
Adaptive Web-page Content Identification
John Gibson

+01 781-271-4757
jgibson@mitre.org

Ben Wellner
+01 781-271-7191
wellner@mitre.org

Susan Lubar
+01 781-271-2860
slubar@mitre.org

The MITRE Corporation
202 Burlington Rd.

Bedford, MA 01730-1420 USA

ABSTRACT
Identifying which parts of a Web-page contain target content (e.g.,
the portion of an online news page that contains the actual article)
is a significant problem that must be addressed for many Web-
based applications. Most approaches to this problem involve
crafting hand-tailored rules or scripts to extract the content,
customized separately for particular Web sites. Besides requiring
considerable time and effort to implement, hand-built extraction
routines are brittle: they fail to properly extract content in some
cases and break when the structure of a site’s Web-pages changes.
In this work we treat the problem of identifying content as a
sequence labeling problem, a common problem structure in
machine learning and natural language processing. Using a
Conditional Random Field sequence labeling model, we correctly
identify the content portion of web-pages anywhere from 80-97%
of the time depending on experimental factors such as ensuring
the absence of duplicate documents and application of the model
against unseen sources.

Categories and Subject Descriptors
I.2.6, I.2.7 [Artificial Intelligence]: Natural Language Processing
– text analysis, Learning – Parameter Learning.

General Terms
Algorithms, Experimentation.

Keywords
Conditional random fields, content identification, maximum
entropy markov models, sequence labeling.

1. INTRODUCTION
Web pages containing news stories also include many other
pieces of extraneous information such as navigation bars,
JavaScript, images and advertisements. There are a number of
tasks that necessitate the extraction of just the news article from
these pages. This might be done to provide input into a database
or into an application such as a Natural Language tool, index for a
search engine or duplicate detection tool. Another cause to
extract just the news story is to re-display it on a small screen

such as a cell phone or PDA. An example of identifying the
embedded news article can be seen in Figure 1.

Typically, content extraction is done via a hand-crafted tool
targeted to handle a single web page format. This approach is
brittle in that when the page format changes, the extractor is likely
to break. Additionally, it is labor intensive since a new extractor
must be written to handle each unique page format. In our
experience, web page formats change fairly quickly and custom
extractors often become obsolete a short time after they are
written. Further, some websites use multiple formats concurrently
and identifying each one and handling them properly makes this a
complex task. As part of a larger project, we initially developed
such site-specific content extractors and found them to be
unworkable as a long-term solution due to the aforementioned
problems.

The approach described in this paper is meant to overcome these
issues. The data set for this work consisted of web pages from 27
different news sites. The sites are visually similar in that they
contain a news article surrounded by other information.
However, the underlying HTML for creating this layout varies
amongst the sites. For example, while some sites separate
sections of the article content with paragraph tags, others segment
the sections with tags such as <div>,
, or <table>.

Identifying portions of relevant content in web-pages can be
construed as a sequence labeling problem – i.e. each document is
broken into a sequence of blocks and the task is to label each
block as Content or NotContent. We employed three different
statistical machine learning methods to learn how to label
sequences of blocks so as to identify the content. Our best
system, based on Conditional Random Fields, can perfectly
identify the content portions from new, unseen web-pages at
unseen web-sites over 80% of the time1. Under less strict
conditions (e.g. allowing duplicate articles and/or articles from a
seen web-site in the test data), the document level accuracy
improves to nearly 98%. In all cases, the system identifies
Content blocks with recall above 99.5% and precision above
97.9%. These results support the claim that machine learning-
based content extraction is a very viable alternative to hand-
crafted patterns.

1 A demo of this system is available at http://cedarpub.mitre.org/

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
WIDM ’07, November 9th, Lisbon, Portugal
Copyright 2007 ACM $5.00.
Approved for public release; Distribution Unlimited; Case #07-0958

mastro
Text Box
Approved for Public Release; Distribution UnlimitedCase # 07-0958

Figure 1. Indicates news story content

2. RELATED WORK
Web-page Content Identification
Information Extraction
Information Extraction is the task of identifying “nuggets” of
information such as dates, authors, or prices, from structured or
unstructured text. As described by Laender, et al [1], the most
common technique used for information extraction involves
constructing site-specific programs called wrappers. This
approach possesses the characteristics described above – wrappers
are generally brittle and labor intensive. There have been
numerous attempts to address these problems using various
techniques. An explanation and examples of the automatic
learning of rules, called wrapper induction can be found in work
by N. Kushmerick [2] and Muslea et al [3]. An approach to
automatically adapting to page format changes is described in [4].
Laender et al[1] provide an overview of information extraction
tools which use wrappers to process Web pages. Wrapper
induction is related to our task in that it is identifying specific
content in text; however, the information being extracted is
generally more structured than the free-text news articles that we
are identifying. Therefore, items identified via wrapper induction
are more easily recognizable using patterns.

Content Extraction
Content Extraction tools such as Columbia University’s Crunch
[5] aim to reduce the size of web pages by removing what they
deem as noise or clutter from the pages. Additionally, a tool by
the Document Analysis and Recognition Team (DART) at BCL
Computers Inc. [6] further reduces text by providing a summary
of what remains. These tools are motivated by a variety of goals
including paring down pages for the visually impaired [5],
producing lighter weight content for small screen devices such as
PDAs [5, 6] and reducing page complexity for subsequent
processing as in MetaNews [7] and the forthcoming
CLEANEVAL challenge task as part of the Web as a Corpus
Workshop [8] .

Content Extraction tools are related to our work in that they are
focused on determining which part(s) of web pages are relevant to
their goal. In general, they are addressing a broader problem than
what this paper addresses. Content Extraction tools are meant to
take any type of web page as input, while we are focused solely
on pages containing news articles. In addition, while the Content
Extraction tools aim to reduce page size, they are not geared
toward identifying a specific portion of the page to keep, as we
are with news articles.

News Story Identification
The Columbia Newsblaster project [9] and MetaNews [6] both
concentrate on gathering news articles on the web. MetaNews
uses a two-phased approach. First, it carries out noise removal by
throwing out HTML tags that it believes will not contain content.
Next it uses pattern matching on the reduced page to extract news
articles. Patterns for MetaNews are manually defined for each
news site, and no automatic learning is involved. Thus although
pattern writing is simpler than for traditional wrapper approaches,
this tool is still likely to fail if a page format changes, and adding
new sites requires some manual labor.

The Columbia Newsblaster team originally used individual site
wrappers to identify news articles. They determined that this
approach was difficult for handling new sites. As a result, they
implemented a machine learning based approach which is similar
to ours. The module relies on “simple surface characteristics of
the text” to classify blocks of text as part of an article, or into
various other categories such as title, caption, or other.

Sequence Labeling
Sequence labeling methods have seen widespread use in the
natural language processing community for tasks such as part-of-
speech tagging [9], noun-phrase chunking [10] and other related
tasks. For such problems, the elements in the sequence are words
and a sequence typically consists of a sentence.

Sequence labeling methods have been applied to sequences where
the elements are units other than single words, however.
Examples include labeling sequences of clauses [11] or labeling
argument constituents of verbs [12]. Most related to our work
from a sequence labeling perspective, is work in extracting tables
from ASCII files [13]. Here, sequences were entire documents
with each line in the file being an element. The task was to
extract sequences of lines that constituted a table. In our setting,
the sequence elements are HTML blocks rather than lines in an
ASCII file. The tasks are similar, however, in that they both
consider sequence elements containing multiple words with
potentially complicated internal structure.

3. CONTENT IDENTIFICATION AS
SEQUENCE LABELING
The problem we have addressed in this work is that of identifying
the portions of news-source web-pages that contain relevant
content – i.e. the news article itself. There appear to be two
general ways to approach this problem:

Boundary Detection Method. This approach involves
identifying positions where content begins and ends, thus deriving
a segmentation of the original Web-page delineating the content
by assuming all parts of the page between a begin content marker

and an end content marker are content. The identification method
could be any decision mechanism; we generally assume this to be
a statistical classifier.

Sequence Labeling Method. The second approach is to divide
the original Web document into a sequence of some appropriately
sized units or blocks and to then categorize each block as Content
or NotContent. Given this formulation as a sequence labeling
problem, many robust statistical methods developed for labeling
sequences (in the Natural Language Processing community and
elsewhere) are applicable.

In this work, we focus largely on the sequence labeling method.
This is motivated by a number of factors. First, a number of web
pages contain ‘noncontiguous’ content. By this we mean that the
paragraphs of the article body have other page content, such as
advertisements, interspersed. Sequence labeling methods seem
preferable in such situations since the boundary detection
methods aren’t able to nicely model transitions from Content to
NotContent back to Content, for example. Another problem
with the boundary detection method is that if a boundary is not
identified at all (e.g. the beginning of content boundary), an entire
section of content can be missed. There are various heuristic
methods one could apply to ensure this doesn’t happen, but none
would be well-principled. Finally, when developing a statistical
classifier to identify boundaries, there are many, many more
negative examples of boundaries than positive ones. Of course, it
may be possible to sub-sample negative examples or identify
some reasonable set of candidate boundaries and train a classifier
on those, but this complicates matters greatly.

While our efforts here focus on the sequence labeling approach,
we did perform some initial experiments using the boundary
detection method which involved identifying the beginning and
ending of content using a statistical classifier. We found the
results to perform no better than the lowest performing sequence
labeling approach. This, after spending considerable effort to
post-process the statistical classifier output to derive the most
sensible content boundaries. For example, if no begin content
boundary was identified by the classifier (i.e. it had a “yes”
probability > 0.5) we selected the candidate begin content
boundary that had the highest classifier confidence.

4. MODELS
This section describes the three statistical sequence labeling
models employed in our experiments: Conditional Random Fields
(CRF), Maximum Entropy Classifiers (MaxEnt), and Maximum
Entorpy Markov Models (MEMM).

Conditional Random Fields
Conditional Random Fields (CRFs) [14] are probabilistic models
that produce a conditional distribution over a set of output (i.e.,
predicted) variables when provided with fixed values to a set of
input (i.e., given) variables. An important special case of CRFs
are sequence CRFs in which the output variables are arranged in a
linear-chain in which a first-order Markov assumption holds: an
output variable is only dependent on the variables adjacent to it
(i.e., immediately to the right and left) in the sequence.

Let x = x1, x2, …, xn be a sequence of observations such as a
sequence of words, paragraphs, or, as in our setting, a sequence of
HTML “segments”. Given a set of possible output values (i.e.,

labels), sequence CRFs define the conditional probability of a
label sequence y = y1, y2,…, yn as:

∑∑ −

n

i= k
1iikk

x

i))x,,y,(yfλ(
Z

=x)|p(y
1

exp1

where Zx is a normalization term overall possible label sequences.
The feature functions fk, are arbitrary functions over the current
and previous labels, yi and yi-1, the entire observation sequence x
and the current position, i. Often, the range of such functions is
{0,1}, though the range may extend to arbitrary real-values,
generally. For example, a feature function may generally have
value 0 for most inputs, but have a value of 1 when yi=Content,
yi-1=NotContent and xi contains the word “TITLE”. Associated

with each feature function, fk, is a learned parameter λ k that
captures the strength and polarity of the correlation between the
label transition, yi-1 to yi, and the predicate over the observation
sequence. Thus, the above feature with a high positive weight
would indicate that the word “TITLE” appearing in a segment, xi,
is correlated with the current segment labeled as Content and the
previous segment labeled as NotContent.

Note also that feature functions in practice often ignore the
previous label, and simply correlate the predicate over the
observations with the label at the current position (not the current
and previous position). Such features are sometimes called node
features, while features that do pay attention to the current and
previous position are termed edge features.

Training
Assume a set of training data consisting of a set of pairs of
sequences – the first element of each pair being a label sequence
and the second being a corresponding observation sequence: D =
{(y(1),x(1)), (y(2),x(2)), …., (y(m),x(m))}. The model parameters are
learned by maximizing the conditional log-likelihood of the
training data which is simply the sum of the log-probabilities
assigned by the model to each label-observation sequence pair:

∑ ∑−
m

i= k

k(i)(i) λ))x|(p(y=L(D)
1

22σ
log

The second term in the above equation is a Gaussian prior over
the parameters, which helps the model to overcome over-fitting.
Lower variance values have the effect of proportionally
penalizing the log-likelihood when feature values stray far from 0.
While the log-likelihood surface is convex (i.e., there is a single
global maximum), maximizing the above expression over a set of
training data isn’t possible in closed form, and general purpose
convex optimization routines are used in practice. The
optimization process requires evaluating the log-likelihood and its
gradient for the current set of parameters at each iteration. Full
inference over the model must be performed to derive the
distribution over all possible labelings. This distribution is
needed to compute the feature expectations required for the
gradient term and to compute the normalization term, Zx.
Inference is performed using a variant of the forward-backward
algorithm[14]. As this must be performed on each iteration, CRF
training is relatively compute-intensive as compared with the
methods below.

Decoding
Given a trained model, the problem of decoding in sequence
CRFs involves finding the most likely label sequence for a given
observation sequence. The number of possible label sequences is
very large: there are NM possible label sequences where N is the
number of labels and M is the length of the sequence. Dynamic
programming, specifically a variation on the Viterbi
algorithm[14], can find the optimal sequence in time linear in the
length of the sequence and quadratic in the number of possible
labels.

Maximum Entropy Classifier
Maximum Entropy (MaxEnt) classifiers have been used with
great success in areas such as text processing, natural language
processing (e.g. parsing) and many other areas. Briefly, MaxEnt
classifiers are conditional models that given a set of parameters
produce a conditional multinomial distribution according to:

∑ ∑
∑

jy k
jkk

k
ikk

i x),(yf,λ(

x),(yfλ(
=x)|y=p(y

exp

exp

where y is a random variable over the possible outcomes or
classifications (e.g. Content or NotContent), x describes the
observed data (e.g. HTML pages), the functions fk are features

over the observed data and a particular outcome, and the λ k are
the weights, one associated with each feature. MaxEnt models
tend to perform competitively with other discriminative learning
methods such as support vector machines (SVMs) and benefit
from their simplicity, robustness and scalability. In contrast with
CRFs, MaxEnt models (and classifiers generally) are “state-less”
and do not model any dependence between different positions in
the sequence.

Maximum Entropy Markov Models
A final set of models we consider in this work are Maximum
Entropy Markov Models (MEMMs). MEMMs model a state
sequence just as CRFs do, but use a “local” training method rather
than performing global inference over the sequence at each
training iteration. Specifically, a model is learned to classify each
block in the sequence using features of the observation sequence
as well as the label of the previous block according to the gold-
standard training data. Viterbi decoding is employed as with
CRFs to find the best label sequence. The model takes the form:

∑ −
i

ii)x,y|p(y=x)|p(y ρ
1

where
∑ ∑

∑
−

−
− i))x,,y,(yfλ(

i))x,,y,(yfλ(
=x),y|p(y

1ijkk

1iikk
ii exp

exp
1

Because MEMMs use the gold-standard previous labels during
training, and because they do not normalize over the entire
sequence like CRFs, they are prone to various biases (e.g. the
label bias [14]) that can reduce their accuracy.

5. DATA
Harvesting and Annotation
We used RSS feeds from Reuters and AP to acquire a list of
article titles. Each title was submitted in a query to Google News,
and the top ten results were downloaded. Because of the large
variance in the pagination methods of each site we limited
downloads to the first page of each article. The overall goal of
our project is to detect duplicate articles, and this method results
in numerous duplicate articles. However, the large number of
duplicate and near duplicate documents introduce bias into our
training set.

We analyzed and compensated for the bias in section 6
(Experimental Setup, Data Set Creation). In total we harvested
2577 documents from 49 separate websites.

The content of each document was annotated with a combination
of site-specific wrappers and manual tagging. Although we
harvested data from 49 separate websites, we annotated a total of
27 because some sites were too difficult to tag automatically and
others did not yield enough documents to justify writing a script
to automatically tag them. As mentioned, the process of
developing hand-crafted, site-specific extractors was difficult and
time-consuming, however, it proved to be an preferable
alternative to full annotation. For example, our annotation
guidelines changed along the way, and we were able to realize
these changes in the data by simply adjusting the site-specific
wrappers.

We developed guidelines to make the data uniform across
different sites. Many stories would end with content that was
optional from site to site. We excluded content such as
“additional reporting by…”, article termination delimiters like “--
”, and “On the Net” lists of links. If these text ranges were
included as core content, documents that were in fact identical
articles would instead be flagged as near duplicates. Similarly
some documents would include photos with captions, often in
different places with respect to the rest of content. These were
excluded as well to preserve accurate duplicate detection.

As part of our data preparation, we also annotated pairs of
documents that we considered identical or near duplicates due to
the similarity of their content. In the end we annotated 1620
documents from 27 different sources. Duplicate analysis revealed
that there were 388 distinct articles.

Dividing into Blocks
As a first step, we sanitize the raw HTML and transform it into
XHTML using a combination of Tagsoup2 and BeautifulSoup3.
In the rare case that a document that can not be transformed into
XHTML, we discard it. Otherwise we tokenize the document,
wrapping each word in a <lex> tag. We exclude all words
inside style and script tags because it is safe to assume that they
will never contain any content or metadata. Next we create
blocks of tokens by wrapping sequences of <lex> tags with
 tags. Blocks are bounded by any tag except the

2 Tagsoup, by John Cowan:

http://ccil.org/~cowan/XML/tagsoup/
3 Beautiful Soup, by Leonard Richardson and others:

http://www.crummy.com/software/BeautifulSoup/

following: <a>, <ins>, , , <bdo>,
, , <dfn>, <code>, <samp>,
<kbd>, <var>, <cite>, <abbr>, <acronym>,
<q>, <sub>, <sup>, <tt>, <i>, , <big>,
<small>, <u>, <s>, <strike>, <basefont>, and
. Each block contains at least one <lex> tag and is
wrapped as tightly as possible with the tag. In rare cases
a block must consist of more than one tag because of the
structure of the original HTML.

Although the words in the <title> are tokenized, those tokens
are not added to any block. Instead, they are used to generate
features for other blocks (see Title Matching, section 6).

Finally, we create features from the tags in each block.

There is a large skew of NotContent vs. Content blocks. In all
of our training data we had 234,436 NotContent blocks and only
24,388 Content blocks. This 10:1 ratio was also present in our
individual data sets.

6. EXPERIMENTAL SETUP
Feature Selection
We generated 11 different feature types for classification.

Words. A case-insensitive bag-of-words count of the tokens in a
block.

Inverse Stop-Wording. Instead of using all of the tokens in a
block for the bag-of-words count, this feature only uses the tokens
identified as stop words. This feature was intended to help
identify that English prose was being used in a block without
becoming too dependent upon the particular vocabulary of an
article. Obviously this feature type is mutually exclusive with the
normal bag-of-words feature.

Named Entities. A count of the named entities in a block,
grouped by the following types: person, organization, location,
date, time, monies, and percentages. Furthermore tokens that are
identified as part of a named entity are not included in the bag-of-
words feature, with the following exceptions: Reuters, AP, A.P.,
and Associated Press.

Title Casing. Features are generated when every token in a block
begins with an upper case letter or when any token begins with a
lower case letter.

Anchor Percentage. The percentage of tokens in a block
contained within an anchor tag (<a>).

Title Matching. If two or more tokens in a block, in order, match
a subsequence of the tokens contained in the <title> of the
document then the percentage of the title that matched is
recorded. This feature is intended to aid in identifying the title of
the document in later passes, however it was included in content
classification to simplify processing.

Ancestor Tags. The names of the parent and grandparent (if
present) tags of a block.

Descendant Tags. The names any descendant tags found within
a block. <a href> are counted separately from <a name>
tags. are equivalent to and <i> are equivalent
to .

Sibling Tags. The names of the previous and next sibling tags of
the current block (if present).

Word Count. A count of the tokens found in a block.

After Image Tag. A feature that indicates if an appears
before the current block and after the previous one. This feature
is intended to exclude photo captions from inclusion in the
content.

We evaluated the value of the features by turning them off one-
by-one and testing the results with our best classifier.

Data Set Creation
To avoid bias in our data we used four separate data splitting
strategies to evaluate our performance. Due to the nature of our
data harvest we had numerous exact and near duplicate
documents in our data set. Of the 1620 documents, only 388 were
distinct articles. When the same article appears in both the
training and testing set, it could distort the value of the word
features. The second source of potential bias arises from the
websites themselves. If documents from the same website appear
in both the training and testing set then the idiosyncrasies of the
website can influence the classifier.

We ran four separate cross validation experiments to measure the
bias introduced by duplicate articles and mixed sources.

Duplicates, Mixed Sources. This was a simple split of the
documents with 75% in the training set and 25% in the testing set.

No Duplicates, Mixed Sources. This split prevented duplicate
documents from spanning the training and testing boundary. The
documents were grouped by article and then all of the documents
in an article were assigned to the testing set until at least 25% of
the documents were in the testing set.

Duplicates Allowed, Separate Sources. In our data, the number
of documents from each source varies from as few as 6 to as
many as 250. This variance prevented a simple splitting of the
sources. Instead we created four separate bundles each containing
6 or 7 sources. We filled the bundles in round-robin fashion by
selecting a source at random and weighed the probability of
selecting a source by the number of documents that it contained.
This kept the bundles at a roughly equal size. Three bundles were
assigned to training and one to testing.

No Duplicates, Separate Sources. To eliminate both duplicate
and source bias, we bundled the sources as in duplicates allowed,
separate sources. Then the articles were grouped by training and
testing sets, and if any overlapped, half of the overlapping articles
were removed from the training set and the other half from the
testing set to ensure that no duplicates crossed the training/test set
boundary. If it wasn't an even split of articles then testing was
favored over training.

7. RESULTS AND ANALYSIS
We carried out a variety of experiments using the data splits and
methodology described in Section 6.2. We examined the
performance of the different statistical methods described earlier
with different Gaussian prior parameters and different sets of
features.

Model Options
A major focus of our experiments involved looking at how
different feature sets performed. Each of the three statistical
models we have employed (CRF, MEMM, MaxEnt) include
different options in how certain types of features are constructed.
Specifically, the CRF and MEMM models include two binary
options for automatically expanding model features.

The first option, when “on” indicates that edge features should be
created out of all predicates over the observation sequence as well
as the default node features.

The second option introduces ‘history predicates’. For a position,
i, in a sequence, all the predicates at position i-1 are added as new
predicates at position i. For example, if the predicate
ContainsWord:title was present at position i-1 the predicate
PREV-ContainsWord:title would be introduced at position i
indicating that the word “title” was present in the previous block.

All three of the models include a Gaussian prior parameter. We
adjusted the values for the parameter to see its affect on
performance.

Table 1. Document level accuracy (percentage of documents
correctly labeled) and document level precision and recall
with respect to Content labels for each classifier over the 4
data setups using all the available features. Model options
include the Gaussian prior (σ) and the edge (E) and history

(H) feature options.
Classifier Doc.

Acc.

Doc.

Prec.

Doc.

Recall

Block

Prec.

Block

Recall

No Duplicates, Separate Sources

CRF σ=100 0.804 0.839 0.933 0.979 0.995

MEMM σ=100,H 0.777 0.862 0.866 0.986 0.969

MaxEnt σ=10,H 0.576 0.657 0.750 0.960 0.981

Duplicates Allowed, Separate Sources

CRF σ=1 0.876 0.907 0.945 0.992 0.995

MEMM σ=1,H 0.831 0.889 0.902 0.990 0.977

MaxEnt σ=10,H 0.638 0.707 0.787 0.950 0.983

No Duplicates, Mixed Sources

CRF σ=1, E 0.961 0.979 0.978 0.997 0.998

MEMM σ=1,H,E 0.912 0.948 0.951 0.994 0.996

MaxEnt σ=100,H 0.779 0.857 0.883 0.987 0.992

Duplicates Allowed, Mixed Sources

CRF σ=10 0.977 0.985 0.989 0.999 0.999

MEMM σ=1,H,E 0.945 0.963 0.980 0.997 0.998

MaxEnt σ=100,H 0.920 0.955 0.959 0.996 0.996

Table2. Comparative feature analysis for the best system
(CRF σ=100) with No Duplicates; Separate Sources.

Feature Set Doc.

Acc.

Doc.

Prec.

Doc.

Recall

Block
Prec.

Block
Recall

All Features 0.804 0.839 0.933 0.979 0.995

No descendant tags 0.809 0.847 0.933 0.979 0.995

No named entities 0.803 0.860 0.907 0.985 0.992

No title matching 0.794 0.825 0.939 0.979 0.996

No anchor percent 0.793 0.833 0.927 0.977 0.995

No word count 0.789 0.830 0.918 0.978 0.994

No sibling tags 0.782 0.809 0.940 0.975 0.996

No after img 0.764 0.804 0.906 0.977 0.993

No title case 0.762 0.815 0.899 0.975 0.989

Inverse Stop Words 0.701 0.798 0.820 0.963 0.971

No ancestor tags 0.691 0.715 0.927 0.967 0.996

No words 0.636 0.749 0.733 0.974 0.914

Results and Analysis
Evaluation Metrics
We evaluated all of our results at the block level and at the
document level. Block Precision is the ratio of the number of
correctly labeled Content blocks to the number of proposed
Content blocks. Block Recall is the ratio of the number of
correctly labeled Content blocks to the number of true Content
blocks according to the gold-standard. Document Precision is the
percentage of documents with 100% Block Precision and
Document Recall is the percentage of documents with 100%
Block Recall. Document Accuracy describes the percentage of
documents that were correctly labeled (i.e., all blocks were
labeled correctly).

Results summary
Our main results are summarized in Table 1. Each of the three
different models, CRF, MEMM and MaxEnt are evaluated on
each of the four different data setups. All results are aggregated
from four-fold cross validation. As made clear in the table, in all
cases the CRF performs markedly better than the other
approaches. MaxEnt, with no ability to capture sequential nature
of the problem results in significantly lower performance. The
MEMM results generally lie right in between.

Feature Type Analysis
Table 2 shows results for the CRF when individually removing
each class of feature (described in 6.2) using the “No Duplicates;
Separate Sources” data setup. In most cases, removing a feature
class results in a small drop in performance (or a small gain in a
couple cases), but even considering that the test documents are
drawn from different sources and that duplicates do not appear in
the test set, the CRF performs substantially worse when removing
the words as features (“No words”). This is somewhat surprising
and indicates that a lexicalized model is important. That is,
considering only the document structure is insufficient. The fact
that these individual word features are so important indicates the

problem may be more closely related to text classification and
topic modeling than one might initially suspect.

Contiguous vs. Noncontiguous Performance
Another performance factor that we measured was contiguous vs.
noncontiguous performance. Although in many documents the
core content is an unbroken series of blocks, in many others the
flow of Content blocks is interrupted by advertisements, site
navigation, or other NonContent blocks. Table 3 shows the
document level results of Table 1 broken out by contiguousness.

Table 3. Contiguous and noncontiguous Document level
accuracy (percentage of documents correctly labeled) and

document level precision and recall with respect to Content
labels for each classifier over the 4 data setups using all the

available features. Model options include the Gaussian prior
(σ) and the edge (E) and history (H) feature options.

 Non-Contiguous Contiguous

Classifier Acc. Prec. Rec. Acc. Prec. Rec.

No Duplicates, Separate Sources (NonContig=243, Contig=680)

CRF σ=100 0.597 0.609 0.935 0.878 0.924 0.933

MEMM σ=100,H 0.584 0.604 0.910 0.846 0.963 0.856

MaxEnt σ=10,H 0.342 0.346 0.806 0.660 0.788 0.741

Duplicates Allowed, Separate Sources (NonContig=417, Contig=1203)

CRF σ=1 0.746 0.766 0.940 0.921 0.957 0.946

MEMM σ=1,H 0.652 0.687 0.901 0.894 0.961 0.903

MaxEnt σ=10,H 0.307 0.311 0.699 0.752 0.861 0.802

No Duplicates, Mixed Sources (NonContig=423, Contig=1210)

CRF σ=1, E 0.943 0.961 0.973 0.968 0.986 0.980

MEMM σ=1,H,E 0.943 0.955 0.978 0.901 0.946 0.941

MaxEnt σ=100,H 0.745 0.836 0.858 0.791 0.864 0.892

Duplicates Allowed, Mixed Sources (NonContig=431, Contig=1189)

CRF σ=10 0.944 0.964 0.974 0.988 0.992 0.995

MEMM σ=1,H,E 0.942 0.946 0.993 0.946 0.969 0.975

MaxEnt σ=100,H 0.893 0.937 0.946 0.929 0.961 0.963

Amount of Training Data
A final question we were interested in addressing in our
experiments was the relationship between the amount of training
data and performance. Table 4 shows the results for the CRF on
the “No duplicates; Separate Sources” data setup with the full
data set, with 2/3 of the data and with 1/3. The results here were
obtained by training on three choices of two partitions and 1
partition within each training fold and averaging them. The
results indicate a linear growth in performance as the amount of
training data increases.

Error Analysis
Error analysis revealed a number of problems with NotContent
blocks found interspersed within portions of Content being
falsely labeled as Content. This pattern can be seen from Table 3

where Document recall is generally higher than precision. As an
example, image captions often appear in the middle or adjacent to
the article content and are sometimes incorrectly labeled as
Content. As the image captions are well-formed English prose
this confusion is understandable. On the recall errors side, we
noticed that sometimes section headers would be incorrectly
singled out as NotContent. Another category of recall errors
involved the beginning and end of article boundaries where
sometimes the first or last block would incorrectly be labeled
NotContent.

We also noted a number of errors due to problems with the pre-
processor. For example, we noticed blocks of Javascript included
as document text which sometimes were identified as Content
due to long runs of prose inside the Javascript. These pieces of
Javascript should have been removed during pre-processing, but
escaped our filtering mechanism.

Finally, it’s worth noting that given that the block-level Content
precision and recall scores are quite high, it is clear that most
documents contain minimal numbers of errors. These errors
reduce the document level scores significantly, though many of
these documents are in fact very close to perfect.

Table 4. Results with different amounts of training data using
the CRF on the “No Duplicates; Separate Sources” setup.

Training
Data
Amount

Doc.
Acc.

Doc.
Prec.

Doc.
Recall

Block
Prec.

Block
Recall

100% 0.804 0.839 0.933 0.979 0.995

67% 0.718 0.753 0.910 0.973 0.991

33% 0.681 0.714 0.910 0.974 0.991

8. CONCLUSION AND FUTURE WORK
Our results show that using machine learning techniques to
identify the content of a news article on the web is a feasible
alternative to site-specific wrappers. The performance on known
websites is competitive with hard-coded wrappers, but the real
value of the machine learning approach is the flexibility that it
provides. The handcrafted method of extracting content is brittle
at best over the long term. Handling website format changes and
adding additional sites is a labor intensive endeavor that is out of
reach for the majority end users. Although the document-level
accuracy is only 80% with our best model under the strictest
experimental conditions, it has been sufficient for our duplicate
detection project. Moreover, the precision and recall for
identifying Content blocks is very high. This indicates that even
for documents containing errors, the vast majority of the blocks
are correctly identified. Finally, our experiments indicate that it is
likely that the performance would continue to increase with
additional training data.

With regards to algorithmic performance, sequence labeling
emerged as the clear winner with CRF edging out MEMM.
Traditional maximum entropy classification was only competitive
on the easiest of the four data sets and is not a viable alternative to
site-specific wrappers.

Future work includes applying the techniques to additional data,
including additional sources, different languages, and other types
of data such as weblogs. Another interesting avenue to explore is
the performance of semi-Markov CRFs[15] which, rather than
labeling individual elements in a sequence, explicitly consider all
possible segmentations (with segments up to a specified
maximum length) within the model. This would allow for
features over (hypothesized) segments of blocks (as well as label
dependences between such segments) that might better capture
lexical or structural differences between Content and
NonContent sections.

Acknowledgements

This work was supported by the Department of the Army's
Communications-Electronics Lifecycle Management Command
(C-E LCMC) and performed under MITRE Mission Oriented
Investigation and Experimentation (MOIE) Project M130 of
contract W15P7T-07-C-F600, managed by Special Operations
Command, Pacific. Any opinions, findings and conclusions or
recommendations expressed in this material are those of the
author(s) and do not necessarily reflect those of the sponsor.

References

1. Laender, A., et al., A Brief Survey of Web Data
Extraction Tools. SIGMOD, 2002. 31(2).
2. Kushmerick, N. Wrapper Induction: Efficiency and
Expressiveness. in AAAI-98 Workshop on AI and Information
Integration. 1998.
3. Muslea, I., S. Minton, and C. Knoblock. A Heirarchical
Approach to Wrapper Induction. in Proceedings of the Third
International Conference on Autonomous Agents (Agents '99).
1999. Seattle, WA.
4. Knoblock, C., et al., Accurately and Reliably Extracting
Data from the Web: A Machine Learning Approach. Data
Engineering Bulletin, 2000. 23(4).

5. Gupta, S., et al., Automating Content Extraction of
HTML Documents. World Wide Web - Internet and Information
Systems, 2005. 8(2): p. 179-224.
6. Rahman, A.F.R., H. Alam, and R. Hartono.
Understanding the Flow of Content in Summarizing HTML
Documents. in International Workshop on Document Layout
Interpretation and its Applications (DLIA). 2001.
7. Kang, D. and J. Choi. MetaNews: An Information Agent
for Gathering News Articles on the Web. in International
Symposium on Methodologies for Intelligent Systems. 2003.
8. WAC 2007, W.a.a.C. in Web as a Corpus. 2007.
UCLouvain, Louvain-la-Neuve, Belgium.
9. Wellner, B. and M. Vilain. Leveraging Machine-
Readable Dictionaries in Discriminative Sequence Models. in
Language Resources and Evaluation Conference (LREC 2006).
2006. Genoa, Italy.
10. Sha, F. and F. Pereira. Shallow parsing with conditional
random fields. in Proceedings of HLT-NAACL 2003. 2003.
11. Palmer, A., et al. A Sequencing Model for Situation
Entity Classification. in Association for Computation Linguistics.
2007. Prague, Czech Republic.
12. Marquez, L., et al. Semantic Role Labeling as
Sequential Tagging. in Conference on Natural Language
Learning (CoNLL). 2005. Ann Arbor, MI.
13. Pinto, D., et al. Table Extraction using Conditional
Random Fields. in Proceedings of the ACM SIGIR. 2003.
14. Lafferty, J.D., A. McCallum, and F.C.N. Pereira.
Conditional Random Fields: Probabilistic Models for Segmenting
and Labeling Sequences. in ICML 01: Proceedings of the
Eighteenth International Conference on Machine Learning. 2001.
San Francisco CA, USA: Morgan Kaufmann.
15. Sarawagi, S. and W. Cohen. Semi-Markov Conditional
Random Fields for Information Extraction. in Proceedings of
Neural Information Processing Systems. 2004.

