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[1] An approach for seismic tomography is presented which allows the parameterization to be refined

during the inversion. The objective is to use the data to refine the mesh and the velocity model together,

and hence both are considered part of the solution. Some simple rules are used to identify the volumes of a

three-dimensional model in need of refinement. The self-adaptive parameterization is applied to an initial

mesh built from uniformly distributed spherical triangles and Delaunay tetrahedra. Application of the

technique to a typical summary ray P-wave arrival time data set shows it to be both feasible and practical

for large scale whole Earth tomography. A noticeable trend in the resulting models, as the parameterization

is refined, is the thinning of the Farallon and Tethys subduction features imaged in the mid mantle, together

with an increase in amplitude of the velocity perturbation.
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1. Introduction

[2] Tomographic imaging of mantle structure has

been performed for more than 20 years. Compre-

hensive summaries are given by Romanowicz

[1991], Iyer and Hirahara [1993], Nolet et al.

[1994], Ritzwoller and Lavely [1995], and Dzie-

wonski [1995]. In recent years the increased avail-

ability of high quality seismic arrival times and

waveform data, together with improvements in

methodology have led to detailed information on

lateral heterogeneities, and more consistency

between velocity models Grand et al. [1997].

However, it has long been known that tomographic

images are limited by a number of factors. One is

the uneven distribution of sources and recording

stations across the globe. This is particularly true in

the case of arrival time tomography where the

distribution of seismic ray paths often leads to

highly variable sampling within the mantle.

[3] It is self evident that uneven ray path sampling

leads to limited resolution in regions of poor data

coverage. In tomography the usual way of dealing
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with ill-constrained parts of a model are to apply

some spatial smoothing, norm damping, or simply

to coarsen the parameterization, e.g., increase

block sizes. Traditionally these forms of ‘‘regula-

rization’’ have been applied uniformly across the

entire model, which raises the possibility that,

while the ill-constrained regions are being damped,

the well constrained regions are being over-

smoothed and hence information may be lost.

[4] Some applications of body wave tomography

have used non-uniform sized rectangular blocks to

account for uneven ray path sampling [Inoue et

al. 1990; Bijwaard et al., 1998; Karason and van

der Hilst, 2001]. Surface wave inversions have

also been performed using unevenly sized spher-

ical triangles [Wang et al., 1998]. In each case the

cell sizes were constructed so that their density

approximately matches that of the ray paths

calculated in a 1-D reference model. In this way

more unknowns are used in regions where the

data density is higher, and less where it is lower.

These studies appear to have been very success-

ful. The next logical question to ask might be

whether the parameterization could be made to

adapt to the structural signal in the data during the

inversion, i.e., not to impose an irregular grid a

priori, but rather to only add detail where the data

require it.

[5] The idea of a data adaptive grid in seismic

tomography is not new. Several approaches have

been proposed for 2-D problems. Michelini [1995]

proposed an adaptive method using B-splines, and

tested it on cross bore-hole tomography. Curtis

and Snieder [1997] used a genetic algorithm to

build a triangular parameterization while minimiz-

ing the condition number of the resulting tomo-

graphic system of equations. Very recently, Chiao

and Kuo [2001] have proposed a multi-scale

tomographic parameterization based on 2-D spher-

ical wavelets, and used it to estimate of lateral

shear wave heterogeneity in the D00 layer. In each

case the procedures were quite successful and

lend encouragement for much larger scale 3-D

problems.

[6] In this paper we describe a data adaptive

approach which is practical for whole Earth tomo-

graphic problems. Our method is an extension of

the work of Sambridge and Gudmundsson [1998],

where most of the geometric tools are described in

detail. We illustrate the technique by applying it to

a large summary ray P-wave data set. This also

allows us to investigate the robustness of common

structural features in tomographic models produced

with earlier static parameterizations.

2. The Method

2.1. Parameterizing the Earth With
Tetrahedral Cells

[7] The adaptive parameterization used in this

study is based on a division of the Earth into a

set of tetrahedra. We begin with a uniform tetrahe-

dral mesh and locally subdivide the elements

according to a prescribed set of rules at successive

stages during the inversion. A convenient way of

producing the initial uniform mesh is to first

generate a series of ‘shells’, constructed from

spherical triangles (see Figure 1), and then join

these together to produce Delaunay tetrahedra.

Here we use the quickhull algorithm of Barber et

al. [1993] to construct Delaunay tetrahedra, and the

method of Wang and Dahlen [1995] to construct

spherical triangles.

[8] The initial regular mesh is constructed from

sub-divisions of an icosahedron. Figure 1 shows

the first four spherical triangle meshes, produced

in this way. The average size of the tetrahedra in

the uniform mesh is determined by the density of

the spherical triangles in each layer (see Table 1).

Here we use layers at 18 depths spanning the

mantle (0, 100, 200, 300 410, 520, 660, 820,

1000, 1200, 1400, 1600, 1800, 2000, 2200, 2400,

2600, 2750, 2889 km). The advantage of using

spherical triangles is that a near uniform coverage

is achieved across a sphere, and the distortion

effects from the poles are much reduced compared

to a mesh built on a lat-long grid. For other

applications of spherical triangles see Constable

et al. [1993].

[9] Three dimensional Delaunay tetrahedra can

then be built from the vertices of the spherical

triangles using any Delaunay algorithm (see Sam-
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bridge et al. [1995] for a discussion). Table 1 gives

some statistics of the four uniform 3-D parameter-

izations built in this way. The simplest choice of

inversion parameters are then the perturbations in

slowness (reciprocal of velocity) from some refer-

ence model, within each tetrahedron.

2.2. Local Refinement

[10] The local refinement of the parameterization

requires two problems to be solved. First we must

decide which tetrahedra need to be sub-divided, and

second how to divide them. Clearly many choices

are possible. In the work of Bijwaard et al. [1998] a

nested set of cubic cells were defined using the

densities of ray paths, which remained fixed for the

entire inversion. Here we wish to refine the param-

eterization during the inversion, in response to

structural features detected. Spakman and Bijwaard

[2001] have suggested that ray hit counts could also

be used as the basis of an adaptive scheme, i.e., to

drive the cell refinement process between iterations.

1.0 2.0

3.0 4.0

Figure 1. Four subdivisions of an icosahedron which define a near uniform triangular grid on the surface of the
Earth. These are the surface representations of the four uniform 3-D meshes param1.0–param4.0.
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Such an approach would necessarily require 3-D

ray tracing, and (in our view) it is questionable

whether ray hit counts would vary sufficiently

between iterations to drive a mesh refinement

process. After experimenting with several alterna-

tives we decided to use a criterion based on the

maximum spatial gradients in seismic velocity

perturbation measured across each tetrahedron face.

The maximum gradient for the i-th tetrahedron is

given by, gi,

gi ¼ max
j

jVj;i � vij

kbj;i � bik
ð1Þ

where vi is the velocity perturbation in tetrahedron

i, Vj,i is the velocity perturbation in the j-th

neighbour of tetrahedron i, and b represents the

position of a tetrahedron’s centroid. Each tetrahe-

dron has a maximum of four neighbours, as

illustrated in Figure 2, and so gi is simply the

largest of up to four alternatives.

[11] By ranking the tetrahedra according to gi we

may select any percentage of tetrahedra for refine-

ment. To sub-divide a tetrahedron we add a node

along each of its six edges, a method known as bi-

section. The new nodes generated in this way form

the input to the same Delaunay tetrahedralization

algorithm used to construct the uniform meshes

[Barber et al., 1993]. Figure 3 shows an example

of a single tetrahedron being sub-divided in this

way. At least eight new tetrahedra are formed by a

single sub-division, and hence the number of slow-

ness parameters in the inversion is also increased by

at least eight. Note that neighbouring cells are also

likely to be subdivided giving a total of up to 24 new

tetrahedra. The exact number will depend on the

distribution of vertices of other tetrahedra surround-

ing the one that is being sub-divided. We choose to

use Delaunay tetrahedra because they have the

property of ‘maximum-minimum’ internal solid

angle which makes them, on average, as least long

and thin as possible. (For discussions of Delaunay

Table 1. Number of Points and Cells for the Four
Spherical Triangle Meshes Shown in Figure 1 and the 3-
D Tetrahedra Built From Thema

Label Ss T s Nt D

param0.0 12 20 1,315 8640 km
param1.0 42 80 4,056 4320 km
param2.0 162 320 16,189 2160 km
param3.0 642 1,280 64,973 1080 km
param4.0 2,562 5,120 259,418 540 km
2� � 2� - 16,200 291,600 220 km

a
param0.0 refers to a simple icosahedron. Ss is the number of

nodes and T s is the number of spherical triangles on each surface, D is
the edge length of the spherical triangle, and Nt is the total number of
tetrahedra in each 3-D mesh. For a comparison, the last row shows the
number of cells on the surface (T s) and total number of unknowns (Nt)
in the 2� � 2� cubic cellular grid used by van der Hilst et al. [1997].

Figure 2. Gradients of the slowness field can be
estimated using the difference between slownesses in
neighbouring tetrahedra. Each tetrahedron has (at most)
four neighbouring tetrahedra. The gradients across each
face can also be used in the damping of the tomographic
system of equations.

Figure 3. Bi-section of a tetrahedron by placing six
(red) nodes at the centres of each edge.
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tetrahedra and their properties see Okabe et al.

[1992], Watson [1992], Sambridge et al. [1995],

and Gudmundsson and Sambridge, [1998].) Note

that alternatives to bi-section exist, e.g., placing a

new node in the centre of the tetrahedron, but in our

tests we found that this type of sub-division tended

to create many distorted (long-thin) tetrahedra.

2.3. Calculating Ray Lengths in Irregular
Tetrahedra

[12] An integral component of any tomographic

study is the calculation of derivatives of travel

times with respect to the inversion parameters. In

our case this reduces to the calculation of ray

lengths in a mesh of variably sized tetrahedra.

The approach used here is simply to step along

rays, traced in the 1-D reference model (ak135 of

Kennett et al. [1995]), and sum together the arc

lengths contained in each tetrahedron encountered.

Figure 4 shows an example in the 2-D case. After

some experimentation the step length was chosen

small enough to allow the ray to be approximated

by a series of linear segments, but large enough to

avoid excessive computation. (Here we use a con-

stant arc length per ray chosen to give at least 10

segments per cell.)

[13] For each segment we also need to determine in

which tetrahedra the end points lie. An efficient

method was given by Sambridge and Gudmunds-

son [1998], which is used throughout the present

study. Like in many large scale tomographic stud-

ies the computational effort required to calculate

ray lengths is large compared with that needed to

solve the resulting systems of equations. For the

approximately 550000 summary rays used here,

ray length calculations took approximately 12

hours on a uni-processor Sun ultra Sparc 20 with

128MB memory.

2.4. Formulating and Solving Tomographic
Systems of Equations

[14] Since the construction and solution of the

tomographic systems of equations is independent

of the parameterization, the procedure used here is

similar to many previous studies [Iyer and Hira-

hara, 1993; van der Hilst et al., 1997]. The linear

system of equations relating perturbations in slow-

ness to travel time residuals with respect to a 1-D

reference model can be written,

As ¼ dd ð2Þ

Figure 4. Calculation of ray lengths through irregular tetrahedra by stepping down the ray in equal steps of arc
length.
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where s is the vector of slowness perturbations, dd is

the vector of data residuals, andA is thematrix of ray

lengths in each tetrahedron. (For simplicity we will

assume that the data covariance matrix is diagonal,

and merely re-scales each equation in (2).) We

expect this system to be under-determined (or

mixed-determined) and require regularization

(damping). A popular approach is to minimize a

combination of slowness perturbation (minimum

norm damping) and slowness gradients (often called

flattening), at the same time as solving (2) in a least

squares sense. This leads to the minimization of,

y(s),

y sð Þ ¼ As� ddð ÞT As� ddð ÞÞþl2
1s

T sþl2
2

X

Nt

i¼1

X

ni

j¼1

si � Si; j
� �2

ð3Þ

where si is the slowness perturbation of tetrahedron

i, ni is its number of neighbours (ni  4), Si, j is the

slowness perturbation in the j-th neighbour of

tetrahedron i, Nt are the total number of tetrahedra,

and (l1, l2) are empirically determined scaling

constants. The quadratic expression (3) may be

rewritten as,

y sð Þ ¼ Ms� qð ÞT Ms� qð Þ ð4Þ

where

M ¼
A

l1INt

l2D

0

@

1

A

; and q ¼
dd
0

0

0

@

1

A

: ð5Þ

Here INt is an Nt� Nt identity matrix andD is a non-

square matrix of size (� ni) � Nt given by,

Dij ¼
1 j ¼ i;

�1 j ¼ neighbour of i;

0 otherwise:

8

<

:

ð6Þ

The multiplication of D and s produces a vector

whose entries are the differences in slowness of each

parameter with one of its neighbours, i.e., (si� Si, j).

Clearly (4) corresponds to the least squares solution

of a larger (augmented) linear system of equations,

Ms ¼ q ð7Þ

One can verify that combining (4), (5) and (6) leads

to (3). In some large scale tomographic studies [e.g.,

Nolet, 1987, 1993; Widiyantoro and van der Hilst,

1997], the linear system (7) is not actually solved

directly. Instead the matrix D is replaced by the

smaller (Nt�Nt) matrixDTD and hence the gradient

damping equations correspond to

DTDs ¼ 0 ð8Þ

These are the normal equations corresponding to

minimization of the gradient damping term in (3).

The reader will be able to verify that the square

matrix DTD corresponds to an approximate second

derivative operator. It is worthwhile noting that if

the system (8) were exactly satisfied while solving

(7), then the gradient term in (3) would also be

minimized. However, in general, the least squares

solution of (7), with the second derivative operator,

DTD, replacing D in (5), does not correspond to the

minimization of (3). Here we follow previous

authors and make use of (8) in (7), and use the

iterative equation solver LSQR of Nolet [1987].

2.5. Damping, Smoothing and Mesh
Refinement

[15] It is well known that tomography is an ill-

posed inverse problem, and as such requires ‘‘reg-

ularization’’ in order to construct a model. This

means that since ray paths are approximated as zero

width curves it is not possible to uniquely constrain

a 3-D velocity field, and hence the range and

character of allowable models needs to be restricted.

The particular form of regularization used is a

subjective choice and represents the biases imposed

on the inversion. In this work we use the standard

approach of gradient and minimum norm damping

(represented by the corresponding terms in (3)),

Since the parameterization restricts the range of

allowable models it is also a form of regularization,

and here we allow the mesh to vary both spatially

and between iterations. We might therefore ask how

these different forms of regularization (damping,

smoothing and mesh) interact.

[16] It is clear that there is a complex inter-

dependency between damping, smoothing and

the adaptive parameterization. Note that the damp-

ing and smoothing terms in equation (3) depend

only on the grid, and not on the physical gradients,

and hence their influence on the inversion will

directly depend to the particular mesh being used.

Therefore we always observe the combined effect
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of the damping, smoothing and mesh in regulariz-

ing the inversion. (It may not be possible to separate

them in any meaningful way.) Here the tetrahedral

mesh is able to evolve during the course of the

inversion, and locally adapt in response to model

gradients imaged in the earlier stages. In this way

the adaptive mesh is a mechanism for enhancing the

positive role of the damping and smoothing pro-

cesses, i.e., by allowing them to vary in strength

across the model, and during the inversion. For

‘‘adaptive parameterization’’ we might equally well

read ‘‘adaptive regularization,’’ and all results

should be viewed in these terms, i.e., it is the overall

effect of mesh, damping and smoothing terms

which is responsible for the results presented here.

It is worthwhile noting that spatially varying regu-

larization schemes have previously been applied to

tomographic problems with relatively few un-

knowns [Chou and Booker, 1979; Tarantola and

Nercessian, 1984].

[17] With an adaptive mesh the regularization proc-

ess is also being influenced by the observed data,

and so we might expect the problem to become

more non-linear. In this work the numerical exam-

ples are restricted to the linearized regime (i.e., no

3-D ray-tracing) and so the non-linearity is not

considered. Another downside of increased flexi-

bility is the potential for numerical instabilities, i.e.,

where mesh refinement might become too aggres-

sive and result in locally under-determined tetrahe-

dra with too few rays. In this case the tuning of the

gradient and smoothing processes, i.e., choice of

l1, l2 in equation. (3), will be driven by the need to

locally damp out such solution instabilities. It is

clear that a balance must be achieved between the

choice of l1, l2 (which will damp out changes to

the model) and the mesh refinement process (which

will allow ever smaller scale, and possibly higher

amplitude, changes). Ultimately the models gener-

ated in the series of numerical tests described below

are a reflection of the, necessarily subjective, tuning

processes used here.

3. Results

[18] To illustrate the adaptive algorithm we per-

form a series of tomographic inversions using the

summary ray data set of van der Hilst et al. [1997],

[see also Widiyantoro, 1997; Widiyantoro and van

der Hilst, 1997], built on the relocated global

catalogue of Engdahl et al. [1998], which was

made available to us by the authors. This data set

involves approximately 550,000 summary rays

derived from 6 � 106 P and pwP phases from

more than 77,000 events recorded at 3750 stations

worldwide. Rays with absolute P-residuals greater

than 5 seconds are treated as outliers and removed.

The averaging of many similar source/receiver

pairs into summary rays helps reduce the influence

of the noise processes, e.g., earthquake misloca-

tion, small scale heterogeneity beneath stations,

and other picking and timing errors common to

similar source receiver paths etc. For full details of

the data processing see Widiyantoro and van der

Hilst, [1997].

[19] Even though data processing is aimed at

reducing the influence of noise and other unmod-

elled effects (e.g., boundary perturbations aniso-

tropy etc), errors will still be present in the

summary rays, and these will inevitably contami-

nate the velocity models. What’s more the noise

reduction processes themselves may well remove

signal from the data, especially on localized heter-

ogeneity near the surface. Widiyantoro and van der

Hilst [1997] and van der Hilst et al. [1997] studied

the resolving power of the data set by means of

synthetic tests on a regular parameterization, and

their results may be taken as a guide for the present

study.

[20] Each of the four regular tetrahedral meshes in

Figure 1 are used as the starting point of separate

inversions, and in each case we ‘update’ the

tetrahedral mesh four times, by sub-dividing the

5% of tetrahedra with the largest gi value given by

(1). The bi-section algorithm is used for sub-

division. We therefore perform 16 separate tomo-

graphic inversions in total. In each case the starting

velocity model is the 1-D reference model ak135 of

Kennett et al. [1995], but the parameterization is

the one obtained in the previous inversion in the

series. For example, solution of the tomographic

system using the regular mesh param4.0 produces

P-velocity model AP4.0, and the irregular param-

eterization param4.1. In the next stage param4.1 is
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used to produce model AP4.1 and the more refined

mesh param4.2, and so on. (Here we use the prefix

‘‘AP’’ to denote a P-wavespeed model produced

with the adaptive scheme, and ‘‘param’’ to indicate

a parameterization.)

[21] At each stage the parameterization is inherited

from the previous step but the velocity model is

not. In this way we avoid the difficult task of

translating a velocity model from one irregular

parameterization to another. Note that because each

irregular mesh is determined from the previous

stage, the inversion procedure is being used to

constrain both the parameterization and the struc-

ture simultaneously.

[22] Our results are an extension of the earlier work

of Faletič [1997], where full details of algorithm

design, testing and implementation can be found.

[This material is available at the URL given at the

end of this paper.] Statistics for the 16 inversion

results are summarized in Figures 5, 6 and 7.

[23] The performance of the iterative linear equa-

tion solver is illustrated in Figure 5 for the inver-

sion series beginning from param4.0. In each case

the LSQR algorithm is run for 500 iterations and

the scaling constants l1 and l2 are adjusted empir-

ically to achieved a balance between data fitting

and explicit model damping. This was done by

searching through pairs of values for (l1, l2) and

solving the linear system of equations in each case.

Our preference was to choose the smallest pair of

values consistent with a stable solution, as deter-

mined by inspection of the model perturbations and

data variance reduction. (As noted above the over-

all regularization of the inversion is determined by

the combination of explicit damping and smooth-

ing, i.e., choice of (l1, l2), together with the mesh

refinement algorithm). Inevitably these choices are

subjective, which is undesirable, but common to

many (if not all) tomographic studies involving

large linear systems. Figure 5 clearly shows that

the LSQR solver has converged, in terms of pro-

ducing no further changes to the velocity model.

[24] Figure 6 shows the variance reduction in each

case, (color coded by the four separate regular

starting models). One immediately notices that
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Figure 5. RMS deviation on the slowness field against iteration of the conjugate gradient solver for the param4.*
series.
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the curves do not overlap. In each case a better data

fit is more easily achieved with the next finer scale

regular mesh, rather than with the most detailed

irregular mesh produced by the previous series,

i.e., models AP2.0, AP3.0 and AP4.0 have variance

reductions of 12%, 21% and 32%) respectively,

while models AP1.4, AP2.4 and AP3.4 have var-

iance reductions of 8%, 16% and 26% respectively.

[25] This result is consistent with Figure 7, which

shows the number of unknowns (tetrahedra) pro-

duced by the adaptive algorithm in each case.

Again there is no overlap and hence the four

separate series of inversions produce a virtual

continuous spectrum of mesh sizes from the most

coarse, at 4056 tetrahedra ( param1.0), to the most

fine, 812686 ( param4.4). In terms of numbers of

unknowns this spans the entire range from the

earliest whole Earth spherical harmonic inversions

[Dziewonski, 1984] to the most recent ‘‘high reso-

lution’’ cellular parameterizations [Bijwaard et al.,

1998; Karason and van der Hilst, 2001].

[26] One clear feature of Figure 6 is the lack of any

improvement in data fit in the final stage of each

series, e.g., model AP4.4 (37.8% variance reduc-

tion) gave virtually no improvement in data fit over

model AP4.3 (37.7% variance reduction), even

though considerable numbers of extra tetrahedra

are introduced (see Figure 7). This suggests that

little could be achieved by further refinement in

each stage. Indeed it does not appear possible (with

the current mechanism) to produce a single adap-

tive refinement which could span the full range of

length scales, e.g., from param1.0 to say param3.4.

It is not clear if this effect is simply an artifact of

the current method, or whether it reflects the

information content of the data, i.e., it may suggest

that the shortest length scales of heterogeneity in

the Earth (to which the data fit is sensitive) are

rather broadly distributed. [For a discussion of

spatial scales of heterogeneity see Gudmundsson

et al., 1990; Davies et al., 1992.]

[27] Another point to note is that previous authors

[van der Hilst et al., 1997; Widiyantoro, 1997]

obtained a 47% variance reduction with the same

data set, where as we have a maximum of around

38%. The differing levels of data fit achieved will

be influenced by differences in both parameter-

ization and inevitably damping, however, the ear-

lier work also included almost 30,000 cluster event

relocation parameters which, may well be respon-

sible for this difference.

[28] Apart from examining the trends in data fit

and number of unknowns, we can also assess

performance by viewing the velocity models and

adaptive meshes directly. Since there are 16 3-D

models and tetrahedral meshes in total we only

present a subset of the results here to illustrate the

main features of the adaptive algorithm. (Some

animations and a facility for interactive visualiza-

tion of whole mantle P wavespeed model AP4.3

are presented in the appendix.)

[29] It might be argued that interpreting the results

of tomography using an irregular mesh is more

difficult than with a regular mesh. Usually one

might be suspicious when trends in the velocity

model are similar to those in the density of the mesh.

However, with adaptive tomography the mesh is not

imposed a priori but instead its deformation is part of

the inversion process. We therefore regard the

parameterization as part of the solution. Trends in

mesh density should correlate with velocity pertur-

bations, because they are both being driven by the

signal in the data.

[30] Figures 8 and 9 show slices, at a depth of 1300

km, through the meshes param4.0 to param4.3.

Figure 10 shows the same slice through the wave-

speed models AP4.0 and AP4.3. It is evident that

the adaptive algorithm has introduced more tetra-

hedra in regions where the velocity gradients are

highest. In particular, notice, the finer detail in

regions occupied by the Farallon and Tethys sub-

ductions, as well as the ‘‘great African plume.’’

These are clearly identified in param4.1 and sub-

sequently enhanced by further refinement in

meshes param4.2 and param4.3. By the final stage

param4.3 many other smaller scale features have

been selected and the irregularity of the mesh has

spread across the globe. Clearly the adaptive nature

of the parameterization has successfully identified

regions of rapid velocity change, and progressively

refined the 3-D structure in these regions.
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[31] Figure 10 shows the initial (AP4.0) and final

(AP4.3) preferred velocity model for the 4-th

series. (We reject model AP4.4 because it contains

considerably larger perturbations which do not

significantly improve the data fit.) At a depth of

1300 km model AP4.0 bears a strong similarity to

the whole mantle P-wavespeed model of van der

Hilst et al. [1997], especially away from the

poles. This is unsurprising since the underlying

data set is almost identical. The appearance of

tomographic images constructed from irregular

tetrahedral meshes will differ from the now famil-

iar images generated with cubic blocks, simply

because of the nature of the complex 3-D mesh.

We must therefore be careful not to mis-interpret

parameterization effects in terms of structural

information.

[32] Comparing models AP4.0 to AP4.3, we notice

that the smooth features of model AP4.0 are con-

sistent with the finer detail in model AP4.3. Model

AP4.0 looks like a low pass version of AP4.3.

Figure 8. A slice at 1300 km depth through the tetrahedral meshes produced by the adaptive parameterization. The
upper panel shows the uniformly distributed tetrahedra of param4.0. The lower panel shows the same slice for the
mesh param4.1.
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Comparing P-wavespeed models AP4.0 to AP4.3,

the general trend appears to be that as the param-

eterization is refined both globally and locally, the

Tethys and Farallon subduction features become

progressively narrower, with increasing lateral

velocity gradients. The same is also true of the

more ‘‘plume’’ like slower anomaly in southern

Africa. Moreover the broad patterns of heteroge-

neity observed in model AP4.0 become more

broken up with ‘spots’ of higher amplitude pertur-

bation in model AP4.3.

[33] The adaptive algorithm does not appear to

have been successful everywhere. The broad low

velocity regions in the mid pacific at 1300 km

depth, would appear to be artifacts, since the ray

sampling there is relatively low. The general pat-

tern of anomalies in the models AP4.0 and AP4.3

are similar to those found in previous models.

Notice, from Table 1, that param4.0 has a similar

overall number of unknowns to the regular cubic

parameterization of van der Hilst et al. [1997].

param4.4 has many more unknowns, which are

Figure 9. The upper panel shows a slice at 1300 km depth through the the mesh param4.2, and the lower panel
shows the next irregular mesh param4.3.
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concentrated in the heterogeneous regions identi-

fied by the algorithm.

[34] Figures 11, 12 and 13 show enlargements of

the meshes param4.0, param4.4 and models

AP3.0, AP3.4, AP4.0 and AP4.3, at 1300 km depth

in the region of the subducted Tethys ocean. These

images show more clearly the progression towards

thinner subduction zones as the parameterization is

refined. Also the higher amplitudes and the irreg-

ularity of the fine scale structure become more

apparent. Since the refined parameterization is

automatically chosen by the algorithm we would

conclude that the thinner subduction zones are

necessary to fit the data, and in this sense they

are well resolved.

Figure 10. The upper panel shows a slice at 1300 km depth through the velocity model AP4.0, and the lower panel
through the model AP4.3. Both velocity models have been smoothed over length scales of 200 km laterally and 50
km in depth to aid visual interpretation.
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[35] Inevitably as one introduces a locally fine scale

parameterization the variation in ray path density

will influence the results. This may be a factor in the

appearance of the localized ‘‘spot like’’ anomalies

seen in Figures 12 and 13, which presumably result

from local instabilities due to lack of smoothing in

these areas. Nevertheless our results lend support to

the resolvability of the narrow subduction like

structures seen in the other models obtained with

static parameterizations [e.g., Fukao et al., 1992;

Grand, 1994; van der Hilst et al., 1997; Bijwaard et

al., 1998; Gorbatov et al., 2000].

4. Discussion

[36] We have presented a new approach to tomog-

raphy which makes use of a self-adaptive param-

eterization, and illustrated it with application to a

whole Earth summary ray data set. Through a

series of numerical tests we illustrate what can be

Figure 11. The upper panel shows a slice through mesh param4.0, and lower panel through param4.3 for the region
containing the Tethys ocean, both at 1300 km depth.
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achieved with such an approach, while highlighting

the potential pitfalls.

[37] Although the application here is to linearized

tomography, the tetrahedral mesh is equally suited

to non-linear tomography [Widiyantoro et al., 2000;

Bijwaard and Spakman, 2000]. Ray tracing through

3-D models built from Delaunay tetrahedra with

constant velocities is, in principle, no more difficult

than through cubic cells. The basic geometric prob-

lem to be solved in each case is to find the cell/

tetrahedron containing a given point (r, q, j).

Efficient tools described by Sambridge and Gud-

mundsson [1998], are available for this purpose, and

so numerical ray tracing and ray length calculations

can be performed in a straightforward manner.

[38] An area where the current approach might be

improved is in the criteria for mesh refinement. Here

we simply use the gradient measure (1) which is

Figure 12. The upper panel shows a slice through the velocity model AP3.0 obtained with mesh param3.0, and
lower panel through model AP3.4 for the Tethys ocean region, both at 1300 km depth.
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straightforward to calculate, and clearly identifies

the regions where the model is changing most.

However the regions of high velocity gradient do

not necessarily correspond to regions of good ray

coverage. It may be worthwhile to consider some

form of model resolution or covariance measure, to

determine the regions for local refinement. Proce-

dures for calculating these quantities have recently

been proposed for large scale tomographic problems

[Nolet et al., 1999; Yao et al., 1999]. Although it is

not yet clear whether they are efficient and accurate

enough for use in data adaptive tomography [Nolet

et al., 2001; Yao et al., 2001].

[39] A major criticism we would have about our

algorithm is that it is possibly too ‘‘enthusiastic’’ in

that, on average, one unknown is replaced by 8

more in each sub-division of a tetrahedron. This

appears to limit the range of distance scales over

which the tetrahedral mesh can be locally refined

Figure 13. The upper panel shows a slice through the velocity model AP4.0 obtained with mesh param4.0, and
lower panel through model AP4.3 for the Tethys ocean region, both at 1300 km depth.
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while reducing the globally sensitive data variance

measure. A less aggressive algorithm, (i.e., one

introducing less unknowns per step) may allow a

greater range of distance scales to be covered in a

single application. This remains a direction for

further study.

[40] As with all large scale tomographic studies

this work lacks any formal (linearized) estimates of

uncertainty. The usefulness or otherwise of check-

erboard tests of ‘‘resolution’’ is not a debate we

enter into here. We have opted to examine the

performance of the images by looking at the

combined results of models and meshes. Applica-

tion of the adaptive algorithm to a global data set

has shown that it is able to concentrate detail in

sub-regions identified by the data itself. Prominent

features of the mid-mantle seen in previous studies

using static meshes are also seen here. We observe

a clear improvement in the definition of structural

features as the parameterization evolves, together

with an increase in amplitude of perturbation away

from a reference model.

[41] Tomography using static irregular parameter-

izations based on a priori information, e.g., ray

density, are receiving increasing attention [Bij-

waard et al., 1998; Karason and van der Hilst,

2001; Spakman and Bijwaard, 2001]. A self

adaptive approach which responds directly to the

tomographic image obtained at each iteration might

be viewed as a natural progression, but clearly more

work will be required before all of its nuances are

understood. The inclusion of 3-D ray tracing with a

self-adaptive parameterization may be an interest-

ing direction for further research.

Appendix A: Visualization of Whole
Earth Tomography Model AP4.3

[42] To aid visualization of the whole mantle

model AP4.3 we have produced a set of four

GIF animations, two ‘‘snapshots’’ of which are

shown in Figure A1. These are attached to this

paper and may also be downloaded directly from

http://rses.anu.edu.au/seismology/projects/tireg.

Each animation shows a sequence of contoured

slices which cycle through either depth or longi-

tude. An orthographic projection is used with the

central point either in the northern or southern

hemisphere. In addition we also include model

AP4.3 in virtual reality modelling language

(VRML) format, which may also be accessed

through the URL above. Figure A2 shows a snap-

shot example. The VRML format allows interac-

tive viewing of the model as a function of latitude,

longitude and depth. (VRML viewers are available

for a range of computer platforms.) In this case the

Figure A1. Two images from the gif animation files showing depth slices at 1300 km and 2750 km through model
AP4.3.
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model has been re-sampled on to a 1� � 1� grid on

a series of 18 constant depth slices throughout the

mantle. This re-sampling lowers the resolution of

the model but greatly assists speed of down load

and interactivity in viewing of the 3-D tomo-

graphic model.
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