
EURASIP Journal on Applied Signal Processing 2004:12, 1791–1806

c© 2004 Hindawi Publishing Corporation

Adaptive Window Zero-Crossing-Based
Instantaneous Frequency Estimation

S. Chandra Sekhar

Department of Electrical Communication Engineering, Indian Institute of Science, Bangalore 560 012, India
Email: schash@protocol.ece.iisc.ernet.in

T. V. Sreenivas

Department of Electrical Communication Engineering, Indian Institute of Science, Bangalore 560 012, India
Email: tvsree@ece.iisc.ernet.in

Received 2 September 2003; Revised 2 March 2004

We address the problem of estimating instantaneous frequency (IF) of a real-valued constant amplitude time-varying sinusoid.
Estimation of polynomial IF is formulated using the zero-crossings of the signal. We propose an algorithm to estimate nonpoly-
nomial IF by local approximation using a low-order polynomial, over a short segment of the signal. This involves the choice of
window length to minimize the mean square error (MSE). The optimal window length found by directly minimizing the MSE is
a function of the higher-order derivatives of the IF which are not available a priori. However, an optimum solution is formulated
using an adaptive window technique based on the concept of intersection of confidence intervals. The adaptive algorithm enables
minimum MSE-IF (MMSE-IF) estimation without requiring a priori information about the IF. Simulation results show that the
adaptive window zero-crossing-based IF estimation method is superior to fixed window methods and is also better than adaptive
spectrogram and adaptive Wigner-Ville distribution (WVD)-based IF estimators for different signal-to-noise ratio (SNR).
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adaptation.

1. INTRODUCTION

Almost all information carrying signals are time-varying in
nature. The adjective “time-varying” is used to describe an
“attribute” of the signal that is changing/evolving in time
[1]. For most signals such as speech, audio, biomedical, or
video signals, it is the spectral content that changes with
time. These signals contain time-varying spectral attributes
which are a direct consequence of the signal generation pro-
cess. For example, continuous movements of the articulators,
activated by time-varying excitation, is the cause of the time-
varying spectral content in speech signals [2, 3]. In addition
to these naturally occurring signals, man-made modulation
signals, such as frequency-shift keyed (FSK) signals used for
communication [4] carry information in their time-varying
attributes. Estimating these attributes of a signal is impor-
tant both for extracting their information content as well as
synthesis in some applications.

Typical attributes of time-varying signals are amplitude
modulation (AM), phase/frequency modulation (FM) of a
sinusoid. Another time-varying signal model is the output of
a linear system with time-varying impulse response. How-
ever, the simplest and fundamental signal processing model

for time-varying signals is an AM-FM combination [5, 6, 7]
of the type s(t) = A(t) sin(φ(t)). Further, if the amplitude
does not vary with time, the signal is simplified to s(t) =
A sin(φ(t)). Estimating the IF of such signals is a well-studied
problem with limited performance for arbitrary IF laws and
low SNR conditions [8, 9].

In [9], a novel auditory motivated level-crossing ap-
proach has been developed for estimating instantaneous
frequency (IF) of a polynomial nature, that is, the instanta-

neous phase (IP), φ(t) is of the form φ(t) =
∑p

k=0 akt
k and

the IF is given by f (t) = (1/2π)(dφ(t)/dt). In this paper,
we address the estimation of IF of nonpolynomial nature of
monocomponent phase signals, in the presence of noise, us-
ing zero-crossings of s(t). We achieve this by performing local
polynomial approximation to the IF using the zero-crossings
(ZCs). This involves the choice of optimum window length
to minimize the mean square error (MSE). The minimum
MSE (MMSE) formulation gives rise to an optimum win-
dow length solution which requires a priori information
about the IF. Also, the length of the window introduces a
“bias-variance tradeoff ” which is resolved using an adaptive
approach [10, 11, 12] based on the intersection of confidence
intervals of the zero-crossing-based IF (ZC-IF) estimator.
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Fundamental contributions related to the ZCs of ampli-
tude and frequency modulated signals were made in [13],
wherein the factorization of an analytic signal in terms of
real and complex time-domain zeros was proposed. A model
based pole-zero product representation of an analytic signal
was proposed in [14]. Recent contributions include the use
of homomorphic signal processing techniques for factoriza-
tion of real signals [15]. In contrast to these, we use the real
ZCs of the signal s(t) that can be directly estimated from its
samples. The use of zero-crossing (ZC) information is a non-
linear approach to estimating IF; this has been reported ear-
lier using either ZC rate information [8, 16] or ZC interval
histogram information [17, 18] (in the context of speech sig-
nals). These earlier approaches are quasistationary and are
inherently limited to estimating only mild frequency varia-
tions. The new approach developed in this paper fits a local,
nonstationary model for the IF and uses the ZC instant in-
formation [19] for IF estimation.

This paper is organized as follows. In Section 2, we for-
mulate the problem. In Section 3, we discuss ZC-based poly-
nomial IF estimation and the need for local polynomial ap-
proximation for nonpolynomial IF estimation. Bias and vari-
ance of the ZC-IF estimator are derived in Section 4. The
problem of optimal window length selection is addressed in
Section 5 and an adaptive algorithm is discussed in Section 6.
Simulation results are presented in Section 7. Section 8 con-
cludes the paper.

2. IF ESTIMATION PROBLEM

Let s(t) = A sin(φ(t)) be the phase signal with constant am-
plitude and IF1 is given by f (t) = (1/2π)(dφ(t)/dt). Let
the frequency variation be bounded, but arbitrary and un-
known. The signal s(t) has strictly infinite bandwidth, but
we assume that it is essentially bandlimited to [−Bπ,Bπ].
Let s(t) be corrupted additively with Gaussian noise, w(t),
which has a flat power spectral density, Sww(ω) = σ2

w for
|ω| ≤ Bπ and zero elsewhere. w(t) is therefore bandlimited
in nature. However, samples taken from this process at a rate
of B samples/second are uncorrelated. Let the noisy signal be
denoted by y(t) = s(t) + w(t) for t ∈ [0,T]. The noisy sig-
nal when sampled at a rate of B samples/second yields the
discrete-time observations y[nTs] = s[nTs] + w[nTs], where
Ts is the sampling period. We normalize the sampling pe-
riod to unity and write equivalently, y[n] = s[n] + w[n]
or y[n] = A sin(φ[n]) + w[n], 0 ≤ n ≤ N − 1, where
N is the number of discrete-time observations. The noise
w[n] is white Gaussian with a variance σ2

w. The signal-to-
noise ratio (SNR) is defined as SNR = A2/2σ2

w. The prob-
lem is to estimate the IF of the signal s(t) using the sam-
ples y[n] and estimating the ZCs of the signal, y(t). Nega-
tive IF is only conceptual; naturally occurring IF is always
positive and hence we confine our discussion to positive
IF.

1It must be noted that this definition of IF is different from that obtained
using the Hilbert transform.

3. ZC-IF ALGORITHM

Let the ZCs of the noise-free signal, s(t) = A sin(φ(t)), t ∈
[0,T], be given by Z = {t j | s(t j) = 0; j = 0, 1, 2, . . . ,Z},
where Z + 1 is the number of ZCs of s(t) in [0,T]. Corre-
spondingly, the values of the phase function φ(t) are given by
P = { jπ; j = 0, 1, 2, . . . ,Z}. The phase value corresponding
to the first ZC over [0,N − 1] has been arbitrarily assigned
to 0. This does not affect IF estimation because of the deriva-
tive operation. If the phase function φ(t) is a polynomial of

order p, 0 < p < Z, of the form, φ(t) =
∑p

k=0 akt
k, then,

up to an additive constant, it can be uniquely recovered from
the set of ZC instants Z. This property of uniqueness elimi-
nates the need for a Hilbert transform based definition of IF.
Corresponding to each ZC instant, t j , we have an equation

jπ =
∑p

k=0 akt
k
j , 0 ≤ j ≤ Z. The set of (Z + 1) equations, in

general, is more than the number of unknowns, p, and in the
absence of ZC estimation errors, they are consistent. Due to
arbitrary assignment of φ(t0) to 0, the coefficient estimate of
a0 will be in error; however, this does not affect the IF esti-
mate and the IF can be recovered uniquely.

In practice, since ZC instants of s(t) have to be estimated
using s[n], there is a small, nonzero error.2 In such a case,
the coefficient vector, a = {ak, k = 0, 1, 2, . . . , p} can be esti-
mated by minimizing the cost function Cp(a) defined as

Cp(a) =
1

Z + 1

Z∑

j=0

(
jπ − aTej

)2
, (1)

where

a =
{
ak, k = 0, 1, 2, . . . , p

}
, ej =

[
1 t j t2

j · · · t
p
j

]T
(2)

(T stands for transpose operator). The optimum coefficient
vector is obtained in a straightforward manner as

â =
(

HTH
)−1

HT
Φ, (3)

where Φ is a column vector whose jth entry is jπ and H is
a matrix whose jth row is ej

T . â =
[
â0 â1 â2 · · · âp

]
.

At the sample instants, the IF is estimated as f̂ [n] =

(1/2π)
∑p

k=1 kâkn
k−1, 0 ≤ n ≤ N − 1. We refer to this as the

ZC-IF estimator.

3.1. Performance of the ZC-IF estimator

To illustrate the performance of the ZC-IF algorithm, 256
samples of a quadratic IF signal were generated. The ZC in-
stants were estimated using 10 iterations, each through the
root-finding approach. The actual and the estimated IF cor-
responding to p = 3 are shown in Figures 1a, 1b, respectively.
For the IF estimates corresponding to orders p = 1, 2, . . . , 8,
the following error measures were computed: IP curve fit-
ting error:

2If two successive samples, s[m] and s[m + 1], are of opposite sign, then
the corresponding continuous-time signal, s(t), has a ZC in the interval
[m,m + 1]. The ZC instant is estimated using bandlimited interpolation
[20] and a bisection approach, similar to root-finding problems in numeri-
cal analysis [21].
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Figure 1: (a) Actual IF, (b) ZC-IF estimate (corresponding to p = 3), (c) IP curve fitting error (dB) versus p, and (d) IF estimation error
(dB) versus p.

Cp(â) =
1

Z + 1

Z∑

j=0

(
jπ − âTej

)2
, (4)

IF estimation error:

Jp(â) =
1

N

N−1∑
n=0

(
f [n]− f̂ [n]

)2
. (5)

It must be noted that Cp(â) can be computed using the ZC
information, whereas Jp(â) can be computed only when the
actual IF, f [n], is known. Also, while Cp(â) is a nonincreas-
ing function of p, Jp(â) need not be. These error measures
are plotted in Figures 1c, 1d, respectively. From Figure 1c, it
is clear that beyond p = 3 (cubic phase fitting or equivalently,
quadratic IF), the error reduction is not appreciable. Thus, a
measure of saturation of the IP fitting error can be used for
order selection.

The algorithm works best when the actual IF and the as-

sumed IF model are matched, that is, the underlying IF is a
polynomial and the assumed IF model is also a polynomial
of the same order. However, when there is a mismatch, that
is, the underlying IF is not a polynomial but we approximate
it using polynomials, the following problems arise.

(1) The choice of the order of the polynomial becomes
crucial. A value of p that keeps the IP fitting error below a
predetermined threshold does not necessarily yield the min-
imum IF estimation error. This problem occurs even when
the underlying IF is a polynomial of unknown order as
demonstrated in Figures 1c, 1d.

(2) Not all kinds of IF variations can be approximated by
finite-order polynomials to a desired degree of accuracy.

(3) Fast IF variations in a given interval require very high
polynomial orders and hence large amounts of data. How-
ever, this can often lead to numerically unstable set of equa-
tions in solving for the coefficients of the polynomial yielding
erroneous and practically useless IF estimates.
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A natural modification of the ZC-IF algorithm is to
perform local polynomial fitting, that is, use lower-order
polynomial functions to locally estimate the IF rather than
use one large order polynomial over the entire observation
window. If we always use a fixed low order polynomial, say
p = 3, we are still faced with the question of window length
selection; that is, over what window length should a local poly-
nomial approximation be performed? An algorithm that helps
us choose the appropriate window length should have the
following features:

(1) require no a priori information about the IF,

(2) yield an IF estimate with the MMSE for all values of
SNR.

The objective of this paper is to develop such an algorithm.
The relevant cost function is the MSE [22] of the estimate

f̂ , of the quantity f , defined as MSE = E{( f̂ − f )2}, where
E denotes the expectation operator. MSE can be rewritten as

MSE = (E{ f̂ } − f )2 + E{( f̂ − E f̂ )2}. The first term is the
squared bias and the second term is the variance of the ZC-
IF estimator. In the following sections, we obtain the bias
and variance of the ZC-IF estimator and develop the algo-
rithm.

4. BIAS AND VARIANCE OF THE ZC-IF ESTIMATOR

Consider the ZCs {t0, t1, t2, t3, . . . , tZ} and let {φ(t0),φ(t1),
φ(t2),φ(t3), . . . ,φ(tZ)} be the associated instantaneous phase
values. In the presence of noise, the ZC instants get per-
turbed to {t0 + δt0, t1 + δt1, t2 + δt2, t3 + δt3, . . . , tZ + δtZ}.
We assume that the SNR is high enough that the ZC in-
stants get perturbed by a small amount and no additional
ZCs are introduced. Corresponding to these perturbed time
instants is the set of IP values {φ(t0 + δt0),φ(t1 + δt1),φ(t2 +
δt2),φ(t3 + δt3), . . . ,φ(tZ + δtZ)}. Using a first-order Taylor
series approximation, we can write φ(t j + δt j) ≈ φ(t j) +
φ′(t j)δt j (′ denotes derivative), that is, the perturbation in
t j is mapped to φ(t j). The distribution of φ′(t j)δt j can be
found as follows.

At the ZCs, the noisy signal y(t j) = A sin(φ(t j)) + w(t j)
may be approximated as y(t j) ≈ A sin(φ(t j + δt j)) ≈

A sin(φ(t j)) + A cos(φ(t j))φ′(t j)δt j . Therefore, φ′(t j)δt j ≈
w(t j)/A = w̃(t j). Hence the perturbations in φ(t j) are also
Gaussian distributed with variance σ2

w/A
2. Thus, under a

high SNR assumption, one can approximate the effect of ad-
ditive noise on the signal samples to have an additive phase
noise effect [23].

Let t ∈ [0,T] be the point where the IF estimate is de-
sired. The basic principle in the new approach to IF estima-
tion is to fit a polynomial, locally, to the ZCs and IP values
within an interval L about the point t. The IF is obtained
by the derivative operation. We use a rectangular window
symmetric about t, that is, choose the window function, as
h(τ) = 1/L for τ ∈ [−L/2, +L/2] and zero elsewhere. The
window function is normalized to have unit area. Define the
set It,L = {τ | t − L/2 ≤ τ ≤ t + L/2} which is the set of all
points within the L-length window centered at τ = t.

Consider the quadratic cost function

C(t, a) =

j∑

n=i∋tn∈It,L

[
φ
(
tn
)

+w̃
(
tn
)
−

p∑

k=0

akt
k
n

]2

h
(
t− tn

)
. (6)

The coefficients {a0, a1, a2, . . . , ap} are specific to the time in-
stant t and can be obtained as the minimizers of the above
quadratic cost function. The optimal coefficient estimates are
denoted by {â0, â1, â2, . . . , âp} and defined as

âℓ = arg min
aℓ

C, 0 ≤ ℓ ≤ p. (7)

In other words, âℓ is a solution to ∂C/∂aℓ = 0 or, equiva-
lently, ∂C/∂aℓ|aℓ=âℓ = 0. We have

∂C

∂aℓ
= −2

j∑

n=i, tn∈It,L

[
φ
(
tn
)

+ w̃
(
tn
)
−

p∑

k=0

akt
k
n

]
h
(
t − tn

)
tℓn,

0 ≤ ℓ ≤ p.
(8)

The estimation error, ∆aℓ = âℓ − aℓ , is due to the following:

(1) error due to additive noise, δw̃,

(2) error due to mismatch between the actual phase and
the estimated phase using a local polynomial model
(residual phase error), δ∆φ.

The minimum of the cost function therefore is perturbed due
to noise and residual phase effects. We can rewrite ∂C/∂aℓ as
follows:

∂C

∂aℓ
=

∂C

∂aℓ

∣∣∣∣∣
0

+
∂2C

∂a2
ℓ

∣∣∣∣∣
0

∆aℓ +
∂C

∂aℓ

∣∣∣∣∣
0

δ∆φ +
∂C

∂aℓ

∣∣∣∣∣
0

δw̃, (9)

where |0 indicates that the quantities are those correspond-
ing to zero-phase error and absence of noise, that is, ∆φ = 0
and w̃(t) = 0. Unlike the results in [10, 11, 24], where the
derivative of the time-frequency distribution (TFD) is non-
quadratic and approximate linearization of the derivative
around the peak is done, here, the cost function is quadratic
and hence its derivative is linear in the parameters to be esti-
mated. Therefore, the above linear equation is exact and not
approximate. The terms ∂C/∂aℓ|0δ∆φ and ∂C/∂aℓ|0δw̃ indi-
cate the perturbations in the derivative as a result of phase
error and noise, respectively. Evaluation of these quantities,
bias, and variance computation of the IF estimates is given
in the appendix. The asymptotic expressions for bias, vari-
ance, and covariance (denoted by Bias(·), Var(·), and Cov(·),
respectively) of the coefficient estimates are given by

Bias
(
∆aℓ

)

=
(−1)p+1φ(p+1)(t)

(p + 1)!

[∫ +L/2
−L/2 s

p+1(t − s)ℓds∫ +L/2
−L/2 (t − s)2ℓds

]
, 0 ≤ ℓ ≤ p,

Cov
(
∆aℓ ,∆ak

)

=
σ2
w

A2

[ ∫ +L/2
−L/2 (t − s)ℓ+kds∫ +L/2

−L/2 (t − s)2ℓds
∫ +L/2
−L/2 (t − s)2kds

]
, 0 ≤ ℓ, k ≤ p,

Var
(
∆aℓ

)
=

σ2
w/A

2

∫ +L/2
−L/2 (t − s)2ℓds

, 0 ≤ ℓ ≤ p.

(10)
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Using these, the bias and variance of the IF estimator can be
obtained as

Bias
(
f̂ (t)

)
=

1

2π

p∑

ℓ=1

Bias
(
∆aℓ

)
ℓtℓ−1,

Var
(
f̂ (t)

)
=

1

4π2

p∑

ℓ=1

p∑
m=1

ℓmtℓ+m−2 Cov
(
∆aℓ ,∆am

)
.

(11)

Directly substituting the expressions for bias and covariance
of the coefficient estimates gives rise to very complicated ex-
pressions for the bias and variance of the ZC-IF estimator.
However, a considerable simplification can be achieved by
using the idea of data centering about the origin, that is, with-
out loss of generality, assume that the data is shifted to lie in
the interval [−L/2, +L/2] instead of [t − L/2, t + L/2]. Data
centering is very useful in obtaining simplified expressions
for the bias and variance of IF estimators [25]. It must be
noted that data centering is an adjustment to yield simpli-
fied expressions and the IF estimate is unaffected in doing so
because the estimates are computed using the centered data.
This yields the following expressions for bias and variance of
the coefficients:

Bias
(
∆aℓ

)

=
φ(p+1)(0)(−1)p+ℓ+1

(p + 1)!

[∫ +L/2
−L/2 τ

p+ℓ+1dτ∫ +L/2
−L/2 τ

2ℓdτ

]
, 0 ≤ ℓ ≤ p,

Var
(
∆aℓ

)

=
σ2
w

A2

(2ℓ + 1)22ℓ

L2ℓ+1
, 0 ≤ ℓ ≤ p.

(12)

From the coefficient estimates, the expressions for bias and
variance of the IF estimate at the center of the window (t = 0)
are obtained as

Bias
(
f̂ (0)

)
=

1

2π

3φ(p+1)(0)

2p(p + 1)!(p + 3)
Lp,

Var
(
f̂ (0)

)
=

3σ2
w

π2A2L3
.

(13)

It may be noted that these are approximate asymptotic ex-
pressions for bias and variance of the ZC-IF estimator.

5. OPTIMUM WINDOW LENGTH SELECTION

Substituting the expressions for bias and variance obtained

above, we can write the expression for MSE, MSE( f̂ (0)) as
follows:

MSE
(
f̂ (0)

)
=

[
1

2π

3φ(p+1)(0)

2p(p + 1)!(p + 3)
Lp

]2

+
3σ2

w

A2π2L3
. (14)

The MSE is a function of the window length L. In Figure 2,
we illustrate the variation of bias, variance, and MSE, as a
function of window length. Since the bias, variance, and MSE
characterize an estimator, the y-axis is commonly labelled
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Figure 2: Asymptotic squared bias, variance, and mean square error
as a function of the window length.

as characteristic and plotted in decibel (dB) scale. From the
figure, we infer that the MSE has a minimum with respect
to window length. The optimal window length, Lopt corre-
sponding to MMSE is given as

Lopt = arg min
L

MSE

=

[
σ2
w

[
(p + 1)!

]2
22p(p + 3)2

2π2A2p
[
φ(p+1)(0)

]2

]1/(2p+3)

.
(15)

All the mathematically valid minimizers of the MSE are not
practically meaningful. Only the real solution, Lopt above,
is relevant. The optimum window length is a function of
the higher-order derivatives of the IF which are not known
a priori, because the IF itself is not known and it has to
be estimated. The above expression for the optimal window
length is mainly of theoretical interest. The analysis, however,
throws light on the issues and tradeoff involved in window
length selection for MMSE-ZC-IF estimation. Unlike the ex-
pression for bias, the expression for variance does not require
any a priori knowledge of the IF, but depends only on the
SNR which can be estimated. The expression for variance can
be used to devise an adaptive window algorithm to solve the
bias-variance tradeoff for MMSE ZC-IF estimation.

5.1. Bias-variance tradeoff

The expressions for squared bias and variance can be restated
as follows:

Bias2 ( f̂ (0)
)
= BL2p,

Var
(
f̂ (0)

)
=

V(SNR)

L3
,

(16)
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Figure 3: Asymptotic distribution of the ZC-IF estimator for dif-
ferent window lengths.

where

B =

[
1

2π

3φ(p+1)(0)

2p(p + 1)!(p + 3)

]2

,

V(SNR) =
3σ2

w

A2π2
, SNR =

A2

2σ2
w

.

(17)

At L = Lopt,

Bias2 ( f̂ (0)
)
=

(
3

2p

)2p/(2p+3)

B3/(2p+3)V2p/(2p+3),

Var
(
f̂ (0)

)
=

(
2p

3

)3/(2p+3)

B3/(2p+3)V2p/(2p+3),

Bias
(
f̂ (0),Lopt

)
=

√
3

2p
Var

(
f̂ (0)

)
.

(18)

From the expressions above, it is clear that the squared
bias is directly proportional to L2p and the variance is in-
versely proportional to L3, clearly indicating bias-variance
tradeoff frequently encountered in devising estimators op-
erating on windowed data [12, 26]. The increased smooth-
ing of the estimate for a long window decreases variance but
increases bias; conversely, reduced smoothing with a short
window increases variance but bias decreases. The asymp-
totic distribution of the estimator is shown in Figure 3.

We need to emphasize an important aspect specific to
the ZC-IF estimator. Unlike regular sampling, in an irreg-
ular sampling scenario (ZC data belongs to this class), the
distribution of data is not uniform. In the case of uniform
sampling, as the window length is increased, in multiples
of the sampling period, the window encompasses more data
and hence the associated bias and variance change monoton-
ically. However, in the irregular sampling case, as the win-
dow length is increased in multiples of the sampling period,
the window may or may not encompass more data, depend-
ing on the data distribution. Thus, the associated bias and
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Figure 4: Bias-variance tradeoff in the irregular sampling scenario
relevant to ZC-IF estimator.

variance do not vary smoothly. This is illustrated through an
example.

A noise sequence, white and Gaussian distributed, 256
samples long, was lowpass filtered (filter’s normalized cut-
off frequency arbitrarily chosen as 0.05 Hz). The filtered sig-
nal was rescaled and adjusted to have amplitude excursions
limited to [0, 0.45]. This was used as the IF to simulate a
constant amplitude, frequency modulated sinusoid. Addi-
tive white Gaussian noise was added to achieve an SNR of
25 dB. Since this is a synthesized example, the underlying
IF is known and hence bias can be computed directly. Us-
ing ZCs to perform a third-order polynomial phase fitting,
the IF was estimated at the center of the observation window
for different window lengths. The experiment was repeated
100 times and the bias and variance were computed and plot-
ted in Figure 4. The figure clearly illustrates the bias-variance
tradeoff for the ZC-IF estimator using noisy signal data.

6. ADAPTIVE WINDOW ZC-IF TECHNIQUE (AZC-IF)

Asymptotically, the IF estimate3 f̂L (the subscript L denotes
the window length) can be considered as a Gaussian random
variable distributed around the actual value, f , with bias,

b( f̂L) and standard deviation, σ( f̂L). Thus, we can write the
following relation:

∣∣ f − f̂L − b
(
f̂L
)∣∣ ≤ κσ

(
f̂L
)

(19)

for a given SNR. This inequality holds with probability

P(| f − f̂L−b( f̂L)| ≤ κσ( f̂L)). In terms of the standard normal

3We simplify the notation used. Assuming data centering, the time in-
stant of IF estimate is dropped. The IF estimate obtained using window

length L is indicated as f̂L. Bias and standard deviation are denoted by b( f̂L)

and σ( f̂L), respectively.
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distribution, N (0, 1), this probability is given as P(κ) and
tends to unity as κ tends to infinity. We can rewrite this in-
equality as

∣∣ f − f̂L
∣∣ ≤

∣∣b( f̂L
)∣∣ + κσ

(
f̂L
)

(20)

which holds with probability P(| f − f̂L| ≤ |b( f̂L)|+ κσ( f̂L)).

Now, if |b( f̂L)| ≤ ∆κσ( f̂L), we can rewrite the inequality as

∣∣ f − f̂L
∣∣ ≤ (∆κ + κ)σ

(
f̂L
)

(21)

which holds with probability P(| f − f̂L| ≤ (∆κ + κ)σ( f̂L)).
Therefore, we can define a confidence interval for the IF esti-
mate (using window length L) as

D =
[
f̂L − (∆κ + κ)σ

(
f̂L
)
, f̂L + (∆κ + κ)σ

(
f̂L
)]
. (22)

We define a set of discrete-window lengths, H = {Ls |
Ls = asL0, s = 0, 1, 2, . . . , smax; a > 1}.4 If a = 2, this set is
dyadic in nature. Likewise, if a = 3, it is a triadic window set.
We choose a = 2. At this point, we recall a theorem from [10]
using which we can show that, for the present case,

∆κ =

√
3

2p
23/2 2p − 1

23/2 + 1
,

κ <

√
3

2p
21/2 2p − 1

23/2 + 1

(
2(3+2p)/2 − 1

)
.

(23)

For a third-order fit, that is, p = 3, we have ∆κ = 3.6569 and
κ < 43.2013. Together, we have κ+∆κ < 46.8582. This is only
an upper bound obtained using the approximate asymptotic
analysis in Section 4. For simulations reported in this paper,
a 5σ confidence interval, that is, κ + ∆κ = 2.5 was used. For
this value of κ + ∆κ, the coverage probability is nearly 0.99.
For a detailed discussion on the choice of κ + ∆κ, see [27].

We can also define H as H = {Ls | Ls = (s + 1)L0, s =
0, 1, 2, . . . , s̃max}, that is, the window lengths are in arithmetic
progression. The consequence of such a choice is studied in
Section 7.2.

6.1. Algorithm

The algorithm for AZC-IF estimation at a point t is summa-
rized as follows.

(1) Initialization. Choose H = {Ls | Ls = asL0, s =
0, 1, 2, . . . , smax; a > 1}, κ + ∆κ = 2.5. Set s = 0. L0 is cho-
sen as the window length encompassing p + 1 farthest ZCs.
This ensures that at any stage of the algorithm, there is suffi-
cient data to perform a pth-order fit. smax is chosen such that
Lsmax+1 just exceeds the observation window length. The IF

estimate f̂Ls is obtained using the window length Ls, that is,
the ZC data (after data centering) within the window is used

to perform a pth-order fit to obtain the IP and the IF. Let f̂Ls
be the corresponding AZC-IF estimate.

4The choice of smax and L0 is discussed in Sections 6.1 and 7.2.

(2) Confidence interval computation. The limits of the
confidence interval are computed as follows:

Ps = f̂Ls − (κ + ∆κ)σ
(
f̂Ls
)
,

Qs = f̂Ls + (κ + ∆κ)σ
(
f̂Ls
)
.

(24)

(3) Estimation. Obtain f̂Ls+1 using the next window
length, Ls+1 = 2Ls, from the set H . Compute the confidence
interval limits as follows:

Ps+1 = f̂Ls+1 − (κ + ∆κ)σ
(
f̂Ls+1

)
,

Qs+1 = f̂Ls+1 + (κ + ∆κ)σ
(
f̂Ls+1

)
.

(25)

(4) Check. Is Ds ∩ Ds+1 = ∅? (Ds = [Ps,Qs], Ds+1 =

[Ps+1,Qs+1] and∅ denotes the empty set). In other words,
the following condition is checked:

∣∣ f̂Ls+1 − f̂Ls
∣∣ ≤ 2(κ + ∆κ)

[
σ
(
f̂Ls
)

+ σ
(
f̂Ls+1

)]
. (26)

The smallest value of s for which the condition is satis-
fied yields the optimum window length, that is, if s∗ is the
smallest value of s for which the condition is satisfied, then
Lopt = Ls∗ ; else s← s + 1 and steps 3 and 4 are repeated.

Since the bias varies as L2p, large values of p imply a fast-
varying bias. This results in an MSE that is steep about the
optimum. With a discretized search space of window lengths,
small changes in the window length about the optimum can
cause steep rise in the MSE. Also, large values of p can give
rise to numerically unstable set of equations. On the other
hand, small values of p, that is, p = 1, 2, correspond to a
not-so-clearly defined minimum; p = 3 was found to be a
satisfactory choice and is used in the simulations reported in
this paper.

For implementing the algorithm, the computation of
variance requires an estimate of the SNR. The SNR estima-
tor suggested in [10, 11] requires oversampling of the signal.
Though robust at very low SNRs, in general, it was found
to yield poor estimates of the SNR even with considerably
large oversampling factors. Therefore, an alternative method
of moments estimator is proposed for estimating SNR. A de-
tailed study of its properties and improved adaptive TFD-
based IF estimation is reported separately. For the sake of
completeness, the SNR estimator is given below (the hat is
used to denote an estimate):

Â2

2σ2
w

=
3
[

(1/N)
∑N−1

n=0

∣∣hy[n]
∣∣2
]2
− (1/N)

∑N−1
n=0

∣∣hy[n]
∣∣4

(1/N)
∑N−1

n=0

∣∣hy[n]
∣∣4
−
[

(1/N)
∑N−1

n=0

∣∣hy[n]
∣∣2
]2 ,

(27)

where hy[n] is the analytic signal [20] of y[n].

7. SIMULATIONS

We present here simulation results evaluating the perfor-
mance of the AZC-IF technique and also compare it with the
fixed window approaches.
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Figure 5: ZC technique using fixed and adaptive windows for step IF estimation (SNR = 25 dB). The columns correspond to medium
window (51 samples), long window (129 samples), and adaptive window, respectively. In (a), (b), and (c), the corresponding window length
is shown as a function of the sample index. In (d), (e), and (f), the actual IF is shown in dashed-dotted style and the estimated IF is shown
in solid line style. In (g), (h), and (i), ISE stands for instantaneous squared error. η is average error.

7.1. Fixed window versus adaptive
window ZC-IF estimator

To illustrate the adaptation of window length, we consider
the following IF laws.

(1) Step IF.

f [n] =




0.1 for 0 ≤ n ≤ 127,

0.4 for 128 ≤ n ≤ 255.
(28)

(2) “Sum of sinusoids” IF.

f [n] = 0.1092 sin(0.128n) + 0.0595 sin(0.1n)

+ 0.2338 for 0 ≤ n ≤ 255.
(29)

The coefficients and frequencies of the sinusoids were chosen
arbitrarily. The coefficients were rescaled and a suitable con-
stant added to bring the IF within the normalized frequency
range [0, 0.5].

(3) Triangular IF.

f [n] =




0.2 +
0.2n

127
for 0 ≤ n ≤ 127,

0.4−
0.2(n− 127)

128
for 127 ≤ n ≤ 255.

(30)

For each of the IF above, the following experiments were
conducted:
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Figure 6: ZC technique using fixed and adaptive windows for “sum of sinusoids” IF estimation (SNR = 25 dB). The columns correspond
to medium window (51 samples), long window (129 samples), and adaptive window, respectively. In (a), (b), and (c), the corresponding
window length is shown as a function of the sample index. In (d), (e), and (f), the actual IF is shown in dashed-dotted style and the estimated
IF is shown in solid line style. In (g), (h), and (i), ISE stands for instantaneous squared error. η is average error.

(1) ZC-IF estimation using a fixed medium window (51-
samples long),

(2) ZC-IF estimation using a fixed long window (129 sam-
ples long),

(3) adaptive window ZC-IF estimation.

p = 3 was used in all the simulations. The window lengths
of 51 and 129 samples are arbitrary. The ZC-IF estimates
were obtained for each IF. The following IF error measures
are computed:

(1) instantaneous squared error, ISE[n] = ( f [n]− f̂ [n])2,

(2) average error, η = (1/(N − 20))
∑N−10

n=11 ( f [n]− f̂ [n])2,

10 samples5 at the extremes of the signal window are ex-
cluded to eliminate errors due to boundary effects, because
for most methods, the errors at the edges are large giving rise
to unreasonable estimates. The results are shown in Figures
5, 6, 7. From these figures, the following observations can be
made.

(1) For relatively stationary regions of the IF, the adaptive
algorithm chooses larger window lengths thereby reducing
variance via increased data smoothing.

5The number 10 was arrived at by comparing AZC-IF, adaptive spectro-
gram and WVD peak-based IF estimation errors (reported in Section 7.3)
for different window lengths.
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Figure 7: ZC technique using fixed and adaptive windows for triangular IF estimation (SNR = 25 dB). The columns correspond to medium
window (51 samples), long window (129 samples), and adaptive window, respectively. In (a), (b), and (c), the corresponding window length
is shown as a function of the sample index. In (d), (e), and (f), the actual IF is shown in dashed-dotted style and the estimated IF is shown
in solid line style. In (g), (h), and (i), ISE stands for instantaneous squared error. η is average error.

(2) In the vicinity of a fast change in IF (like the dis-
continuity in the case of step IF), the algorithm chooses
shorter window length thereby reducing bias and hence cap-
turing “events in time.” This improves time resolution but at
the expense of large variance. At the discontinuity, the local
polynomial approximation does not hold; the corresponding
window length chosen by the algorithm is large.

(3) Fixed window ZC-IF estimate obtained with a longer
window length is smeared/oversmoothed than that obtained
with a shorter window length.

(4) The average error, η, is the best with adaptive window
length estimator for the case of the step IF and also “sum of
sinusoids” IF. However, with triangular IF, we find that the
AZC-IF estimate obtained with the adaptive window length
has a few dB higher error compared to that obtained with a
medium window length. Such a behaviour, which appears to

be counterintuitive at first, is possible with any kind of IF, as
simulations later will show. However, it must be noted that
this is because of the choice of the set of window lengths. The
set of window lengths chosen are dyadic in nature and hence
the optimum MSE search is very coarse. It is possible that,
in such a case, the adaptive algorithm determines a window
length quite away from the optimum, which yields poorer
performance than the medium window length. This may be
overcome by finely searching the space of window lengths.
This is discussed in the following section.

7.2. Coarse search versus fine search

We study the effect of discretizing the search space of win-
dows on the performance of the algorithm. We consider the
following window lengths:

(1) medium window length: L = 51 samples,
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Figure 8: Performance of fixed and adaptive ZC techniques as a function of SNR (dB) for different window choices, for “sum of sinusoids”
IF estimation. Top row corresponds to n = 128 and bottom row corresponds to n = 200.

(2) long window: L = 129 samples,

(3) arithmetic set of window lengths: window lengths in
arithmetic progression, that is, Ls = (s + 1)L0, s =
0, 1, 2, . . . , s̃max,

(4) dyadic set of window lengths: window lengths given by
Ls = 2sL0, s = 0, 1, 2, . . . , smax.

In the arithmetic and dyadic cases, L0 is the initial window
length encompassing (p + 1) farthest ZCs; the values of smax

and s̃max are chosen such that Lsmax+1 and Ls̃max+1, respectively,
just exceed the given observation window length.

For illustration, we chose the “sum of sinusoids” IF. The
ZC-IF estimates corresponding to each of the above win-
dows are obtained. The SNR was varied from 0 dB to 24 dB
in steps of 2 dB. For each SNR, 100 Monte-Carlo realizations
were run to obtain the statistics of the ZC-IF estimator. The
squared bias, variance, and MSE corresponding to the sample
instants n = 128 and n = 200 are plotted in Figure 8. From
the figures, we observe that ZC-IF estimates obtained with
medium window size (whose choice cannot be made a priori

anyway) show “slightly” better performance than the adap-
tive window algorithms at low SNR. This is because the adap-
tation algorithm uses asymptotic expressions for bias and
variance which are derived under a high SNR assumption
and hence less appropriate at low SNR. At high SNR, how-
ever, the adaptive estimates are consistently better than fixed
window estimates. Also of interest is the comparison between
the arithmetic and dyadic window choices for the adaptive
algorithm. Consistently, the AZC-IF estimates obtained with
arithmetic window set (corresponding to fine search) out-
perform those obtained with the dyadic set (correspond-
ing to coarse search) for low to moderate SNR. Sometimes,
the improvement in performance can be as high as 12 dB
(bottom row in Figure 8, corresponding to SNR = 8 dB).
However, for high SNR, there seems to be no distinct ad-
vantage in doing a fine search. One can protract this ob-
servation to state that if the SNR estimate indicates a high
value (roughly beyond 18 dB or so), a considerable compu-
tational saving can be achieved by using the dyadic window
set.
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Figure 9: Performance of fixed and adaptive ZC techniques as a function of SNR (dB) for different window choices, for “sum of sinusoids”
IF estimation.

Since we are interested in tracking IF, all the pointwise
errors can be combined to give cumulative error measures
which we introduce as

cumulative squared bias =

(
1

N − 20

) N−10∑
n=11

(
Bias

(
f̂ [n]

))2
,

cumulative variance =

(
1

N − 20

) N−10∑
n=11

Var
(
f̂ [n]

)
,

cumulative MSE = cumulative squared bias

+ cumulative variance.

(31)

These are time averages of instantaneous squared bias, vari-
ance, and MSE, respectively. Their importance is due to the
fact that they give a single error measure taking into account
pointwise errors. These can be useful indicators of the per-
formance of IF estimators for a given data. These are shown
in Figure 9. The significant improvement in performance of-
fered by adaptive estimates compared to fixed window ZC-
IF estimates stresses the significance of appropriate window
length choice in ZC-IF estimation.

7.3. Comparison with other techniques

We compare the performance of the AZC-IF algorithm with
adaptive spectrogram (ASPEC) and Wigner-Ville distribu-
tion (AWVD)-based IF estimates. For a discussion on adap-
tive spectrogram and adaptive WVD-based IF estimation, re-
fer [10, 11, 24].

A dyadic window set was used for the three methods.
For ASPEC and AWVD, the initial window size was chosen
to be 2 samples, whereas for AZC, it is chosen as the win-
dow length encompassing (p + 1) farthest consecutive ZCs.
This varies from realization to realization and is definitely
greater than twice the sampling period and hence relatively,
the search for AZC is more coarse than ASPEC and AWVD.
The spectrogram and WVD are computed by zero-padding
to compute a 4N-point discrete Fourier transform (DFT) (N
is the length of the entire data available, N = 256 samples
in the present examples). After locating a peak in the 4N-
point DFT, the actual position of the peak is further refined
by fitting a quadratic polynomial to three samples about the
DFT peak (two samples on either side of the peak and the
DFT peak sample itself). This gives a peak location closer to
the actual discrete-time Fourier transform (DTFT) peak than
the DFT peak. This was done to minimize the contribution of
the error in peak-picking to the error in the IF estimate. For
the AZC algorithm, to locate the ZCs, the signal is oversam-
pled four times (equivalently, four stages of the bandlimited
interpolation plus bisection scheme) and linear interpolation
between adjacent samples of opposite sign was performed to
estimate the ZC. The cumulative MSE is shown in Figure 10.
We infer that AZC technique for triangular IF estimation of-
fers as much as 10 dB less error at low SNRs (and hence more
robust) than ASPEC and AWVD-based estimates. For high
SNRs, however, the performance of the AZC technique is
about 5–6 dB poorer than ASPEC and AWVD. For the “sum
of sinusoids” IF, the AZC technique performance is similar
to the other two techniques at all SNRs.
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Figure 10: Comparison of AZC, ASPEC, and AWVD techniques for IF estimation (coarse search). (a) Triangular IF. (b) “Sum of sinusoids”
IF.

The experiment is repeated with the arithmetic window
set. For ASPEC and AWVD, the window set consists of con-
secutive multiples of 2, whereas for AZC algorithm it consists
of consecutive multiples of the initial window length (which
is chosen as the window length encompassing (p+1) farthest
ZCs). Therefore, relatively, the search is more coarse for AZC
algorithm than ASPEC and AWVD algorithms. The results
are shown in Figure 11. Here, AZC consistently outperforms
ASPEC and AWVD algorithms. This is because, the squared
bias of the ZC-IF estimator varies as L2p which is quite faster
than the corresponding variation for spectrogram and WVD
[10, 11, 24]. This implies that a coarse search in the window
space can severely affect the performance of AZC more than
ASPEC and AWVD. Simulations (Figures 10 and 11) strongly
support this argument and emphasize the need for appropri-
ate discretization of the window search space for robust IF
estimation using the AZC algorithm.

8. CONCLUSION

We have achieved robust estimation of arbitrary IF using
real ZCs of the frequency modulated signal in an adaptive
window framework. This approach combines in an inter-
esting and useful manner nonlinear measurement (ZCs),
nonuniform sampling, and adaptive window techniques, re-
sulting in superior IF estimation. Comparative simulations
show that the adaptive window ZC technique can provide as
much as 5–10 dB performance advantage over adaptive spec-
trogram and Wigner-Ville distribution-based IF estimation
techniques. Extension of the new technique for estimating

arbitrary instantaneous frequencies of multicomponent sig-
nals (similar to [28]) is being explored.

APPENDIX

In this appendix, we give the detailed derivation for bias and
variance of the ZC-IF estimator reported in Section 4. With
a change of variable from tn to t − tn, each of the quantities
in (9) can be evaluated as follows (0 ≤ ℓ ≤ p):

∂C

∂aℓ

∣∣∣∣∣
0

= −2

j∑

n=i, tn∈I0,L

[
φ
(
t − tn

)
−

p∑

k=0

ak
(
t − tn

)k
]

×
(
t − tn

)ℓ
h
(
tn
)
= 0,

∂2C

∂a2
ℓ

∣∣∣∣∣
0

∆aℓ = 2

j∑

n=i, tn∈I0,L

(
t − tn

)2ℓ
h
(
tn
)
∆aℓ ,

∂C

∂aℓ

∣∣∣∣∣
0

δ∆φ = −2

j∑

n=i, tn∈I0,L

∆φ
(
t, tn

)(
t − tn

)ℓ
h
(
tn
)
,

∂C

∂aℓ

∣∣∣∣∣
0

δw̃ = −2

j∑

n=i, tn∈I0,L

w̃
(
t − tn

)(
t − tn

)ℓ
h
(
tn
)
,

(A.1)

where ∆φ(t, tn) =
∑∞

r=p+1((−tn)r/r!)φr(t), r! denoting
the factorial of r. Retaining only the significant term
in the infinite summation, we can write ∆φ(t, tn) ≈

((−tn)p+1/(p + 1)!)φ(p+1)(t).
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Figure 11: Comparison of AZC, ASPEC, and AWVD techniques for IF estimation (fine search). (a) Triangular IF. (b) “Sum of sinusoids” IF.

Equating ∂C/∂aℓ to zero and solving for ∆aℓ , 0 ≤ ℓ ≤ p,
we get

∆aℓ =
(−1)p+1φ(p+1)(t)

(p + 1)!

×

[∑ j
n=i, tn∈I0,L

t
p+1
n
(
t − tn

)ℓ
h
(
tn
)

∑ j
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(
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)2ℓ
h
(
tn
)

+

∑ j
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(
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)(
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)ℓ
h
(
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)

∑ j
n=i, tn∈I0,L

(
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)2ℓ
h
(
tn
)

]
.

(A.2)

The bias of the estimate, aℓ−E{âℓ}, or equivalently, E{∆aℓ},
0 ≤ ℓ ≤ p, is given by

E
{
∆aℓ

}
=

(−1)p+1φ(p+1)(t)

(p + 1)!
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(
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(A.3)

The covariance of the errors ∆aℓ and ∆ak, denoted by
Cov(∆aℓ ,∆ak), and defined as Cov(∆aℓ ,∆ak) = E{(∆aℓ −
E{∆aℓ})(∆ak − E{∆ak})}, 0 ≤ ℓ, k ≤ p is given by
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(A.4)

Since the power spectral density of noise, w(t), is known, it is
easy to compute E{w̃(t − tn)w̃(t − tm)}, because rw̃w̃(τ) =
(σ2

w/A
2)(sin(Bπτ)/Bπτ), and E{w̃(t − tn)w̃(t − tm)} =

rw̃w̃(tn − tm). However, this leads to very complicated ex-
pressions for the variance and covariance of the coefficient
estimation errors. For the purposes of analysis and ease of
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computation, one can arrive at simplifed expressions by as-
suming that E{w̃(t − tn)w̃(t − tm)} ≈ (σ2

w/A
2)δtn,tm . This is

equivalent to assuming that the autocorrelation function of
noise, w(t), is highly localized at zero lag and is negligible
elsewhere (nearly white noise). Under this assumption, one
can write the following approximate expressions (for 0 ≤ ℓ,
k ≤ p):
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 .

(A.5)

Asymptotically, as data size within the window tends to in-
finity, we obtain
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(A.6)

The IF at time t is estimated as

f̂ (t) =
1

2π

p∑

ℓ=1

ℓâℓt
ℓ−1. (A.7)

The expressions for bias and variance of the IF can be ob-
tained as

Bias
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)
=

1
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(A.8)
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