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ABSTRACT 
Identifying which parts of a Web-page contain target content (e.g., 
the portion of an online news page that contains the actual article) 
is a significant problem that must be addressed for many Web-
based applications. Most approaches to this problem involve 
crafting hand-tailored rules or scripts to extract the content, 
customized separately for particular Web sites. Besides requiring 
considerable time and effort to implement, hand-built extraction 
routines are brittle: they fail to properly extract content in some 
cases and break when the structure of a site’s Web-pages changes.  
In this work we treat the problem of identifying content as a 
sequence labeling problem, a common problem structure in 
machine learning and natural language processing.  Using a 
Conditional Random Field sequence labeling model, we correctly 
identify the content portion of web-pages anywhere from 80-97% 
of the time depending on experimental factors such as ensuring 
the absence of duplicate documents and application of the model 
against unseen sources.   

Categories and Subject Descriptors 
I.2.6, I.2.7 [Artificial Intelligence]: Natural Language Processing 
– text analysis, Learning – Parameter Learning. 

General Terms 
Algorithms, Experimentation. 

Keywords 
Conditional random fields, content identification, maximum 
entropy markov models, sequence labeling. 

1. INTRODUCTION 
Web pages containing news stories also include many other 
pieces of extraneous information such as navigation bars, 
JavaScript, images and advertisements.  There are a number of 
tasks that necessitate the extraction of just the news article from 
these pages.  This might be done to provide input into a database 
or into an application such as a Natural Language tool, index for a 
search engine or duplicate detection tool.  Another cause to 
extract just the news story is to re-display it on a small screen 

such as a cell phone or PDA.   An example of identifying the 
embedded news article can be seen in Figure 1. 

Typically, content extraction is done via a hand-crafted tool 
targeted to handle a single web page format.  This approach is 
brittle in that when the page format changes, the extractor is likely 
to break.  Additionally, it is labor intensive since a new extractor 
must be written to handle each unique page format.  In our 
experience, web page formats change fairly quickly and custom 
extractors often become obsolete a short time after they are 
written.  Further, some websites use multiple formats concurrently 
and identifying each one and handling them properly makes this a 
complex task.  As part of a larger project, we initially developed 
such site-specific content extractors and found them to be 
unworkable as a long-term solution due to the aforementioned 
problems. 

The approach described in this paper is meant to overcome these 
issues. The data set for this work consisted of web pages from 27 
different news sites. The sites are visually similar in that they 
contain a news article surrounded by other information.  
However, the underlying HTML for creating this layout varies 
amongst the sites.  For example, while some sites separate 
sections of the article content with paragraph tags, others segment 
the sections with tags such as <div>, <br>, or <table>. 

Identifying portions of relevant content in web-pages can be 
construed as a sequence labeling problem – i.e. each document is 
broken into a sequence of blocks and the task is to label each 
block as Content or NotContent.  We employed three different 
statistical machine learning methods to learn how to label 
sequences of blocks so as to identify the content.  Our best 
system, based on Conditional Random Fields, can perfectly 
identify the content portions from new, unseen web-pages at 
unseen web-sites over 80% of the time1.  Under less strict 
conditions (e.g. allowing duplicate articles and/or articles from a 
seen web-site in the test data), the document level accuracy 
improves to nearly 98%.  In all cases, the system identifies 
Content blocks with recall above 99.5% and precision above 
97.9%.  These results support the claim that machine learning-
based content extraction is a very viable alternative to hand-
crafted patterns. 

                                                                 
1 A demo of this system is available at http://cedarpub.mitre.org/ 
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Figure 1.          Indicates news story content 

 
 

2. RELATED WORK 
Web-page Content Identification 
Information Extraction 
Information Extraction is the task of identifying “nuggets” of 
information such as dates, authors, or prices, from structured or 
unstructured text. As described by Laender, et al [1], the most 
common technique used for information extraction involves 
constructing site-specific programs called wrappers. This 
approach possesses the characteristics described above – wrappers 
are generally brittle and labor intensive. There have been 
numerous attempts to address these problems using various 
techniques. An explanation and examples of the automatic 
learning of rules, called wrapper induction can be found in work 
by N. Kushmerick [2] and Muslea et al [3]. An approach to 
automatically adapting to page format changes is described in [4]. 
Laender et al[1] provide an overview of information extraction 
tools which use wrappers to process Web pages. Wrapper 
induction is related to our task in that it is identifying specific 
content in text; however, the information being extracted is 
generally more structured than the free-text news articles that we 
are identifying. Therefore, items identified via wrapper induction 
are more easily recognizable using patterns. 

Content Extraction 
Content Extraction tools such as Columbia University’s Crunch 
[5] aim to reduce the size of web pages by removing what they 
deem as noise or clutter from the pages. Additionally, a tool by 
the Document Analysis and Recognition Team (DART) at BCL 
Computers Inc. [6] further reduces text by providing a summary 
of what remains. These tools are motivated by a variety of goals 
including paring down pages for the visually impaired [5], 
producing lighter weight content for small screen devices such as 
PDAs [5, 6] and reducing page complexity for subsequent 
processing as in MetaNews [7] and the forthcoming 
CLEANEVAL challenge task as part of the Web as a Corpus 
Workshop [8] . 

Content Extraction tools are related to our work in that they are 
focused on determining which part(s) of web pages are relevant to 
their goal. In general, they are addressing a broader problem than 
what this paper addresses. Content Extraction tools are meant to 
take any type of web page as input, while we are focused solely 
on pages containing news articles. In addition, while the Content 
Extraction tools aim to reduce page size, they are not geared 
toward identifying a specific portion of the page to keep, as we 
are with news articles. 

News Story Identification 
The Columbia Newsblaster project [9] and MetaNews [6] both 
concentrate on gathering news articles on the web. MetaNews 
uses a two-phased approach. First, it carries out noise removal by 
throwing out HTML tags that it believes will not contain content. 
Next it uses pattern matching on the reduced page to extract news 
articles. Patterns for MetaNews are manually defined for each 
news site, and no automatic learning is involved. Thus although 
pattern writing is simpler than for traditional wrapper approaches, 
this tool is still likely to fail if a page format changes, and adding 
new sites requires some manual labor.  

The Columbia Newsblaster team originally used individual site 
wrappers to identify news articles. They determined that this 
approach was difficult for handling new sites. As a result, they 
implemented a machine learning based approach which is similar 
to ours. The module relies on “simple surface characteristics of 
the text” to classify blocks of text as part of an article, or into 
various other categories such as title, caption, or other. 

Sequence Labeling 
Sequence labeling methods have seen widespread use in the 
natural language processing community for tasks such as part-of-
speech tagging [9], noun-phrase chunking [10] and other related 
tasks.  For such problems, the elements in the sequence are words 
and a sequence typically consists of a sentence.  

Sequence labeling methods have been applied to sequences where 
the elements are units other than single words, however.  
Examples include labeling sequences of clauses [11] or labeling 
argument constituents of verbs [12].  Most related to our work 
from a sequence labeling perspective, is work in extracting tables 
from ASCII files [13].  Here, sequences were entire documents 
with each line in the file being an element.  The task was to 
extract sequences of lines that constituted a table.  In our setting, 
the sequence elements are HTML blocks rather than lines in an 
ASCII file.  The tasks are similar, however, in that they both 
consider sequence elements containing multiple words with 
potentially complicated internal structure.   

3. CONTENT IDENTIFICATION AS 
SEQUENCE LABELING 
The problem we have addressed in this work is that of identifying 
the portions of news-source web-pages that contain relevant 
content – i.e. the news article itself.  There appear to be two 
general ways to approach this problem:   

Boundary Detection Method. This approach involves 
identifying positions where content begins and ends, thus deriving 
a segmentation of the original Web-page delineating the content 
by assuming all parts of the page between a begin content marker 



and an end content marker are content. The identification method 
could be any decision mechanism; we generally assume this to be 
a statistical classifier. 

Sequence Labeling Method. The second approach is to divide 
the original Web document into a sequence of some appropriately 
sized units or blocks and to then categorize each block as Content 
or NotContent. Given this formulation as a sequence labeling 
problem, many robust statistical methods developed for labeling 
sequences (in the Natural Language Processing community and 
elsewhere) are applicable. 

In this work, we focus largely on the sequence labeling method. 
This is motivated by a number of factors.  First, a number of web 
pages contain ‘noncontiguous’ content.  By this we mean that the 
paragraphs of the article body have other page content, such as 
advertisements, interspersed.  Sequence labeling methods seem 
preferable in such situations since the boundary detection 
methods aren’t able to nicely model transitions from Content to 
NotContent back to Content, for example.  Another problem 
with the boundary detection method is that if a boundary is not 
identified at all (e.g. the beginning of content boundary), an entire 
section of content can be missed.  There are various heuristic 
methods one could apply to ensure this doesn’t happen, but none 
would be well-principled.  Finally, when developing a statistical 
classifier to identify boundaries, there are many, many more 
negative examples of boundaries than positive ones.  Of course, it 
may be possible to sub-sample negative examples or identify 
some reasonable set of candidate boundaries and train a classifier 
on those, but this complicates matters greatly. 

While our efforts here focus on the sequence labeling approach, 
we did perform some initial experiments using the boundary 
detection method which involved identifying the beginning and 
ending of content using a statistical classifier. We found the 
results to perform no better than the lowest performing sequence 
labeling approach. This, after spending considerable effort to 
post-process the statistical classifier output to derive the most 
sensible content boundaries.  For example, if no begin content 
boundary was identified by the classifier (i.e. it had a “yes” 
probability > 0.5) we selected the candidate begin content 
boundary that had the highest classifier confidence. 

4. MODELS 
This section describes the three statistical sequence labeling 
models employed in our experiments: Conditional Random Fields 
(CRF), Maximum Entropy Classifiers (MaxEnt), and Maximum 
Entorpy Markov Models (MEMM). 

Conditional Random Fields 
Conditional Random Fields (CRFs) [14] are probabilistic models 
that produce a conditional distribution over a set of output  (i.e., 
predicted) variables when provided with fixed values to a set of 
input (i.e., given) variables.  An important special case of CRFs 
are sequence CRFs in which the output variables are arranged in a 
linear-chain in which a first-order Markov assumption holds: an 
output variable is only dependent on the variables adjacent to it 
(i.e., immediately to the right and left) in the sequence. 

Let x = x1, x2, …, xn be a sequence of observations such as a 
sequence of words, paragraphs, or, as in our setting, a sequence of 
HTML “segments”.  Given a set of possible output values (i.e., 

labels), sequence CRFs define the conditional probability of a 
label sequence y = y1, y2,…, yn as: 
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where Zx is a normalization term overall possible label sequences.  
The feature functions fk, are arbitrary functions over the current 
and previous labels, yi and yi-1, the entire observation sequence x 
and the current position, i.  Often, the range of such functions is 
{0,1}, though the range may extend to arbitrary real-values, 
generally. For example, a feature function may generally have 
value 0 for most inputs, but have a value of 1 when  yi=Content, 
yi-1=NotContent and xi contains the word “TITLE”. Associated 

with each feature function, fk, is a learned parameter λ k that 
captures the strength and polarity of the correlation between the 
label transition, yi-1 to yi, and the predicate over the observation 
sequence. Thus, the above feature with a high positive weight 
would indicate that the word “TITLE” appearing in a segment, xi, 
is correlated with the current segment labeled as Content and the 
previous segment labeled as NotContent. 

Note also that feature functions in practice often ignore the 
previous label, and simply correlate the predicate over the 
observations with the label at the current position (not the current 
and previous position).  Such features are sometimes called node 
features, while features that do pay attention to the current and 
previous position are termed edge features. 

Training 
Assume a set of training data consisting of a set of pairs of 
sequences – the first element of each pair being a label sequence 
and the second being a corresponding observation sequence: D = 
{(y(1),x(1)), (y(2),x(2)), …., (y(m),x(m))}.  The model parameters are 
learned by maximizing the conditional log-likelihood of the 
training data which is simply the sum of the log-probabilities 
assigned by the model to each label-observation sequence pair: 
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The second term in the above equation is a Gaussian prior over 
the parameters, which helps the model to overcome over-fitting.  
Lower variance values have the effect of proportionally 
penalizing the log-likelihood when feature values stray far from 0.  
While the log-likelihood surface is convex (i.e., there is a single 
global maximum), maximizing the above expression over a set of 
training data isn’t possible in closed form, and general purpose 
convex optimization routines are used in practice.  The 
optimization process requires evaluating the log-likelihood and its 
gradient for the current set of parameters at each iteration.  Full 
inference over the model must be performed to derive the 
distribution over all possible labelings.  This distribution is 
needed to compute the feature expectations required for the 
gradient term and to compute the normalization term, Zx. 
Inference is performed using a variant of the forward-backward 
algorithm[14].  As this must be performed on each iteration, CRF 
training is relatively compute-intensive as compared with the 
methods below. 



Decoding 
Given a trained model, the problem of decoding in sequence 
CRFs involves finding the most likely label sequence for a given 
observation sequence.  The number of possible label sequences is 
very large: there are NM possible label sequences where N is the 
number of labels and M is the length of the sequence.  Dynamic 
programming, specifically a variation on the Viterbi 
algorithm[14], can find the optimal sequence in time linear in the 
length of the sequence and quadratic in the number of possible 
labels. 

Maximum Entropy Classifier 
Maximum Entropy (MaxEnt) classifiers have been used with 
great success in areas such as text processing, natural language 
processing (e.g. parsing) and many other areas.  Briefly, MaxEnt 
classifiers are conditional models that given a set of parameters 
produce a conditional multinomial distribution according to: 
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where y is a random variable over the possible outcomes or 
classifications (e.g. Content or NotContent), x describes the 
observed data (e.g. HTML pages), the functions fk are features 

over the observed data and a particular outcome, and the λ k are 
the weights, one associated with each feature.   MaxEnt models 
tend to perform competitively with other discriminative learning 
methods such as support vector machines (SVMs) and benefit 
from their simplicity, robustness and scalability.  In contrast with 
CRFs, MaxEnt models (and classifiers generally) are “state-less” 
and do not model any dependence between different positions in 
the sequence.  

Maximum Entropy Markov Models 
A final set of models we consider in this work are Maximum 
Entropy Markov Models (MEMMs). MEMMs model a state 
sequence just as CRFs do, but use a “local” training method rather 
than performing global inference over the sequence at each 
training iteration.  Specifically, a model is learned to classify each 
block in the sequence using features of the observation sequence 
as well as the label of the previous block according to the gold-
standard training data.  Viterbi decoding is employed as with 
CRFs to find the best label sequence.  The model takes the form: 
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Because MEMMs use the gold-standard previous labels during 
training, and because they do not normalize over the entire 
sequence like CRFs, they are prone to various biases (e.g. the 
label bias [14]) that can reduce their accuracy. 

5. DATA 
Harvesting and Annotation 
We used RSS feeds from Reuters and AP to acquire a list of 
article titles.  Each title was submitted in a query to Google News, 
and the top ten results were downloaded.  Because of the large 
variance in the pagination methods of each site we limited 
downloads to the first page of each article.  The overall goal of 
our project is to detect duplicate articles, and this method results 
in numerous duplicate articles.  However, the large number of 
duplicate and near duplicate documents introduce bias into our 
training set.   

We analyzed and compensated for the bias in section 6 
(Experimental Setup, Data Set Creation). In total we harvested 
2577 documents from 49 separate websites. 

The content of each document was annotated with a combination 
of site-specific wrappers and manual tagging.  Although we 
harvested data from 49 separate websites, we annotated a total of 
27 because some sites were too difficult to tag automatically and 
others did not yield enough documents to justify writing a script 
to automatically tag them.  As mentioned, the process of 
developing hand-crafted, site-specific extractors was difficult and 
time-consuming, however, it proved to be an preferable 
alternative to full annotation.  For example, our annotation 
guidelines changed along the way, and we were able to realize 
these changes in the data by simply adjusting the site-specific 
wrappers. 

We developed guidelines to make the data uniform across 
different sites.  Many stories would end with content that was 
optional from site to site.  We excluded content such as 
“additional reporting by…”, article termination delimiters like “--
”, and “On the Net” lists of links.  If these text ranges were 
included as core content, documents that were in fact identical 
articles would instead be flagged as near duplicates.  Similarly 
some documents would include photos with captions, often in 
different places with respect to the rest of content.  These were 
excluded as well to preserve accurate duplicate detection. 

As part of our data preparation, we also annotated pairs of 
documents that we considered identical or near duplicates due to 
the similarity of their content.  In the end we annotated 1620 
documents from 27 different sources.  Duplicate analysis revealed 
that there were 388 distinct articles. 

Dividing into Blocks 
As a first step, we sanitize the raw HTML and transform it into 
XHTML using a combination of Tagsoup2 and BeautifulSoup3.  
In the rare case that a document that can not be transformed into 
XHTML, we discard it.  Otherwise we tokenize the document, 
wrapping each word in a <lex> tag.  We exclude all words 
inside style and script tags because it is safe to assume that they 
will never contain any content or metadata.  Next we create 
blocks of tokens by wrapping sequences of <lex> tags with 
<span> tags.  Blocks are bounded by any tag except the 
                                                                 
2 Tagsoup, by John Cowan: 

http://ccil.org/~cowan/XML/tagsoup/ 
3 Beautiful Soup, by Leonard Richardson and others: 

http://www.crummy.com/software/BeautifulSoup/ 



following: <a>, <ins>, <del>, <span>, <bdo>, 
<em>, <strong>, <dfn>, <code>, <samp>, 
<kbd>, <var>, <cite>, <abbr>, <acronym>, 
<q>, <sub>, <sup>, <tt>, <i>, <b>, <big>, 
<small>, <u>, <s>, <strike>, <basefont>, and 
<font>.  Each block contains at least one <lex> tag and is 
wrapped as tightly as possible with the <span> tag.  In rare cases 
a block must consist of more than one <span> tag because of the 
structure of the original HTML. 

Although the words in the <title> are tokenized, those tokens 
are not added to any block.  Instead, they are used to generate 
features for other blocks (see Title Matching, section 6). 

Finally, we create features from the <span> tags in each block. 

There is a large skew of NotContent vs. Content blocks.  In all 
of our training data we had 234,436 NotContent blocks and only 
24,388 Content blocks.  This 10:1 ratio was also present in our 
individual data sets. 

6. EXPERIMENTAL SETUP 
Feature Selection 
We generated 11 different feature types for classification. 

Words.  A case-insensitive bag-of-words count of the tokens in a 
block. 

Inverse Stop-Wording.  Instead of using all of the tokens in a 
block for the bag-of-words count, this feature only uses the tokens 
identified as stop words.  This feature was intended to help 
identify that English prose was being used in a block without 
becoming too dependent upon the particular vocabulary of an 
article.  Obviously this feature type is mutually exclusive with the 
normal bag-of-words feature. 

Named Entities.  A count of the named entities in a block, 
grouped by the following types: person, organization, location, 
date, time, monies, and percentages.  Furthermore tokens that are 
identified as part of a named entity are not included in the bag-of-
words feature, with the following exceptions: Reuters, AP, A.P., 
and Associated Press. 

Title Casing.  Features are generated when every token in a block 
begins with an upper case letter or when any token begins with a 
lower case letter. 

Anchor Percentage.  The percentage of tokens in a block 
contained within an anchor tag (<a>). 

Title Matching.  If two or more tokens in a block, in order, match 
a subsequence of the tokens contained in the <title> of the 
document then the percentage of the title that matched is 
recorded.  This feature is intended to aid in identifying the title of 
the document in later passes, however it was included in content 
classification to simplify processing. 

Ancestor Tags.  The names of the parent and grandparent (if 
present) tags of a block. 

Descendant Tags.  The names any descendant tags found within 
a block.  <a href> are counted separately from <a name> 
tags.  <b> are equivalent to <strong> and <i> are equivalent 
to <em>. 

Sibling Tags.  The names of the previous and next sibling tags of 
the current block (if present). 

Word Count.  A count of the tokens found in a block. 

After Image Tag.  A feature that indicates if an <img> appears 
before the current block and after the previous one.  This feature 
is intended to exclude photo captions from inclusion in the 
content. 

We evaluated the value of the features by turning them off one-
by-one and testing the results with our best classifier. 

Data Set Creation 
To avoid bias in our data we used four separate data splitting 
strategies to evaluate our performance.  Due to the nature of our 
data harvest we had numerous exact and near duplicate 
documents in our data set.  Of the 1620 documents, only 388 were 
distinct articles.  When the same article appears in both the 
training and testing set, it could distort the value of the word 
features.  The second source of potential bias arises from the 
websites themselves.  If documents from the same website appear 
in both the training and testing set then the idiosyncrasies of the 
website can influence the classifier. 

We ran four separate cross validation experiments to measure the 
bias introduced by duplicate articles and mixed sources. 

Duplicates, Mixed Sources.  This was a simple split of the 
documents with 75% in the training set and 25% in the testing set. 

No Duplicates, Mixed Sources.  This split prevented duplicate 
documents from spanning the training and testing boundary.   The 
documents were grouped by article and then all of the documents 
in an article were assigned to the testing set until at least 25% of 
the documents were in the testing set. 

Duplicates Allowed, Separate Sources.  In our data, the number 
of documents from each source varies from as few as 6 to as 
many as 250.  This variance prevented a simple splitting of the 
sources.  Instead we created four separate bundles each containing 
6 or 7 sources.  We filled the bundles in round-robin fashion by 
selecting a source at random and weighed the probability of 
selecting a source by the number of documents that it contained.  
This kept the bundles at a roughly equal size.  Three bundles were 
assigned to training and one to testing. 

No Duplicates, Separate Sources.  To eliminate both duplicate 
and source bias, we bundled the sources as in duplicates allowed, 
separate sources.  Then the articles were grouped by training and 
testing sets, and if any overlapped, half of the overlapping articles 
were removed from the training set and the other half from the 
testing set to ensure that no duplicates crossed the training/test set 
boundary.  If it wasn't an even split of articles then testing was 
favored over training. 

7. RESULTS AND ANALYSIS 
We carried out a variety of experiments using the data splits and 
methodology described in Section 6.2.  We examined the 
performance of the different statistical methods described earlier 
with different Gaussian prior parameters and different sets of 
features. 



Model Options 
A major focus of our experiments involved looking at how 
different feature sets performed.  Each of the three statistical 
models we have employed (CRF, MEMM, MaxEnt) include 
different options in how certain types of features are constructed.  
Specifically, the CRF and MEMM models include two binary 
options for automatically expanding model features.   

The first option, when “on” indicates that edge features should be 
created out of all predicates over the observation sequence as well 
as the default node features.   

The second option introduces ‘history predicates’. For a position, 
i, in a sequence, all the predicates at position i-1 are added as new 
predicates at position i.  For example, if the predicate 
ContainsWord:title  was present at position i-1 the predicate 
PREV-ContainsWord:title would be introduced at position i 
indicating that the word “title” was present in the previous block. 

All three of the models include a Gaussian prior parameter.  We 
adjusted the values for the parameter to see its affect on 
performance. 

 

Table 1.  Document level accuracy (percentage of documents 
correctly labeled) and document level precision and recall 
with respect to Content labels for each classifier over the 4 
data setups using all the available features.  Model options 
include the Gaussian prior (σ) and the edge (E) and history 

(H) feature options. 
Classifier Doc. 

Acc. 

Doc. 

Prec. 

Doc. 

Recall 

Block 

Prec. 

Block 

Recall 

No Duplicates, Separate Sources 

CRF σ=100 0.804 0.839 0.933 0.979 0.995 

MEMM σ=100,H 0.777 0.862 0.866 0.986 0.969 

MaxEnt σ=10,H 0.576 0.657 0.750 0.960 0.981 

Duplicates Allowed, Separate Sources 

CRF σ=1 0.876 0.907 0.945 0.992 0.995 

MEMM σ=1,H 0.831 0.889 0.902 0.990 0.977 

MaxEnt σ=10,H 0.638 0.707 0.787 0.950 0.983 

No Duplicates, Mixed Sources 

CRF σ=1, E 0.961 0.979 0.978 0.997 0.998 

MEMM σ=1,H,E 0.912 0.948 0.951 0.994 0.996 

MaxEnt σ=100,H 0.779 0.857 0.883 0.987 0.992 

Duplicates Allowed, Mixed Sources 

CRF σ=10 0.977 0.985 0.989 0.999 0.999 

MEMM σ=1,H,E 0.945 0.963 0.980 0.997 0.998 

MaxEnt σ=100,H 0.920 0.955 0.959 0.996 0.996 

 
 
 

Table2.  Comparative feature analysis for the best system 
(CRF σ=100) with No Duplicates; Separate Sources. 

Feature Set Doc. 

Acc. 

Doc. 

Prec. 

Doc. 

Recall 

Block 
Prec. 

Block 
Recall 

All Features 0.804 0.839 0.933 0.979 0.995 

No descendant tags 0.809 0.847 0.933 0.979 0.995 

No named entities 0.803 0.860 0.907 0.985 0.992 

No title matching 0.794 0.825 0.939 0.979 0.996 

No anchor percent 0.793 0.833 0.927 0.977 0.995 

No word count 0.789 0.830 0.918 0.978 0.994 

No sibling tags 0.782 0.809 0.940 0.975 0.996 

No after img 0.764 0.804 0.906 0.977 0.993 

No title case 0.762 0.815 0.899 0.975 0.989 

Inverse Stop Words 0.701 0.798 0.820 0.963 0.971 

No ancestor tags 0.691 0.715 0.927 0.967 0.996 

No words 0.636 0.749 0.733 0.974 0.914 

 

Results and Analysis 
Evaluation Metrics 
We evaluated all of our results at the block level and at the 
document level.  Block Precision is the ratio of the number of 
correctly labeled Content blocks to the number of proposed 
Content blocks.  Block Recall is the ratio of the number of 
correctly labeled Content blocks to the number of true Content 
blocks according to the gold-standard. Document Precision is the 
percentage of documents with 100% Block Precision and 
Document Recall is the percentage of documents with 100% 
Block Recall.  Document Accuracy describes the percentage of 
documents that were correctly labeled (i.e., all blocks were 
labeled correctly).   

Results summary 
Our main results are summarized in Table 1.  Each of the three 
different models, CRF, MEMM and MaxEnt are evaluated on 
each of the four different data setups. All results are aggregated 
from four-fold cross validation.  As made clear in the table, in all 
cases the CRF performs markedly better than the other 
approaches.  MaxEnt, with no ability to capture sequential nature 
of the problem results in significantly lower performance.  The 
MEMM results generally lie right in between. 

Feature Type Analysis 
Table 2 shows results for the CRF when individually removing 
each class of feature (described in 6.2) using the “No Duplicates; 
Separate Sources” data setup.  In most cases, removing a feature 
class results in a small drop in performance (or a small gain in a 
couple cases), but even considering that the test documents are 
drawn from different sources and that duplicates do not appear in 
the test set, the CRF performs substantially worse when removing 
the words as features (“No words”).  This is somewhat surprising 
and indicates that a lexicalized model is important.  That is, 
considering only the document structure is insufficient.  The fact 
that these individual word features are so important indicates the 



problem may be more closely related to text classification and 
topic modeling than one might initially suspect. 

Contiguous vs. Noncontiguous Performance 
Another performance factor that we measured was contiguous vs. 
noncontiguous performance.  Although in many documents the 
core content is an unbroken series of blocks, in many others the 
flow of Content blocks is interrupted by advertisements, site 
navigation, or other NonContent blocks.  Table 3 shows the 
document level results of Table 1 broken out by contiguousness. 

 

Table 3.  Contiguous and noncontiguous Document level 
accuracy (percentage of documents correctly labeled) and 

document level precision and recall with respect to Content 
labels for each classifier over the 4 data setups using all the 

available features.  Model options include the Gaussian prior 
(σ) and the edge (E) and history (H) feature options. 

 Non-Contiguous Contiguous 

Classifier Acc. Prec. Rec. Acc. Prec. Rec. 

No Duplicates, Separate Sources (NonContig=243, Contig=680) 

CRF σ=100 0.597 0.609 0.935 0.878 0.924 0.933 

MEMM σ=100,H 0.584 0.604 0.910 0.846 0.963 0.856 

MaxEnt σ=10,H 0.342 0.346 0.806 0.660 0.788 0.741 

Duplicates Allowed, Separate Sources (NonContig=417, Contig=1203) 

CRF σ=1 0.746 0.766 0.940 0.921 0.957 0.946 

MEMM σ=1,H 0.652 0.687 0.901 0.894 0.961 0.903 

MaxEnt σ=10,H 0.307 0.311 0.699 0.752 0.861 0.802 

No Duplicates, Mixed Sources (NonContig=423, Contig=1210) 

CRF σ=1, E 0.943 0.961 0.973 0.968 0.986 0.980 

MEMM σ=1,H,E 0.943 0.955 0.978 0.901 0.946 0.941 

MaxEnt σ=100,H 0.745 0.836 0.858 0.791 0.864 0.892 

Duplicates Allowed, Mixed Sources (NonContig=431, Contig=1189) 

CRF σ=10 0.944 0.964 0.974 0.988 0.992 0.995 

MEMM σ=1,H,E 0.942 0.946 0.993 0.946 0.969 0.975 

MaxEnt σ=100,H 0.893 0.937 0.946 0.929 0.961 0.963 

 

Amount of Training Data 
A final question we were interested in addressing in our 
experiments was the relationship between the amount of training 
data and performance.  Table 4 shows the results for the CRF on 
the “No duplicates; Separate Sources” data setup with the full 
data set, with 2/3 of the data and with 1/3.  The results here were 
obtained by training on three choices of two partitions and 1 
partition within each training fold and averaging them.  The 
results indicate a linear growth in performance as the amount of 
training data increases. 

Error Analysis 
Error analysis revealed a number of problems with NotContent 
blocks found interspersed within portions of Content being 
falsely labeled as Content.  This pattern can be seen from Table 3 

where Document recall is generally higher than precision.  As an 
example, image captions often appear in the middle or adjacent to 
the article content and are sometimes incorrectly labeled as 
Content.  As the image captions are well-formed English prose 
this confusion is understandable.  On the recall errors side, we 
noticed that sometimes section headers would be incorrectly 
singled out as NotContent.  Another category of recall errors 
involved the beginning and end of article boundaries where 
sometimes the first or last block would incorrectly be labeled 
NotContent. 

We also noted a number of errors due to problems with the pre-
processor.  For example, we noticed blocks of Javascript included 
as document text which sometimes were identified as Content 
due to long runs of prose inside the Javascript.  These pieces of 
Javascript should have been removed during pre-processing, but 
escaped our filtering mechanism. 

Finally, it’s worth noting that given that the block-level Content 
precision and recall scores are quite high, it is clear that most 
documents contain minimal numbers of errors.  These errors 
reduce the document level scores significantly, though many of 
these documents are in fact very close to perfect. 

 

Table 4.  Results with different amounts of training data using 
the CRF on the “No Duplicates; Separate Sources” setup. 

Training 
Data 
Amount 

Doc. 
Acc. 

Doc. 
Prec. 

Doc. 
Recall 

Block 
Prec. 

Block 
Recall 

100% 0.804 0.839 0.933 0.979 0.995 

67% 0.718 0.753 0.910 0.973 0.991 

33% 0.681 0.714 0.910 0.974 0.991 

 

8. CONCLUSION AND FUTURE WORK 
Our results show that using machine learning techniques to 
identify the content of a news article on the web is a feasible 
alternative to site-specific wrappers.  The performance on known 
websites is competitive with hard-coded wrappers, but the real 
value of the machine learning approach is the flexibility that it 
provides.  The handcrafted method of extracting content is brittle 
at best over the long term.  Handling website format changes and 
adding additional sites is a labor intensive endeavor that is out of 
reach for the majority end users.  Although the document-level 
accuracy is only 80% with our best model under the strictest 
experimental conditions, it has been sufficient for our duplicate 
detection project. Moreover, the precision and recall for 
identifying Content blocks is very high. This indicates that even 
for documents containing errors, the vast majority of the blocks 
are correctly identified. Finally, our experiments indicate that it is 
likely that the performance would continue to increase with 
additional training data.  

With regards to algorithmic performance, sequence labeling 
emerged as the clear winner with CRF edging out MEMM.  
Traditional maximum entropy classification was only competitive 
on the easiest of the four data sets and is not a viable alternative to 
site-specific wrappers. 



Future work includes applying the techniques to additional data, 
including additional sources, different languages, and other types 
of data such as weblogs.  Another interesting avenue to explore is 
the performance of semi-Markov CRFs[15] which, rather than 
labeling individual elements in a sequence, explicitly consider all 
possible segmentations (with segments up to a specified 
maximum length) within the model.  This would allow for 
features over  (hypothesized) segments of blocks (as well as label 
dependences between such segments) that might better capture 
lexical or structural differences between Content and 
NonContent sections. 
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