
Adaptive Weight-Based Energy-Efficient Scheduling Algorithm for heterogeneous

computing systems

Cheng Xu, Pan Shu, Tao Li, Yan Liu

College of Information Science and Engineering

Hunan University

Changsha, China

supermanpanshu@gmail.com

Abstract—Energy-saving scheduling algorithm for parallel

applications on heterogeneous computing systems has become

an important research subject. Considering that the existing
energy-efficient scheduling algorithms have strong locality and

cannot flexibly adapt to the application performance

(makespan /schedule length) requirements, the authors

designed a weighted objective function, based on which an
adaptive weight-based energy-efficient scheduling algorithm

has been proposed with dynamic voltage scaling (DVS). It can

effectively balance performance and power consumption by

controlling the weight. The algorithm consists of two parts: (1)
automatically calculate the optimum weight, thus consume less

energy while guaranteeing makespan requirement; (2) use

objective function to get the approximately optimal task

allocation on the DVS-enabled processors through the idea of
list scheduling algorithm. Compared to the other three existing

task scheduling algorithms, the experimental results show that

the new algorithm can much effectively balance schedule

lengths and energy consumption.

Keywords-heterogeneous computing system; dynamic voltage

scaling (DVS); energy-efficient scheduling; green computing

I. INTRODUCTION

Over the years, heterogeneous computing systems have
been widely used for compute-intensive and data-intensive
applications. Notably, the energy consumption of
heterogeneous computing systems is huge. According to the
current study [1], the power consumption by computing
centers accounted for about 0.5% of the world's total
electricity consumption. The study also indicates that
electricity consumption is expected to double by 2020.
Clearly, there are environment issues with the generation of
electricity [2]. Therefore, green energy has become one of
the important factors that must be considered in high-
performance computing.

Due to the importance of energy consumption, various
techniques have been investigated and developed [3]. DVS
(dynamic voltage scaling) among these has been proven to
be a very promising technique with its demonstrated
capability for energy savings (e.g., [4], [5], and [6]). DVS
enables processors to dynamically adjust voltage supply
levels aiming to reduce power consumption; however, this
reduction is achieved at the expense of sacrificing clock
frequencies.

Traditionally, the primary performance goal of
heterogeneous computer systems has focused on reducing
the execution time of applications. List scheduling algorithm
[7] is a well-known algorithm for this performance goal, and
has been studied separately with DVS. For reducing
makespan the conventional list scheduling ignores that high-
frequency and high voltage lead to high energy consumption.
Although some algorithms by proposing a novel target
function combined list scheduling algorithm and DVS to
reduce the energy consumption [8], but these objective
functions of scheduling algorithms does not consider the
impact of a task completion time on the total energy
consumption, so they are localized strongly. In addition, they
also cannot be automatically adjusted according to the
application performance requirement.

By analyzing the relationship of task completion time
and energy consumption, we found that the energy
consumption can be saved by executing task in lower voltage
which will lead to extend the task completion time, however,
because it can increase idle time, if left unchecked, the total
energy consumption will increase instead. Thus this paper
proposes a weighted objective function and comes up with
an adaptive weight-Based energy-efficient scheduling
algorithm (AWES). It combines list scheduling algorithm
and DVS. AWES is essentially different from the existing
scheduling algorithms. Firstly, with the relationship between
task completion time and total energy consumption a novel
target function with weight is proposed; secondly the optimal
weight can be automatically calculated based on the
performance requirements; finally, we can reduce energy
consumption on the premise that makespan requirements can
be met.

II. RELATED WORK

Due to the NP-hard nature of the task scheduling problem
[9], heuristics are the most popular scheduling model
adopted by many researchers. And for low complexity and
high effect, the HEFT which is a well-known list-scheduling
heuristic is widely used [7]. However, it ignores the energy
problem. To solve this problem, LEE in [8] presented ECS
and ECS+idle scheduling algorithm. The performance of
these algorithms is very compelling in terms of both
application completion time and energy consumption. But
there are still lots of space for improvement.

International Conference on Computer Science and Service System (CSSS 2014)

© 2014. The authors - Published by Atlantis Press 229

javascript:void(0);
javascript:void(0);
javascript:void(0);

Many algorithms have been developed for energy
conservation, DVS is an important part of their. In [4]
several different scheduling algorithms using the concept of
slack sharing among DVS-enabled processors were proposed.
Ma Yan et al. in [5] developed an algorithm based on integer
linear programming (ILP) that chooses frequency and
voltage level for executing parallel tasks. In [6] an adaptive
threshold-based task duplication strategy was presented, it
can meet the makespan requirement while reducing energy
consumption. However, these previous studies on scheduling
that take into consideration energy consumption are
conducted on homogeneous computing systems.

III. MODELS

A. System Model

In this paper, the target system consists of a set of m
heterogeneous processors that are fully interconnected with
high-speed network. Each processor is DVS enabled; in
other words, processing unit has a number of discrete

voltage levels, which are given by , k=1, 2, , where denotes the total number of discrete voltage levels of .

The processor frequency of at voltage level (VL) is

given by . Since clock frequency transition overheads

take a negligible amount of time (e.g., 10us-150us [10]),
these overheads are not considered in our study.
Interprocessor communications are assumed to perform with
the same speed on all links without contentions.

B. Application Model

Parallel application with a set of precedence-constrained
tasks can be represented in form of a directed acyclic graph
(DAG). A DAG, G= (N, E), consists of a set N of n nodes
and a set E of e edges. The nodes represent tasks partitioned
from an application; the edges represent precedence
constraints and intertask communication. A task with no
predecessors is called an entry task, , whereas an exit

task, , is one that does not have any successors. Among
the predecessors of a task , the predecessor which
completes the communication at the latest time is called the
most influential parent (MIP) of the task denoted as MIP (i).
The longest path of a task graph is the critical path (CP).

The computation cost of the task on a processor is

denoted as . The weight on an edge, denoted as

represents the communication cost between two tasks,
and . However, a communication cost is only required

when two tasks are assigned to different processors. In other
words, the communication cost when tasks are assigned to
the same processor can be ignored. The earliest start and
earliest finish times of, a task on a processor are

defined as:

MIP(),

0
(MIP(),) c otherwise

(,)

{

i j

i i

entryi

k

n n

EFT Pi

EST n P

,(,) (,) wi j i j i jEFT n P EST n P

where is the processor on which the MIP of task is
scheduled.

C. Energy Model

CMOS devices are the building blocks of most general
purpose computing systems today. Power consumed in
CMOS circuits can be divided into three components:
dynamic, static and short-circuit power. The dynamic power
dissipation is the most significant factor of the power
consumption. Dynamic power can be approximated with the
following formula:

2

dP ACV f

where A is the average number of circuit switches per clock
cycle, C is the load capacitance, V is the supply voltage and
f is the clock frequency.

If denotes the highest power, denotes the

highest voltage, and denotes the highest frequency on

processor , then we can use (3) to compute the power when executes with as:

2

,

, , 2

, ,

N j

N j

j j k

j k

j

j

j j N

f v
PN PN

f v

Since processors consume a certain amount of energy
while idling, the total energy consumption of the execution
for a precedence-constrained parallel application in this
study is comprised of direct and indirect energy consumption.
The direct energy consumption is defined as:

2

(), (, ())

, ()(), () 2
1 (), ()

N
m i x i m

N

N

i

d i m im i m i
i m i m i

v
E PN w

v

where is the processor on which task executed, and is the supply voltage of the processor .

On the other hand, the indirect energy consumption is
defined as:

,

, ,
1 j k j

m

i j idle j k

j idle IDLE

E PN t

where is the set of idling slots on processor , is the lowest power on , and is the amount of

idling time for . Then, the total energy consumption is

defined as:

t d iE E E

230

IV. ENERGY-CONSCIOUS SCHEDULING HEURISTICR

The AWES consists of two parts: (1) automatically
calculate the optimum weight; (2) use objective function to
get the approximately optimal task allocation. In addition, for
further reducing the locality and sufficiently leveraging idle
time, the MCER used in [12] is adopted.

A. Optimum Weight Calculation

The first phase in the AWES is to calculate the optimum
weight.

Algorithm 1: Calculate_Optimal_ a

1: min_schedule_len←Task_Allocation(a =0)
2: max_schedule_len←Task_Allocation(a =4)
3: optimal_ a←4
4:According to the scope of makespan, set a makespan

to meet the demand, denoted Assigned_Makespan
5: IF (Assigned_Makespan<min_schedule_len) THEN
6: optimal_ a←0
7: BREAK
8: ELSE
9: WHILE(optimal_ a >=0)
10: temp_sched_len←Task_Allocation(a= optimal_a)
11: IF (temp_sched_len>Assigned_Makespan) THEN
12: optimal_ a --
13: ELSE
14: BREAK
15: END IF
16: END WHILE
17:END IF
18:RETURN optimal_a

First, according to the allocation algorithm, we can

conclude schedule length range (steps 1-2). Schedule length
will increase as the weight, so the minimum makespan can
be obtained when weight equals 0. And when weight is
larger than a certain value (the experimental results obtained
under 4), energy consumption will increase instead.
Therefore, it is not necessary to use the weight larger than 4,
the maximum makespan is obtained when weight equals 4.
Steps 4 set a makespan requirement (Assigned_Makespan).
If user setting is less than the minimum makespan, the
optimal weight will be set as 0 (steps 5-7), otherwise, the
weight from four starts diminishing, until the makespan is
less than Assigned_Makespan or equals 0. In other words,
once the system performance met, the loop terminates
immediately, and set the optimal weight as the current
weight.

B. Task Allocation

Scheduling algorithm must ensure the implementation of
the predecessor task before the successor task execution. To
satisfy this condition, we use b-level (e.g., [11]) to generate
task allocation order. The b-level of a task is computed by
adding the computation and communication costs along the
longest path of the task from the exit task in the task graph.
Note that, both computation and communication costs are
averaged over all nodes and links.

Algorithm 2: Task_Allocation

1: Sort N in decreasing order by b-level value
2: for every in N do

3: ← and ←

4: for every in do

5: for every in do

6: Compute
7: if >0

8: ← and ←

9: end if
10: end for
11: end for
12: Assign on with
13:end for
14:S←the current shedule
15:for every in N do
16: Remove in S

17: ← and ←
18: for every in do

19: for every in do

20: Recompute makespan
21: if no increase in makespan

and <

22: ← and ←

23: end if
24: end for
25: end for
26: Reassign on with
27:end for

The R metric devised and incorporated into task

allocation effectively deals with the trade-off of makespan
and energy savings. Specifically, the R value of a scheduling
alternative (task-processor-VL combination) is of a measure
to identify the degree of energy efficiency relative to task
execution time. For each scheduling combination in
consideration, its R value is computed in addition to that of
the best combination seen up to that point of decision
making; that is, the latter is recomputed with the current
combination being considered. The actual R value
computation starts from the second combination due to the
involvement of two combinations in each computation. A
positive R value indicates the finding of a new best
scheduling alternative. For a given task , the R value of a
scheduling combination of processor and voltage with

the best combination of and is defined as:

,

,

,k

(, ,) (, ,)
(, , , ,)

(, ,) (, ,)

d i b b d i j j k

i j j k b b

all

i b b i j j

E n P V E n P v
R n P v P V

P

a EFT n P V EFT n P v

where and are the energy

consumption of on with and that of on with ， the earliest finish time of the two task-processor

231

allocations are denoted as and , is the total power of the entire system
in the idle state, and a is the weight. For a given ready task,
its R value with each pair of processor and voltage level is
computed using the current best combination of processor
and VL (and) for that task, and then the best
combination—from which the maximum R value is
obtained—is selected (steps 2-13).

Since each scheduling decision that AWES makes still
tends to be confined to a local optimum, MCER is
incorporated with the energy reduction phase without
sacrificing time complexity (steps 15-27). It is an effective
technique in lowering energy consumption, although the
technique may not help schedules escape from local optima.
For each task, MCER considers all of the other combinations
of task, host and VL to check whether any of these
combinations reduces the energy consumption of the task
without increasing the current makespan.

V. EXPERIMENT & ANALYSIS

This section presents the influence to the weight of the
scheduling results, and compares AWES to existing three
approaches which are HEFT, ECS and ECS+idle. HEFT is a
well-known list-scheduling heuristic. ECS and ECS+idle are
only two energy conscious scheduling algorithms for this
situation.

The performance of AWES was thoroughly evaluated
with a large set of random task graphs obtained by TGFF. A
large number of variations were made on these task graphs
for more comprehensive experiments, In addition to task
graphs, various different characteristics of processors were
applied to simulations. The random task graph set consisted
of different graph sizes, CCRs (communication to
computation ratio) and number of processors (2, 4, 6, and 8).
2000 graphs were randomly generated.

In this study, for a given task graph, we normalize both
its makespan and energy consumption to lower bounds, the

“schedule length ratio” (SLR) and “energy consumption

ratio” (ECR) were used as the primary performance metrics.
Formally, the SLR and ECR values of the makespan M and
energy consumption of a schedule generated for a task
graph G by a scheduling algorithm are defined as:

,min { }
j

i

p P i j

n CP

M
SLR

w

, j ,min { }
j

i

t

p P i j highest

n CP

E
ECR

w PN

where CP is a set of CP tasks of G.

A. Impact of Weight

Now we investigate the impact on the scheduling as the
weight a increases. As shown in fig.1a, the SLR increases
with increasing a, and tends to a certain limit. The ECR
decreases initially, then it begins to increase slowly and tends

to a limit when a further increases (see fig.1b). This is
because, the smaller energy consumption of the processor-
VL combination has more chances to be selected by the
increase of a. It causes that the voltage becomes lower, the
task completion time increases, which eventually leads to
increase makespan and decline the energy consumption at
the beginning. As for the rebound of ECR, the growth of task
completion time cause more idle time of processor, which
can lead to the increasing amount of the indirect energy
consumption exceeding the declined amount of the direct
energy consumption.

0

1

2

3

4

5

6

7

8

9

0 1 2 3 4 5 6 7 8 9 50 100150200 ∞

A
v

e
r
a

g
e

 S
L

R

a

AWES

(a)

0

1

2

3

4

5

6

7

0 1 2 3 4 5 6 7 8 9 50 100150200 ∞

A
v

e
r
a

g
e

 E
C

R

a

AWES

(b)

Figure 1. Average SLR and ECR for different weight

B. Comparison Results

To prove the superiority of the objective function of this
article, we set the weight as 4. The overall comparative
results from our evaluation study are summarized in Table 1.
Table 1 clearly signifies the superior performance of our
algorithms over HEFT, ECS and ECS+idle. Specifically,
schedules generated by AWES consumed on average 56
percent, 38. 6 percent and 10 percent less energy than HEFT,
ECS and ECS+idle, respectively. In addition, our proposed
algorithm mostly outperformed those three algorithms with
various different CCRs as shown in Figs. 2.

TABLE I. COMPARATIVE RESULTS

Algorithm SLR ECR

HEFT 2.578 6.151

ECS+idle 8.463 4.409

ECS 5.182 3.004

AWES 5.107 2.705

232

file:///C:/Users/Administrator/AppData/Local/Yodao/DeskDict/frame/20140212173533/index.html%23%23

In many previous studies (e.g., [11]), HEFT has been
proven to perform very competitively with a low time
complexity. But it does not take energy consumption into
consideration, so its energy consumption is much larger than
the other three algorithms. And AWES can reach the same
makespan of HEFT when a is 0, even when a takes 4, the
makespan of AWES is only more than that of HEFT with
2.529, while less than ECS and ECS+idle with 0.075 and
3.356, respectively, so the SLR of AWES is compelling.

ECS and ECS+idle consider energy consumption in the
objective function, so they show a good energy saving effect
compared to HEFT. The reason why ECS+idle has poorer
performance than ECS, is that the objective function value in
ECS+idle is too dependent on energy. However, the
objective functions of ECS and ECS+idle are too localized,
so there is still lots of space for improvement. From table 1,
we can find the superior performance of AWES over ECS
and ECS+idle, in addition, our algorithm can get less
makespan by requirement.

0

2

4

6

8

10

12

0.1 0.2 1 5 10

A
v

e
r
a

g
e

 S
L

R

CCR

HEFT

ECS+idle

ECS

AWES

(a)

0

1

2

3

4

5

6

7

8

0.1 0.2 1 5 10

A
v

e
r
a

g
e

 E
C

R

CCR

HEFT

ECS+idle

ECS

AWES

(b)

Figure 2. Average SLR and ECR for random DAGs

The source of the main performance gain of our
algorithm is the use of the R objective function. It can
effectively balance makespan and energy consumption. In
our experiments, further 3 percent improvements (on average)
in energy consumption—for schedules after the main
scheduling phase of AWES—were made by the MCER
technique.

VI. CONCLUSIONS

This paper has presented an adaptive weight-based
energy-efficient scheduling algorithm for heterogeneous
computing systems, suitable for DVS-enabled heterogeneous
computing systems designed to reduce energy consumption
on the premise that the makespan requirement is met. First,
according to the makespan requirement, the algorithm
dynamically adjusts and gets the optimal weight. Then with
the objective function based on the optimal weight, it could
work out a near-optimal solution by balancing the makespan
and energy saving. Thereby, the scheduling results meet the
makespan requirement while reducing energy consumption.

The experiments results show that, compared with other
existing similar algorithm, ATWS can not only maintain a
good schedule length, but also save a lot of energy.

ACKNOWLEDGMENT

This work was partially supported by the National
Natural Science Foundation of China (Grant No.61272062
and No.61300037)

REFERENCES

[1] LIN Chuang, TIAN Yuan, YAO Min, “Green network and green

evaluation: Mechanism, modeling and evaluation,” Chinese Journal
of Computers, vol. 34, no. 4, pp.593—612, 2011.

[2] GUO Bing, SHEN Yan, SHAO Zi-Li, “The redefinition and some

discussion of green computing,” Chinese Journal of Computers, vol.
32, no. 12, pp. 2311-2319, 2009.

[3] V. Venkatachalam and M. Franz, “Power reduction techniques for

microprocessor systems,” ACM Computing Survey, vol. 37, no. 3, pp.
195-237, 2005.

[4] D. Zhu, R. Melhem, and B.R. Childers, “Scheduling with dynamic

voltage/speed adjustment using slack reclamation in multiprocessor

real-time systems,” IEEE Trans. Parallel and Distributed Systems, vol.
14, no. 7, pp. 686-700, July 2003.

[5] Yan Ma, Bin Gong, LiDa Zou, “Energy-optimization scheduling of

task dependent graph on DVS-enabled cluster system,” Proceedings

of the 5th Annual ChinaGrid Conference(ChinaGrid), pp. 183 —
190,2010.

[6] LIU Wei, Yin Hang, DUAN Yu-Guang, Du Wei, WANG Wei,

ZENG Guo-Sun, “Adaptive threshold-based energy-efficient

scheduling algorithm for parallel tasks on homogeneous DVS-

enabled clusters,” Chinese Journal of Computers, vol. 36, no. 2, pp.
393-407, 2013.

[7] H. Topcuouglu, S. Hariri, Wu.-Y. Wu, “Performance-effective and

low-complexity task scheduling for heterogeneous computing,” IEEE

Trans. Parallel and Distributed Systems, vol. 13,no. 1, pp. 260-274,
Mar. 2002.

[8] Young Choon Lee, Albert Y. Zomaya, “Energy conscious scheduling

for distributed computing systems under different operating

conditions,” IEEE Transactions on Parallel and Distributed Systems,
vol. 22, no. 8, pp.1374—1381, 2011.

[9] M. R. Garey and D. S. Johnson, Computers and intractability: a guide
to the theory of NP-Completeness. New York: W. H. Freeman, 1979.

[10] Intel, Intel Pentium M Processor Datasheet, 2004.

[11] S.C. Kim, S. Lee, J. Hahm, “Push-Pull: Deterministic Search-Based

DAG Scheduling for Heterogeneous Cluster Systems,” IEEE Trans.

Parallel and Distributed Systems, vol. 18, no. 11, pp. 1489-1502, Nov.
2007.

233

