level wavelet decom-
position of x0 into y1,y2, . . . ,yK ,xK , where we have written
y1,y2, etc., instead of y′,y′′, etc., for simplicity of notation.

3. FEATURE EXTRACTION

We wish to find regions in the image with high information
content relevant to perform image classification. It is well-
known that smooth image regions are represented by small
wavelet coefficients, while edges and other singularities are
represented by large coefficients. Moreover, wavelet trans-
forms reflect the image structure in the following proper-
ties [5]:
(i) Large-magnitude coefficients tend to occur near each

other within subbands (detail bands), and also at the same
relative spatial locations in subbands at adjacent scales
(level of resolution) and orientations.

(ii) Typical localized image structures (e.g., edges) tend to
have substantial power across many scales at the same
spatial location.

Thus, an appropriate way to extract the salient information is
to detect and retain only the significant coefficients (whose
magnitude is large enough). Morevover, since the assump-
tion of subband independence was found valid for real im-
ages [6], we consider that y′s1

,y′s2
,y′s3

are independent.
We form the feature vector by applying the following

simple algorithm:

Feature selection algorithm
1. Decompose the image with the adaptive wavelet scheme

proposed in Section 2. We refer to this decomposition as
AW (adaptive wavelets).

2. Keep the M-biggest coefficients (in magnitude) of the re-
sulting decomposition. We refer to this selection as NLA
(non-linear approximation).

In this paper, for the adaptive decomposition, we consider the
horizontal and vertical neighbors of the sample to update, and
use the weighted seminorm in (2) with l j = 1 for j = 1, . . . ,4.
For d = 0, we take a 0 = 1/2 and b0 = 1

8 (1,1,1,1)T , while
for d = 1, a 1 = 1 and b1 = 0 (i.e., no update is performed
preserving thus the discontinuities). One can easily see that
this choice satisfies the perfect reconstruction condition in
C1. After the update step, a prediction step such as illustrated
in Fig. 1 is performed. For simplicity, P1(x) = P2(x) = x and
P3(x,y1,y2) = y1 + y2 − x.

Once the adaptive wavelet decomposition has been ob-
tained, we keep the 3% highest magnitude coefficients.
These coefficients form the feature vecture which will be
used for the classification. For example, for an image of size
64×64, this means we retain 121 features.

Because of the use of the non-linear approximation
(NLA) and adaptive wavelets (AW), we refer to our feature
model as NLAAW.

4. CLASSIFICATION

Classification is performed to analyse the discriminative
power of different feature sets. Four types of classifiers are
used in our experiments: (1) kNN (k Nearest Neighbors)
[16]; (2) Fisher classifier1 [7]; (3) SVM2 used with Gaussian
kernel (with parameter 0.05) [8, 9]. Classification evaluation
is performed using cross-validation. We typically use 5 val-
idation loops because of our database size (100 data in each

1Implemented in Spider environment [10].
2SVM is derived from libsvm code (free sources[11]) using parameter C

= 1000.



class, see section 5). The data set is randomly divided into 5
sets. One set is used to test the classifier obtained by training
on the other 4 data sets. There are 5 loops of training and
test, each data set being used only once for testing. The fi-
nal result is the (%)mean±(%)standard deviation of the error
rates obtained in each cross-validation loop.

5. EXPERIMENTAL RESULTS

The simulation results are based on small images (64x64)
extracted from satellite panchromatic images (Spot 5,
5m/pixel), represented with 8 bits/pixel (256 gray levels).
Originally the database contains 6 data classes with 100
examples for each class. The classes were manually con-
structed. Fig. 2 shows an example of each class.

Figure 2: 6 texture classes, from left to right and top to down : city,
forest, fields, sea, desert and clouds. (Copyright Centre National
d’Etudes Spatiales)

We compare our feature model (NLAAW) with three
other feature models: Haralick [12] (13 different statis-
tics computed on 4 oriented co-occurrence matrices, adding
mean and standard deviation for each of them), Gabor [13]
(mean and standard deviation in a 3-level decomposition with
4 orientations Gabor filters) and GMRF [15]. The GMRF pa-
rameters were recently introduced for satellite image index-
ing. They rely on a statistical estimation of Gibbs-Markov
Random Fields model parameters: the first attribute corre-
sponds to the parameters norm, the second to the fitting error
variance while the third is the model evidence. The fourth
one is related to the average gray level in each image. Note
that we also consider the attributes VW that correspond to
the variances computed in each subband in our wavelet de-
composition.
In order to evaluate the effect of the adaptive filtering, we
also introduce the features obtained when using non-adaptive
wavelet filters (NLAW). In all wavelet-based cases two lev-
els of decomposition were used.
Prior to classification, each feature is normalized to obtain
mean 0 and variance 1. The results are displayed in Table 1.
The last row shows the error rates obtained when combining
the features of NLAAW with the variances of each subband
in the adaptive decomposition.

In the second experiment, we consider only three classes
(city, field and forest), which present a more geometrical

D kNN Fisher SVM
(k=8) (rbf)

Haralick 78 13.8±2.2 30.8±4.3 7.0±1.5
Gabor 24 22.2±2.5 40.7±3.8 17.8±3.1
GMRF 4 9.7±4.5 16.8±3.3 12.5±2.6
VW 7 17.5±4.4 23.0±3.0 13.7±1.3
NLAW 121 7.8±2.3 8.3±2.3 6.0±0.9
NLAAW 121 7.0±2.5 9.7±2.5 5.8±0.8
NLAAW+VW 128 5.3±1.8 9.2±2.6 3.0±1.8

Table 1: Classification error rates for different features sets using
6 texture classes. The dimension of each feature set is indicated by
D column.

structure (e.g., roads, lanes, boundaries, etc.) than the other
three. The results are displayed in Table 2.

D kNN Fisher SVM
(k=8) (rbf)

Haralick 78 9.3±3.3 22.0±5.2 4.7±2.2
Gabor 24 14.3±3.8 34.0±2.5 11.3±4.2
GMRF 4 5.0±2.6 16.7±4.7 4.7±1.8
NLAW 121 4.7±1.8 6.7±3.7 5.3±2.7
NLAAW 121 4.3±0.9 7.0±3.2 3.0±2.2
NLAAW+VW 128 2.7±1.9 6.3±3.0 1.0±1.5

Table 2: Classification error rates for different features sets using
3 texture classes. The dimension of each feature set is indicated by
D column.

From these experiments we observe that:
• NLA based features provide the lowest error rates. The

adaptive decomposition brings additional information
when more geometrical structures are considered (see
SVM better results when 3 classes are considered). Be-
sides, we tested the algorithm with various AW decom-
positions, obtaining similar results. The choice of the
parameters does not seem to influence very much. How-
ever, NLAW gives similar results when kNN and Fisher
classifiers are considered, especially in the 6-classes
problem.

• The lowest error rate is obtained with a combination of
VW and NLAAW features. This indicates that VW pro-
vides a complementary information to NLAAW.

• The proposed features lead to much better classification
results when used on the 3 classes with geometrical char-
acteristics, where the adaptive decomposition can better
take advantage of the input data.
It is important to mention that although the number of

features is greater in the proposed approach, the complexity
of our method is extremely low. When a subsequent wavelet
compression method is applied to the sensed images, the ex-
tracted features come actually at no additional cost (neither
computationally, nor in storage).

Moreover, when considering all features together (as a
concatenated feature vector), we observe (see Table 3) that
we do not enhance the classification performance. It is a
well-known result from the feature selection literature that
adding redundancy or noise cannot help the classification
process. This means that the 128 NLAAW+VW features
clearly contain all the discriminative information needed to
classify our database.



D kppv(k=8) fisher svm(rbf 10)
All (6 classes) 234 5.0±1.3 8.7±1.5 2.0±1.5
All (3 classes) 234 2.7±1.9 6.0±3.0 1.3±0.7

Table 3: Classification error rates for different features sets. The
dimension of each feature set is indicated by D column. The first
row corresponds to the classification on the whole set of classes,
while the second row corresponds to the 3-classes problem.

6. CONCLUSION AND FUTURE WORK

We have presented a simple and original feature extrac-
tion process based on adaptive wavelet decomposition
called NLAAW (Non Linear Approximation and Adaptive
Wavelets). This work is motivated by the need of an image
representation allowing compression as well as classifica-
tion. Our AW is introduced both to represent and analyze
the image as well as to provide spatial-frequency based
descriptors as features for classification.

The efficiency of the extracted attributes has been
demonstrated through classification experiments performed
on satellite images. In contrast with classical wavelets, our
adaptive wavelet schemes are allowed to vary to fit data.
Furthermore, the adaptive approach is able to reproduce the
sharpness and smoothness of the irregular structures. This
adaptive property guaranty the extraction of both geometri-
cal and textural information contained in remotely sensed
images, what cannot be performed by the classical feature
extractors. Moreover the NLA scheme can be applied to
traditional methods (like classical wavelets or block-coded
based features) in order to enhance their discriminative
power.

In conclusion, we have described some preliminary steps
towards development of geometric and multiscale features
to be used in classification of satellite images. Preliminary
results show that we can obtain better class accuracy as
compared to classical techniques, while performing only
the necessary operations for compressing these images. As
shown in another work [18], this adaptive representation
also leads to better lossless and nearly lossless compression
performance.

Concerning the feature set dimensionality, the rate of
selected features (the largest 3% coefficients) in the NLA
process was experimentally chosen and we are already
convinced that the remaining features are still redundant.
Hence we plan, as future work, to apply automatic fea-
ture selection process to the whole set of coefficients
in order to determine the optimal number of features
to be chosen. This kind of approach can also be used to
compare the information brought by several feature sets [17].

All the presented experiments were performed on gray-
level images. They can also be extended to color images and,
more interesting for our application, to multispectral remote
sensed images.
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