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Abstract

We show by counter-example that the soundness security requirement for witness encryp-
tion given by Garg, Gentry, Sahai and Waters (STOC 2013) does not suffice for the security
of their own applications. We introduce adaptively-sound (AS) witness encryption to fill the
gap. We then introduce asymmetric password-based encryption (A-PBE). This offers gains over
classical, symmetric password-based encryption in the face of attacks that compromise servers
to recover hashed passwords. We distinguish between invasive A-PBE schemes (they introduce
new password-based key-derivation functions) and non-invasive ones (they can use existing, de-
ployed password-based key-derivation functions). We give simple and efficient invasive A-PBE
schemes and use AS-secure witness encryption to give non-invasive A-PBE schemes.
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1 Introduction

This paper introduces (1) witness encryption with adaptive soundness security and (2) asymmetric
password-based encryption (A-PBE). We show how to use (1) to achieve (2) as well as other goals.

The problem. The security of Internet communication remains ubiquitously based on client pass-
words. Standards such as the widely implemented PKCS#5 —equivalently, RFC 2898 [33]— specify
password-based encryption (PBE). From the client password pw , one derives a hashed password
hpw = PH(sa,pw), where sa is a random, user-specific public salt, and PH is a deterministic
password-hashing function. (In the standards, PH(sa,pw) = Ht(sa|pw) where t is an iteration
count and Ht denotes the t-fold iteration of cryptographic hash function H.) The server holds hpw
while the client holds (sa,pw). Now the server will encrypt under hpw using any symmetric en-
cryption scheme, for example CBC-AES. The client can recompute hpw from (sa, pw) and decrypt
using this key.

This classical form of PBE is symmetric: encryption and decryption are both done under the
same key hpw . But this means that anyone who knows hpw can decrypt. This is a serious
vulnerability in practice because of server compromise leading to exposure of hashed passwords.
The Heartbleed attack of April 2014, allowing an attacker to read large chunks of server memory
that can contain sensitive client information including hashed passwords, is a recent and prominent
instance. Other high-profile attacks that compromised servers to expose client information include
Target (December 2013), Adobe (October 2013), LinkedIn (June 2012), RSA (March 2011), Sony
(2011) and TJ Maxx (2007). According to CNBC, there were over 600 breaches in 2013 alone.

We emphasize that the problem here is not the possibility of password-recovery via a dictionary
attack based on the hashed password. The problem is that S-PBE (symmetric PBE) is vulnerable
even if the password is well chosen to resist dictionary attack. This is because possession of the
hashed password is already and directly enough to decrypt any prior communications. So under
S-PBE, even well-chosen passwords do not provide security in the face of server compromise.

A-PBE. We propose asymmetric password-based encryption (A-PBE). Here, encryption is done
under the hashed password hpw , decryption is done under the password pw , and possession of hpw
does not allow decryption. This offers significantly higher security in the face of the most important
attack, namely server compromise exposing the hashed password hpw .

This paper initiates a foundational treatment of A-PBE including definitions and both “inva-
sive” and “non-invasive” schemes. At first it may appear that definitionally A-PBE is just like PKE
and brings nothing new, but this is not true. Not just is security based on passwords, but in practice
users pick related passwords, for example varying a base password by appending the name of the
website, resulting in encryption under related keys. Our definition extends the S-PBE framework
of [9]. Our security model explicitly considers encryption under multiple passwords, assumed to
be individually unpredictable —otherwise security is not possible— but arbitrarily related to each
other.

We give two proven-secure A-PBE schemes that we call APBE1 and APBE2. Their attributes
are summarized in Fig. 1. APBE1 is simple, natural and as efficient as possible, but what we
call invasive, is that it specifies its own password-hashing function PH. APBE2 is non-invasive,
meaning able to use any, given password-hashing function. In particular it can work with in-use,
standardized password hashing functions such as PKCS#5 [33] or bcrypt [34]. If one has the
flexibility of changing PH and the associated password hashes then the first solution is preferable.
The second solution may be easier to deploy in the face of the legacy constraint of millions of
existing, PKCS#5 hashed passwords.
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Scheme Achieves Invasive Assumptions

APBE1 Secure A-PBE Yes PKE, RIP-secure hash

APBE2 Secure A-PBE No
AS-secure WE, RIP-secure password hash with large
stretch

XS-secure WE, ROW-secure password hash with ar-
bitrary stretch

Figure 1: Our A-PBE schemes. Both achieve our notion of security for related, unpredictable
passwords. APBE1 has a dedicated password hash (invasive) while APBE2 can work with an
arbitrary, legacy one (non-invasive). The first analysis of APBE2 assumes the password hash has
large stretch, a restriction dropped in the second analysis under a stronger form of WE.

APBE1. We specify and analyze the following simple and natural scheme for A-PBE that we
call APBE1. PH, given sa, pw , applies to them a deterministic function EX to derive a string r,
uses this as coin tosses for a key-generation algorithm PKE.Kg of some standard PKE scheme to
get (pk, sk), and outputs hpw = pk as the hashed password. Encryption is under the encryption
algorithm PKE.Enc of the PKE scheme keyed with hpw = pk. Since PH is deterministic, decryption
under (sa, pw) can re-execute PH to get (sk, pk) and then use sk to decrypt under PKE.

A natural choice for EX is a randomness extractor [32] with seed sa. But recall that we require
A-PBE to be secure even under multiple, related passwords. To achieve this, outputs of EX must
be independent even if the input passwords are related, and an extractor does not guarantee this.
Indeed it is not possible for this to be true information theoretically, meaning if the “independence”
is required to be statistical. We instead target computational independence of the outputs of
EX. We define an appropriate security goal for EX that we call related-input pseudorandomness
(RIP) [29] and show that this together with security of the base PKE scheme suffices for the security
of the A-PBE scheme. In practice, EX can be efficiently instantiated via HMAC [5].

Non-invasive A-PBE. APBE1 prescribes its own password-hashing algorithm under which the
hashed password hpw is a public key of some existing PKE scheme. In current practice, however,
the hashed password is derived via the iterated hashing password-hash function of PKCS#5 [33] or
alternatives such as bcrypt [34]. Right now millions of passwords are in use with these particular
password-hashing functions. In the face of this legacy constraint, deployment of A-PBE would be
eased by a scheme that could encrypt under an existing, given hashed password, regardless of its
form. We ask whether such non-invasive A-PBE is achievable.

This turns out to be challenging, even in principle, let alone in practice. In all known PKE
schemes, the secret and public keys have very specific structure and are related in very particular
ways. How can we encrypt asymmetrically with the public key being just an arbitrary hash of the
secret key?

The answer is witness encryption (WE), introduced by Garg, Gentry, Sahai and Waters (GGSW)
[19]. We will use WE to achieve non-invasive A-PBE. For this purpose, however, we will need WE
schemes satisfying an extension of the soundness security notion of GGSW [19] that we introduce
and call adaptive soundness security. We define and achieve WE with adaptive soundness and
apply it to achieve non-invasive A-PBE as we now discuss.

SS-secure witness encryption. In a WE scheme [19] for a language L ∈ NP, the encryption

function WE.Enc takes a unary representation 1λ of the security parameter λ ∈ N, a string x ∈
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{0, 1}∗ and a message m to return a ciphertext c. If x ∈ L then decryption is possible given a
witness w for the membership of x in L. If x 6∈ L then the message remains private given the
ciphertext. The soundness security (SS) requirement of GGSW [19] formalized the latter by asking
that for any PT adversary A, any x 6∈ L and any equal-length messages m0,m1, there is a negligible
function ν such that Pr[A(WE.Enc(1λ, x,m1)) = 1] − Pr[A(WE.Enc(1λ, x,m0)) = 1] ≤ ν(λ) for all
λ ∈ N.

AS-secure witness encryption. Our (new) adaptive soundness (AS) requirement lets the adver-

sary A, on input 1λ, pick and return x,m0,m1 to the game. The latter picks a random challenge
bit b and returns ciphertext WE.Enc(1λ, x,mb) to A, who now responds with a guess b′ as to the
value of b. The AS-advantage of A is defined as the probability that (b = b′) and x 6∈ L. We require
that any PT A have negligible advantage. We note that due to the check that x 6∈ L, our game
may not be polynomial time but this does not hinder our applications.

It may at first seem that adaptivity does not add strength, since soundness security already
quantifies over all x,m0,m1. But in fact we show that AS is strictly stronger than SS. Namely we
show in Proposition 3.2 that AS always implies SS but SS does not necessarily imply AS. That is,
any WE scheme that is AS secure is SS secure, but there exist WE schemes that are SS secure and
not AS secure. Intuitively, the reason AS is strictly stronger is that SS does not allow x,m0,m1 to
depend on λ. Our separation result modifies a SS-secure WE scheme to misbehave when |x| ≥ f(λ)
for a certain poly-logarithmic function f of the security parameter. SS is preserved because for
each x only finitely many values of λ trigger the anomaly. The proof that AS is violated uses the
fact that NP ⊆ EXP, the constructed adversary nonetheless being polynomial time.

Having strengthened the goal, we must revisit achievability. GGHRSW [17] give an elegant and
conceptually simple construction of SS-secure WE from indistinguishability obfuscation (iO). In
Theorem 3.3 we show that the same construction achieves the stronger AS goal. Recent work has
provided constructions of iO improved both along the assumptions and efficiency fronts [15, 3, 23, 2],
leading to corresponding improvements for AS-secure WE. Thus AS-secure WE can be achieved
without loss of efficiency or added assumptions compared to SS-secure WE.

APBE2. Our APBE2 scheme lets L be the NP language of pairs (sa,PH(sa, pw)) over the choices
of sa, pw , the witness being pw . A-PBE encryption of m using the hashed password as the public
key will be AS-secure witness encryption of m under x = (sa,hpw). Decryption will use the witness
pw .

This solution is non-invasive, as it does not prescribe or require any particular design for PH.
Rather, it takes PH as given, and shows how to encrypt with public key the hashed password
obtained from PH. In this way, PH can in particular be the iterated hash design of the PKCS#5
standard [33] that already underlies millions of usages of passwords, or any other practical, legacy
design. Of course, for security, we will need to make an assumption about the security of PH,
but that is very different from prescribing its design. Our assumption is the same RIP security as
discussed above. We note that this assumption is already, even if implicitly, made in practice for
the security of in-use S-PBE, where the hashed passwords are the keys, and is shown by [9] to hold
for PKCS#5 in the ROM, so it is a natural and reasonable assumption.

SS revisited. GGSW [19, 20] present constructions of PKE, IBE and ABE schemes from witness
encryption, claiming that these constructions are secure assuming soundness security of the WE
scheme. The need for adaptive security of our A-PBE scheme leads to the natural question of
why we need a stronger condition than GGSW [19, 20]. The answer is that they need it too. We
point out that the theorems of GGSW [19, 20] claiming security of their applications under SS
are incorrect, and that SS does not in fact suffice for the security of their schemes. We do this
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by presenting counter-examples (cf. Section 4). Taking their PRG-based PKE construction as a
representative example, we provide a WE scheme which satisfies SS yet, if used in their construction,
the resulting PKE scheme will provide no security at all. We then show that the gap can be filled
by using AS. Namely, we show that their PKE scheme is secure if the underlying WE scheme is
AS secure and the PRG is secure. Analogous results hold for GGSW’s applications to IBE and
ABE. Intuitively, the weakness of SS that compromises the applications of GGSW [19, 20] is that
a WE scheme may satisfy SS yet behave totally insecurely, for example returning the message in
the clear, when |x| = λ. But in applications, x will have length related to λ, so SS is not enough.
AS does not have this weakness because x can depend on λ.

Better security for APBE2. Define the stretch of a password-hashing function as the difference
between its output length and input length, and denote it by s. Our result of Theorem 5.1 proving
the security of APBE2 requires that 2−s is negligible, meaning the output length is somewhat more
than the input length. This captures situations in which passwords are, say 12-character ASCII
strings (input length is 78-bit) and the password hashing function is iterated SHA1 (output length
is 160-bit). However, when passwords are longer, say 24-character, then passwords should offer
more security. To fill this gap we offer a second analysis of the security of APBE2 that removes
the restriction on the stretch, allowing it now to be arbitrary. For this purpose we strengthen the
assumption on the WE scheme from AS to a notion of adaptive extractability we call XS. As a side
benefit, the prior assumption on the password hashing function (RIP security, asking that password
hashes are pseudorandom) is reduced to ROW security, asking merely that the password hashing
function is one way.

XS is an adaptive variant of the notion of extractability from GKPVZ [26]. XS asks that, given
an adversary violating the security of the encryption under x ∈ {0, 1}∗, one can extract a witness
w for the membership of x ∈ L, even when x depends on the security parameter. We show that XS
implies AS and also that XS-secure WE can be achieved based on extractable (aka. differing-input)
obfuscations [4, 13, 1].

Some works [14, 18] cast doubts on the achievability of extractable witness encryption or ex-
tractable iO with arbitrary auxiliary inputs. Our result however requires a very particular auxiliary
input and the attacks in these works do not apply.

A-PBE as PKE. The standard model for public-key encryption (PKE) is that the user (receiver)
publishes a public encryption key and stores the corresponding secret key securely. In practice,
however, the secret key is often not stored in computer memory but instead derived from a password
stored in human memory. Reasons this is advantageous include security and mobility. Computer-
stored keys are vulnerable to exfiltration by malware. Meanwhile, users tend to have numerous
devices including cellphones and tablets on which they want to decrypt. They may also use web-
based services such as gmail on untrusted client machines. Passwords are more flexible and secure
than stored keys in such settings.

A-PBE captures this more real-world PKE model. Our definitions allow us to evaluate security
in the setting of actual use, namely when secret keys are possibly correlated passwords. Our
schemes provide solutions with provable guarantees. We note that A-PBE is the model of the
recently proposed gmail end-to-end encryption system, evidencing practical relevance of the goal.

Password-based signatures. Beyond A-PBE, we view this paper as initiating a study of asym-
metric password-based cryptography. In this light we also introduce and treat password-based
signatures with both invasive and non-invasive solutions to mirror the case of A-PBE.

Password-based authentication is currently done using a MAC keyed by the hashed password.
It is thus subject to the same weakness as S-PBE, namely that compromise of the server through
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Heartbleed or other attacks leads to compromise of hashed passwords, resulting in compromise of
the authentication. In the password-based signatures we suggest, one signs under the password
pw and verifies under the hashed password hpw = PH(sa, pw). Possession of the hashed password
does not compromise security.

We can give a simple solution analogous to the one for A-PBE, namely apply a RIP function EX
to the password and salt to get coins; run a key-generation of a standard digital signature scheme
on these to get a signing key and verification key; set the password hash to the verification key;
to sign given the password, re-generate the signing and verifying keys and sign under the former.
This, however is invasive, prescribing its own password-hashing function. It is a good choice if
one has the flexibility of implementing a new password hashing function, but as discussed above,
deployment in the face of legacy PKCS#5 password hashes motivates asking whether a non-invasive
solution, meaning one that can utilize any given password hashing function, is possible. As with
A-PBE, this is a much more challenging question. We can show how to obtain a non-invasive
password-based signature scheme by using key-versatile signatures [8]. The latter are effectively
witness signatures meeting strong simulatability and extractability conditions [16, 8] and allow us
to obtain password-based signatures analogous to how we obtained A-PBE from WE. The only
assumption needed on the password hashing function PH is that it is one-way.

Discussion and GGSW updates. A good definition for WE should have two properties: (1) Us-
ability, meaning it suffices to prove security of applications, and (2) Achievability, meaning proposed
and natural constructions, which in this case mainly means the iO-based one of GGHRSW [17],
can be shown to meet the definition. Our AS definition has both properties, making it viable. We
have shown that SS lacked the usability property.

Here we have referred to the original GGSW STOC paper [19] and the corresponding original
full ePrint version [20]. Subsequent to seeing prior versions of our paper, the GGSW authors
updated their paper on ePrint [21, 22]. They acknowledge the gap we found. They also propose
their own, modified definitions in an attempt to fill this gap.

These updated definitions remain, from our perspective, problematic. We showed that their first
proposed definition, which we call SS2 [21], is unachievable. (Because the negligible function is not
allowed to depend on the adversary. See Appendix A.) We communicated this to the authors. They
then updated SS2 to SS3 [22]. But we explain in Appendix A that SS3 has limitations with regard
to achievability. While one might of course propose still further modifications to their definition it
is not clear why this is a productive route for the community in the face of the fact that, with AS,
we have —and had prior to the GGSW updates— a definition that provides both usability and
achievability.

Recently KNY [31] gave a definition, that we call SS5, in the quantifier style of SS1, SS2 and
SS3. We discuss it also in Appendix A where we show that it is unachievable. (Because, like SS2,
the negligible function doesn’t depend on the adversary.)

These developments are an indication that neither the gap we find, nor the AS definition we
propose to fill it, are trivial, that quantifier-based definitions are error-prone, and that our counter-
examples for SS remain important to understand and guide definitional choices. Demonstrating
the last, beyond [21, 22], further work subsequent to ours, and definitionally influenced by ours,
includes [24].

We believe the idea of witness encryption is important and useful and we view our work as
advancing its cause. Precision in definitions, proofs and details is particularly important in our
field because we claim proven security. Reaching such precision can require iteration and definitional
adjustments and increments, and our work, in this vein, helps towards greater impact and clarity
for the area of witness encryption.
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2 Preliminaries

Notation. We denote the size of a finite set X by |X|, the number of coordinates of a vector x
by |x|, and the length of a string x ∈ {0, 1}∗ by |x|. We let ε denote the empty string. By x‖y we
denote the concatenation of strings x, y. If X is a finite set, we let x←$X denote picking an element
of X uniformly at random and assigning it to x. Algorithms may be randomized unless otherwise
indicated. Running time is worst case. “PT” stands for “polynomial-time,” whether for randomized
algorithms or deterministic ones. If A is an algorithm, we let y ← A(x1, . . . ; r) denote running A
with random coins r on inputs x1, . . . and assigning the output to y. We let y←$A(x1, . . .) be the
resulting of picking r at random and letting y ← A(x1, . . . ; r). We say that f : N→ R is negligible
if for every positive polynomial p, there exists np ∈ N such that f(n) < 1/p(n) for all n > np. An
adversary is an algorithm or a tuple of algorithms.

Games. We use the code based game playing framework of [10]. For an example of a game see
Fig. 2. By GA(λ) ⇒ y we denote the event that the execution of game G with adversary A and
security parameter λ results in the game returning y. We abbreviate GA(λ)⇒ true by GA(λ), the
occurrence of this event meaning that A wins the game.

Unpredictability. Let A = (A1, . . .) be a tuple of algorithms where A1, on input the unary

representation 1λ of the security parameter λ ∈ N, returns a vector pw. Let GuessA(λ) denote the
maximum, over all i,pw , of Pr[pw[i] = pw ], the probability over pw←$A1(λ). We say that A is
unpredictable if the function GuessA(·) is negligible.

3 Adaptive Witness Encryption

We begin by recalling the notion of witness encryption of GGSW [19] and their soundness security
requirement. We then give a different security notion called adaptive soundness. We show that it
is strictly stronger than the original, which means we must address achieving it. We show that it
is achievable via indistinguishability obfuscation.

NP relations. For R: {0, 1}∗×{0, 1}∗ → {true, false}, we let R(x) = {w : R(x,w)} be the witness
set of x ∈ {0, 1}∗. We say R is an NP-relation if it is computable in PT and there is a polynomial
R.wl: N→ N, called the witness length of R, such that R(x) ⊆ {0, 1}R.wl(|x|) for all x ∈ {0, 1}∗. We
let L(R) = { x : R(x) 6= ∅ } ∈ NP be the language defined by R.

WE syntax and correctness. A witness encryption (WE) scheme WE for L = L(R) defines a
pair of PT algorithms WE.Enc,WE.Dec. Algorithm WE.Enc takes as input the unary representation
1λ of a security parameter λ ∈ N, a string x ∈ {0, 1}∗, and a message m ∈ {0, 1}∗, and outputs
a ciphertext c. Algorithm WE.Dec takes as input a string w and a ciphertext c, and outputs
m ∈ {0, 1}∗ ∪ {⊥}. Correctness requires that WE.Dec(w,WE.Enc(1λ, x,m)) = m for all λ ∈ N, all
x ∈ L, all w ∈ R(x) and all m ∈ {0, 1}∗.

Soundness security. The soundness security (SS) condition of GGSW [19] says that for any PT
adversary A, any x ∈ {0, 1}∗\L and any equal-length m0,m1 ∈ {0, 1}∗, there is a negligible function
ν such that for all λ ∈ N we have

Pr[A(WE.Enc(1λ, x,m1)) = 1]− Pr[A(WE.Enc(1λ, x,m0)) = 1] < ν(λ) . (1)

In the following, it is useful to let AdvssWE,L,x,m0,m1,A(λ) denote the probability difference in Equation (1).
Then the soundness condition can be succinctly and equivalently stated as follows: WE is SS[L]-
secure if for any PT adversary A, any x ∈ {0, 1}∗ \ L and any equal-length m0,m1 ∈ {0, 1}∗, the
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Game ASAWE,L(λ)

(x,m0,m1,St)←$A(1λ) ; b←$ {0, 1} ; c←$ WE(1λ, x,mb) ; b′←$A(St, c)

Return ((b = b′) ∧ (x 6∈ L))

Figure 2: Game AS defining adaptive soundness of witness encryption scheme WE.

WEf .Enc(1
λ, x,m)

If |x| ≥ f(λ) then return (0,m)

Else return (1,WE.Enc(1λ, x,m))

WEf .Dec(w, c)

(b, t)← c

If b = 0 then return t else return

WE.Dec(w, t)

Figure 3: Witness encryption scheme WEf for L ∈ NP, derived from WE ∈ SS[L] and a PT-
computable function f : N→ N.

function AdvssWE,L,x,m0,m1,A(·) is negligible. It is convenient, in order to succinctly and precisely ex-
press relations between notions, to let SS[L] denote the set of all correct witness encryption schemes
that are SS[L]-secure.

Adaptive soundness. Our security definition associates to witness encryption scheme WE, lan-

guage L ∈ NP, adversary A and λ ∈ N the game ASAWE,L(λ) of Fig. 2. Here the adversary, on input

1λ, produces instance x, messages m0,m1, and state information St. It is required that |m0| = |m1|.
The game picks a random challenge bit b and computes a ciphertext c via WE.Enc(1λ, x,mb). The
adversary is now given c, along with its state information St, and outputs a prediction b′ for b.
The game returns true if the prediction is correct, meaning b = b′, and also if x 6∈ L. We let
AdvasWE,L,A(λ) = 2 Pr[ASAWE,L(λ)] − 1. We say that WE has adaptive soundness security for L, or
is AS[L]-secure, if for every PT A the function AdvasWE,L,A(·) is negligible. We let AS[L] denote the
set of all correct witness encryption schemes that are AS[L]-secure.

Due to the check that x 6∈ L, our game does not necessarily run in PT. This, however, will
not preclude applicability. The difference between AS and SS is that in the former, x,m0,m1 can
depend on the security parameter and on each other. Given that SS quantifies over all x,m0,m1,
this may not at first appear to make any difference. But we will see that it does and that AS is
strictly stronger than SS.

AS is a game-based definition while SS is phrased in a more “quantifier-based” style that mimics
the soundness condition in interactive proofs [28]. The game-based AS notion is better suited for
applications because the latter are also underlain by game-based definitions. Indeed we’ll see that
SS does not suffice for applications.

A useful transform. In several proofs, we’ll employ the following transform. Given a WE scheme
WE ∈ SS[L] and a PT function f : N → N, our transform returns another WE scheme WEf . The
constructed scheme, formally specified in Fig. 3, misbehaves, returning the message in the clear,
when |x| ≥ f(λ), and otherwise behaves like WE. The following says that if f is chosen to satisfy
certain conditions then SS[L]-security is preserved, meaning WEf ∈ SS[L]. In our uses of the
transform we will exploit the fact that WEf will fail to have other security properties or lead to
failure of applications that use it.

Lemma 3.1 Let L ∈ NP and WE ∈ SS[L]. Let f : N → N be a non-decreasing, PT-computable
function such that limλ→∞ f(λ) =∞. Consider witness encryption scheme WEf derived from WE
and f as shown in Fig. 3. Then WEf ∈ SS[L].
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Proof: Let A be a PT adversary. Let x ∈ {0, 1}∗ \ L and let m0,m1 ∈ {0, 1}∗ have equal length.
Let PT adversary B, on input ciphertext c, return b′ ← A((1, c)). Let S(x) = {λ ∈ N : f(λ) ≤ |x|}.
Then for all λ ∈ N \ S(x) we have AdvssWE,L,x,m0,m1,B(λ) = AdvssWEf ,L,x,m0,m1,A(λ). The assumption

that WE ∈ SS[L] means that AdvssWE,L,x,m0,m1,B(·) is negligible. But the assumptions on f mean
that the set S(x) is finite. Consequently, the function AdvssWEf ,L,x,m0,m1,A(·) is negligible as well.

Relations. We show that adaptive soundness implies soundness but not vice versa, meaning adap-
tive soundness is a strictly stronger requirement.

Proposition 3.2 Let L ∈ NP. Then: (1) AS[L] ⊆ SS[L], and (2) If {0, 1}∗ \ L is infinite and
SS[L] 6= ∅ then SS[L] 6⊆ AS[L].

Claim (1) above says that any witness encryption scheme WE that is AS[L]-secure is also SS[L]-
secure. Claim (2) says that the converse is not true. Namely, there is a witness encryption scheme
WE such that WE is SS[L]-secure but not AS[L]-secure. This separation assumes some SS[L]-
secure witness encryption scheme exists, for otherwise the claim is moot. It also assumes that the
complement of L is not trivial, meaning is infinite, which is true if L is NP-complete and P 6= NP,
hence is not a strong assumption.

Proof of Proposition 3.2: For part (1), assume we are given WE that is AS[L]-secure. We
want to show that WE is SS[L]-secure. Referring to the definition of soundness security, let A be
a PT adversary, let x ∈ {0, 1}∗ \ L and let m0,m1 ∈ {0, 1}∗ have equal length. We want to show
that the function AdvssWE,L,x,m0,m1,A(·) is negligible. We define the adversary Bx,m0,m1 as follows:

Let Bx,m0,m1(1λ) return (x,m0,m1, ε) and let Bx,m0,m1(t, c) return b′←$A(c). Here, Bx,m0,m1 has
x,m0,m1 hardwired in its code, and, in its first stage, it returns them, along with St = ε as
state information. In its second stage, it simply runs A. Note that even though Bx,m0,m1 has
hardwired information, this information is finite and not dependent on the security parameter, so
the hardwiring does not require non-uniformity. Now it is easy to see that for all λ ∈ N we have
AdvasWE,L,Bx,m0,m1

(λ) = AdvssWE,L,x,m0,m1,A(λ). The assumption that WE is AS[L]-secure means that

AdvasWE,L,Bx,m0,m1
(·) is negligible, hence so is AdvssWE,L,x,m0,m1,A(·), as desired.

For part (2), the assumption SS[L] 6= ∅ means there is some WE ∈ SS[L]. By way of Lemma 3.1, we
can modify it to WEf ∈ SS[L] as specified in Fig. 3, where f : N→ N is some non-decreasing, PT-
computable function such that limλ→∞ f(λ) =∞. Now we want to present an attacker A violating
AS[L]-security of WEf . The difficulty is that A needs to find x 6∈ L of length f(λ), but L ∈ NP
and A must be PT. We will exploit the fact that NP ⊆ EXP and pick f to be a poly-logarithmic
function related to the exponential time to decide L, so that if there exists an x 6∈ L of length f(λ)
then A can find it by exhaustive search in PT. Our assumption that the complement of L is infinite
means that A succeeds on infinitely many values of λ.

Proceeding to the details, since L ∈ NP ⊆ EXP, there is a constant d ≥ 1 and a deterministic
algorithm M such that for every x ∈ {0, 1}∗, we have M(x) = 1 if and only if x ∈ L, and M ’s

running time is O(2|x|
d
). Define f by f(λ) = blg1/d(λ)c for all λ ∈ N. Let WE ∈ SS[L] and let WEf

be the witness encryption scheme derived from WE and f as specified in Fig. 3. By Lemma 3.1,
WEf ∈ SS[L]. Now we show that WEf 6∈ AS[L]. Let m0,m1 ∈ {0, 1}∗ be arbitrary, distinct,
equal-length messages. Consider the following adversary A:
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Game IOA
P (λ)

(C0, C1,St)←$A(1λ) ; b←$ {0, 1} ; c←$ P.Ob(1λ, Cb)

b′←$A(St, c) ; Return (b = b′) ∧ (C0 ≡ C1)

Figure 4: Game IO defining security of an indistinguishability obfuscator P.

A(1λ)

k ← f(λ) ; x← 0k

For all s ∈ {0, 1}k do
If (M(s) 6= 1) then x← s

Return (x,m0,m1, ε)

A(t, c)

(b,m)← c
If ((b = 0) ∧ (m = m1)) then return 1
Return 0

Each execution of M takes time O(2k
d
) = O(λ). The For loop goes through all s ∈ {0, 1}k in

lexicographic order and thus M is executed at most 2k ≤ λ times. So A is PT. For any λ ∈ N,
if {0, 1}f(λ) \ L 6= ∅ then AdvasWEf ,L,A

(λ) = 1. Since {0, 1}∗ \ L is infinite, f is non-decreasing,

and limt→∞ f(t) = ∞, there are infinitely many values λ such that AdvasWEf ,L,A
(λ) = 1, and thus

WEf 6∈ AS[L], as claimed.

Indistinguishability obfuscation. We say that two circuits C0 and C1 are functionally equivalent,
denoted C0 ≡ C1, if they have the same size, the same number n of inputs, and C0(x) = C1(x)
for every input x ∈ {0, 1}n. An obfuscator P defines PT algorithms P.Ob,P.Ev. Algorithm P.Ob
takes as input the unary representation 1λ of a security parameter λ and a circuit C, and outputs a
string c. Algorithm P.Ev takes as input strings c, x and returns y ∈ {0, 1}∗ ∪ {⊥}. We require that
for any circuit C, any input x, and any λ ∈ N, it holds that P.Ev(x,P.Ob(1λ, C)) = C(x). We say
that P is iO-secure if AdvioP,A(λ) = 2 Pr[IOA

P (λ)] − 1 is negligible for every PT adversary A, where
game IO is defined at Fig. 4. This definition is slightly different from the notion in [4, 17]—the
adversary is non-uniform and must produce functionally equivalent circuits C0 and C1—but the
former definition is implied by the latter.

Achieving AS-security. Our AS security notion is strictly stronger than the SS one of GGSW [19],
but we’ll show that the iO-based WE scheme of GGHRSW [17] is AS-secure. Proceeding to the
details, let R be an NP-relation. For each x,m ∈ {0, 1}∗, let Rx,m be a circuit that, on input
w ∈ {0, 1}R.wl(|x|), returns m if R(x,w) and returns 0|m| otherwise. Let P be an indistinguishability
obfuscator, defining a PT obfuscation algorithm P.Ob and a PT evaluation algorithm P.Ev. We
define WE scheme WER[P] as follows: algorithm WER[P].Enc(1λ, x,m) returns c←$ P.Ob(1λ, Rx,m);
and algorithm WER[P].Dec(w, c) returns m←$ P.Ev(w, c).

Theorem 3.3 Let R be an NP-relation and let L = L(R). Let P be an indistinguishability
obfuscator. Construct WER[P] as above. If P is iO-secure then WER[P] ∈ AS[L].

Proof: Let A be a PT adversary attacking the AS[L]-security of WER[P]. Wlog, assume that A
produces distinct m0 and m1. Note that Rx,m0 ≡ Rx,m1 if and only if x 6∈ L. Consider the following
PT adversary B attacking iO-security of P:

B(1λ)

(x,m0,m1, St)←$A(1λ) ; Return (Rx,m0 , Rx,m1 , St)

B(St, c)

b′←$A(St, c) ; Return b′

11



Game PRGA
G(λ)

s←$ {0, 1}λ ; x1 ← G(s)

x0←$ {0, 1}`(λ) ; b←$ {0, 1}
b′←$A(1λ, xb) ; Return (b = b′)

Game INDCPAA
PKE(λ)

(pk, sk)←$ PKE.Kg(1λ) ; b←$ {0, 1}
b′←$ALR(1λ,pk) ; Return (b = b′)

LR(m0,m1)

c←$ PKE.Enc(pk,mb) ; Return c

Figure 5: Left: Game PRG defining security of a pseudorandom generator G. Here ` : N → N
is the expansion factor of G. Right: Game INDCPA defining INDCPA security of a PKE scheme
PKE. For each oracle query, the messages m0,m1 ∈ {0, 1}∗ must have the same length.

PKE.Kg(1λ)

sk←$ {0, 1}λ ; x← G(sk)

pk ← (λ, x) ; Return (pk, sk)

PKE.Enc(pk,m)

(λ, x)← pk

Return WE.Enc(1λ, x,m)

PKE.Dec(sk, c)

Return WE.Dec(c, sk)

Figure 6: GGSW’s PKE scheme PKE[G,WE], where G is a length-doubling PRG and WE is a
witness encryption scheme for LG = {G(s) : s ∈ {0, 1}∗ }

Then Pr[ASAWER[P],L
(·)] = Pr[IOB

P (·)] and thus AdvasWER[P],L,A
(·) = AdvioP,B(·).

4 Insufficiency of Soundness Security

GGSW [19] present constructions of several primitives from witness encryption, including PKE, IBE
and ABE for all circuits. They claim security of these constructions assuming soundness security
of the underlying witness-encryption scheme. We observe here that these claims are wrong. Taking
their PRG-based PKE scheme as a representative example, we present a counter-example, namely
a witness-encryption scheme satisfying soundness security such that the PKE scheme built from it
is insecure. Similar counter-examples can be built for the other applications in GGSW [19]. Briefly,
the problem is that a witness encryption scheme could fail to provide any security when |x| is equal
to, or related in some specific way to, the security parameter, yet satisfy SS security because the
latter requirement holds x fixed and lets λ go to ∞. We show that the gap can be filled, and all
the applications of GGSW recovered, by using adaptive soundness in place of soundness security.
We’ll begin by recalling the well-known notions of PRG and PKE.

Primitives. A pseudorandom generator (PRG) [11, 37] is a PT deterministic algorithm G that
takes any string s ∈ {0, 1}∗ as input and return a string G(s) of length `(|s|), where the function ` :
N→ N is call the expansion factor of G. We say that G is secure if AdvprgA,G(λ) = 2 Pr[PRGG

A(λ)]−1
is negligible, for every PT adversary A, where game PRG is defined in Fig. 5.

A public-key encryption (PKE) scheme PKE defines PT algorithms PKE.Kg,PKE.Enc, PKE.Dec,
the last deterministic. Algorithm PKE.Kg takes as input 1λ and outputs a public encryption key pk
and a secret decryption key sk. Algorithm PKE.Enc takes as input pk and a message m ∈ {0, 1}∗,
and outputs a ciphertext c. Algorithm PKE.Dec(sk, c)8 outputs m ∈ {0, 1}∗ ∪ {⊥}. Scheme PKE

is INDCPA-secure [27, 6] if Advind-cpaPKE,A (·) = 2 Pr[INDCPAA
PKE(·)] − 1 is negligible for every PT

adversary A, where game INDCPA is defined in Fig. 5.

SS does not suffice for GGSW’s PKE scheme. Let G be a PRG that is length doubling,
meaning |G(s)| = 2|s| for every s ∈ {0, 1}∗. Let LG = { G(s) : s ∈ {0, 1}∗ }. This language
is in NP. Let WE ∈ SS[LG] be a SS[LG]-secure WE scheme. The PKE scheme PKE[G,WE] of
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GGSW is shown in Fig. 6. We claim that SS[LG]-security of WE is insufficient for PKE to be
INDCPA-secure. We show this by counter-example, meaning we give an example of a particular
WE scheme WE ∈ SS[LG] such that PKE[G,WE] is not INDCPA. We assume there exists some
WE ∈ SS[LG], else the question is moot. Let f(λ) = 2λ for every λ ∈ N. Now let WE = WEf
be the WE scheme of Fig. 3 obtained from WE and f . Lemma 3.1 tells us that WEf ∈ SS[LG].
Now we claim that PKE[G,WEf ] is not INDCPA. The reason is that when PKE.Enc(pk,m) runs
WEf .Enc(1

λ, x,m), we have |x| = 2λ = f(λ). By definition of WEf .Enc, the latter returns (0,m)
as the ciphertext, effectively sending the message in the clear.

AS security suffices for GGSW’s PKE. We now show that the gap can be filled using AS. That

is, we prove that if G is a secure PRG and WE is AS[LG]-secure, then PKE[G,WE] is INDCPA-
secure:

Theorem 4.1 Let G : {0, 1}∗ → {0, 1}∗ be a length-doubling PRG. Let LG = {G(s) : s ∈ {0, 1}∗}.
If G is a secure PRG and WE ∈ AS[LG] then PKE[G,WE] is INDCPA-secure.

The proof is in Appendix D. It follows the template of the proof of GGSW [19]. First one uses
the PRG security of G to move to a game where x is random. Since G is length doubling, such an
x is not in LG with high probability. At this point GGSW [19] (incorrectly) claim that the result
follows from the SS[LG]-security of WE. We instead use the AS[LG]-security of WE, providing a
reduction with an explicit construction of an AS adversary.

Further counter-examples. Actually, GGSW don’t use a generic scheme WE ∈ SS[LG] for their
PKE scheme. They start with a scheme WE ∈ SS[L] for an NP-complete language L, transform
it to WE ∈ SS[LG] via the transform in Appendix B, and then define their scheme as PKE[G,WE].
Their proof, however, does not attempt to rely on anything more than the fact that WE ∈ SS[LG].
For clarity and simplicity we have accordingly looked at the PKE scheme obtained directly from
an arbitrary WE ∈ SS[LG]. However, one might ask whether the specific way in which GGSW
obtain WE could result in PKE[G,WE] being secure assuming WE ∈ SS[L]. The answer is no. In
Appendix C, we show how to extend our counter-example to the actual scheme, meaning that we
provide WE ∈ SS[LG], obtained from WE ∈ SS[L] for an NP-complete language L via the transform
in Fig. 10 such that PKE[G,WE] fails to be INDCPA-secure.

To obtain similar counter-examples showing the inadequacy of SS for the other applications of
GGSW (namely IBE and ABE for all circuits), one can follow the template of our PKE attack, by
choosing a lower bound f(λ) for the length of the string x = X(λ) given to the witness encryption.
Since X(λ) is generated from some cryptographic primitive π (for example, in IBE, π is a unique
signature scheme), the security of π requires that X(λ) have super-logarithmic length. Hence
there is a constant C > 0 such that |X(λ)| ≥ C lg(λ) for all λ ∈ N, and therefore we can let
f(λ) = bC lg(λ)c.

5 Asymmetric Password-based Encryption

In this Section we introduce and define the new primitive of asymmetric password-based encryption
(A-PBE). We then provide a non-invasive, WE-based A-PBE scheme we call APBE2, with two
security analyses. First we prove security of APBE2 under AS-security of the WE scheme. Then
under XS-security of the WE scheme we provide another proof that shows the scheme to admit
better “stretch,” leading to better security for some real password distributions. In Appendix E we
provide a simple and fast, but invasive, A-PBE scheme, called APBE1. Our model and definitions
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Game APBEAF (λ)

pw←$A1(1λ) ; b←$ {0, 1}
For i = 1 to |pw| do

sa[i]←$ {0, 1}F.sl(λ)

hpw[i]← F.Ph(1λ, sa[i],pw[i])

b′←$ALR
2 (1λ, sa,hpw) ; Return (b = b′)

LR(m0,m1, i)

c←$ F.Enc(1λ,hpw[i], sa[i],mb) ; Return c

Game RIPAH (λ)

pw←$A1(1λ) ; b←$ {0, 1}
For i = 1 to |pw| do

sa[i]←$ {0, 1}H.kl(λ)

hpw[i]← H(1λ, sa[i],pw[i])

If b = 0 then hpw[i]←$ {0, 1}H.ol(λ)

b′←$A2(1λ, sa,hpw) ; Return (b = b′)

Figure 7: Left: Game APBE defining security of an A-PBE scheme F. Right: Game RIP defining
RIP security for a hash family H.

are of interest beyond our schemes because they capture PKE in the real-world setting where secret
keys are based on passwords and may thus be related.

A-PBE syntax and security. An asymmetric password-based encryption (A-PBE) scheme F
specifies PT algorithms F.Ph,F.Enc, F.Dec, the first and the last deterministic. It also specifies
a password-length function F.pl : N → N, a salt-length function F.sl : N → N, and a hash-length
function F.hl : N → N. Algorithm F.Ph takes as input the unary representation 1λ of security
parameter λ, a salt sa ∈ {0, 1}F.sl(λ), and a password pw ∈ {0, 1}F.pl(λ), and returns a hashed
password hpw = F.Ph(1λ, sa,pw) ∈ {0, 1}F.hl(λ). Algorithm F.Enc takes as input 1λ,hpw , sa and a
message m ∈ {0, 1}∗, and outputs a ciphertext c. Finally, given (pw , c), algorithm F.Dec returns
m ∈ {0, 1}∗ ∪ {⊥}. We require that

F.Dec
(
pw ,F.Enc(1λ,F.Ph(1λ, sa, pw), sa,m)

)
= m

for every m ∈ {0, 1}∗, λ ∈ N, sa ∈ {0, 1}F.sl(λ), and pw ∈ {0, 1}F.pl(λ).
An adversary A is a pair of PT algorithms (A1, A2). Adversary A1(1

λ) generates a vector of
passwords pw, each entry a F.pl(λ)-bit string. It is required that A is unpredictable as defined
in Section 2. Note that passwords —entries of the vector pw— may be correlated, even though
each individually is unpredictable, to capture the fact that individual users often pick related
passwords for their different accounts. We say that A-PBE scheme F is secure if AdvapbeF,A (·) =

2 Pr[APBEAF (·)]−1 is negligible for every PT unpredictable adversary A, where game APBEAF (λ) is
defined in Fig. 7. In this game, A1(1

λ) first generates its vector pw of passwords. The game picks a
challenge bit b←$ {0, 1} and a vector of random salts sa. Adversary A2 is given sa and the vector
hpw of hashed passwords. It can then query its oracle LR with equal-length, distinct messages
m0,m1, and an index i, to get F.Enc(1λ,hpw[i], sa[i],mb). Finally A2 outputs a prediction b′ for
b. The game returns true if the prediction is correct, meaning b = b′, and false otherwise.

Achieving A-PBE. If we have the luxury of prescribing our own password hashing function PH
then we can provide a fast and simple A-PBE scheme, that we call APBE1, based on any PKE
scheme. See Appendix E. However, this solution is invasive, asking for the deployment of a new
PH, which may not be possible due to existing legacy passwords and password-hashing functions.
We thus ask if it is possible to design a secure A-PBE scheme that is non-invasive. This means
we take F.Ph as given and aim to achieve security by making reasonable assumptions about its
security without prescribing its design, assumptions that in particular are met by the F.Ph function
of PKCS#5 or other standards. This turns out to be more challenging. We now provide the APBE2
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F[H,WE].Ph(1λ, sa,pw)

hpw ← H(1λ, sa,pw)

Return hpw

F[H,WE].Enc(1λ,hpw , sa,m)

x← (1λ, sa,hpw) ; c←$ WE(1λ, x,m)

Return c

F[H,WE].Dec(pw , c)

m←WE.Dec(pw , c)

Return m

Figure 8: A-PBE scheme F = APBE2[H,WE] associated to hash family H and witness
encryption scheme WE for LH.

scheme that accomplishes this using WE.

Non-invasive A-PBE. We view ourselves as given a function family H with key, input and output
length functions H.kl,H.il,H.ol. Our goal is to design an A-PBE scheme F such that F.Ph is H. In
particular, we could let H be the password hashing function family from PKCS#5 [33] or bcrypt [34],
thereby obtaining A-PBE without change in the existing hashed passwords. We begin by reviewing
the security assumption on H.

Related-input pseudorandomness. Let H be a function family. This means that H is a de-

terministic, PT function taking 1λ, a key k ∈ {0, 1}H.kl(λ) and an input x ∈ {0, 1}H.il(λ) to
return H(1λ, k, x) ∈ {0, 1}H.ol(λ). Here H.kl,H.il,H.ol: N → N are the key, input and output
lengths associated to H, respectively. We say that H is related-input pseudorandom (RIP) if
AdvripH,A(·) = 2 Pr[RIPAH(·)] − 1 is negligible for every PT unpredictable adversary A = (A1, A2),

where game RIPAH is shown in Fig. 7. Informally, this means that the hashed passwords should
be indistinguishable from random strings, even in the presence of the salts. We note that this
is exactly the property needed for classical S-PBE (symmetric PBE) to be secure, for it uses the
hashed password as the symmetric key. Thus, the assumption can be viewed as already made and
existing, even if implicitly, in current usage of passwords for S-PBE. We note that RIP security of
H is implied by UCE security of H relative to statistically unpredictable sources [7].

The APBE2 scheme. Let

LH = { (1λ, sa,H(1λ, sa,pw)) : λ ∈ N, sa ∈ {0, 1}H.kl(λ), pw ∈ {0, 1}H.il(λ) } .

This language is in NP. Let WE be a witness encryption scheme for LH. We associate to H and
WE the A-PBE scheme F = APBE2[H,WE] specified in Fig. 8. We let F.pl = H.il, F.sl = H.kl and
F.hl = H.ol. The construction lets the salt play the role of the key for H, the password being the
input and the hashed password the output.

Security of APBE2 under AS. Theorem 5.1 below says that if H is RIP and WE is AS[LH]-
secure then APBE2[H,WE] is a secure A-PBE scheme. The proof is in Appendix F.

Theorem 5.1 Let H be a function family such that 2H.il(·)−H.ol(·) is a negligible function. If H is
RIP and WE ∈ AS[LH] then F = APBE2[H,WE] is a secure A-PBE scheme.

The key feature of this result is that it is non-invasive, meaning it puts conditions on the hash
family H that suffice for security rather than mandating any particular design of H. Practical
and standardized key-derivation functions may be assumed to satisfy concrete versions of these
asymptotic conditions.

Arbitrary stretch. Define the stretch H.s(·) = H.ol(·)−H.il(·) of password hashing function H as

the difference between its output length and its input length. Theorem 5.1 requires that 2−H.s(·) is
negligible, meaning the output length of the hash must be somewhat longer than the input length.
This captures situations in which passwords are, say 12-character ASCII strings (input length is
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Game XSA,EWE,R(λ)

(x,m0,m1,St)←$A(1λ) ; b←$ {0, 1}
c←$ WE.Enc(1λ, x,mb)

b′←$A(St, c)

w←$ E(1λ, x,m0,m1,St, c)

Return ((b = b′) ∧ ¬R(x,w))

Game ROWA
H (λ)

pw←$A1(1λ)

For i = 1 to |pw| do

sa[i]←$ {0, 1}H.kl(λ) ; hpw[i]← H(1λ, sa[i],pw[i])

(w, i)←$A2(1λ, sa,hpw)

Return (hpw[i] = H(1λ, sa[i], w))

Figure 9: Left: Game XS defining extractable security of witness encryption scheme WE. Right:
Game ROW defining ROW security of H.

78-bit) and H is iterated SHA1 (output length is 160-bit). However, when passwords are longer,
say 24-character, then Theorem 5.1 doesn’t apply. This is unsatisfying, because intuitively, longer
passwords should offer better security. In this section, we formalize a stronger security requirement
for witness encryption called XS that allows us to remove the assumption on the stretch of H.

XS-secure witness encryption. The security requirements for SS and AS are for x 6∈ L, no
security requirement being made if x ∈ L. Extractable witness encryption [26] is a requirement for
all x ∈ {0, 1}∗, asking that if the adversary violates privacy of encryption under x then one can
extract a witness for the membership of x ∈ L. Intuitively, the only way to violate privacy is to
know a witness. We provide a formalization of extraction security that we call XS. It strengthens
the formalization of GKPVZ [26] in being adaptive, in the vein of AS, but weakens it by not
involving auxiliary inputs. The formalizations also differ in other details.

Let R be an NP-relation and let L = L(R). Let WE be a witness encryption scheme for L. We
say that WE is XS[L]-secure if for any PT adversary A there is a corresponding PT algorithm E
such that AdvxsWE,R,A,E(λ) = 2 Pr[XSA,EWE,R(λ)]− 1 is negligible, where game XSA,EWE,R is defined at the
leftpanel of Fig. 9. Let XS[L] denote the set of correct, XS[L]-secure witness encryption schemes
for L.

Intuitively, XS[L] security implies AS[L] security for any L ∈ NP, because in the former notion,
if the adversary produces x 6∈ L then no witness exists, so no extractor E (even a computationally
unbounded one) can find one. Proposition 5.2 below formally confirms this. The proof is in
Appendix H.

Proposition 5.2 For any NP-relation R, it holds that XS[L(R)] ⊆ AS[L(R)].

Extractable obfuscation (xO), also known as differing-input obfuscation, was defined in [4, 13, 1].
BCP [13] show that it implies extractable witness encryption meeting the definition of GKPVZ [26].
In Appendix I, we give an alternative definition of xO and show that it implies XS[L(R)]-secure
witness encryption, for any NP relation R. The construction is the same WER[P] in Section 3,
where the obfuscator P is assumed to be xO-secure, instead of just being iO-secure.

Related-input one-wayness. We formalize another hardness assumption, namely related-input
one-wayness, on hash function family H. Informally we demand that if the adversary is given
the hashed passwords and the salts, it can’t compute a preimage of any hashed password. This
is exactly the intuitive requirement for password-hashing functions: if passwords are well-chosen
to resist dictionary attacks, then no adversary should be able to recover some password from the
hashed ones. It’s a variant of the notion of one-wayness under correlated products of [35]. Formally,
we say that H is related-input one-way (ROW) if AdvrowH,A(λ) = Pr[ROWA

H(λ)] is negligible for all PT

unpredictable adversary A = (A1, A2), where game ROWA
H is shown at the right panel of Fig. 9.

Security of APBE2 under XS. The following establishes the security of F = APBE2[H,WE]
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without any restrictions or assumptions on the stretch of H. See Appendix G for the proof.

Theorem 5.3 If H is ROW and WE ∈ XS[LH] then F = APBE2[H,WE] is a secure A-PBE scheme.
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A Further versions of SS

A good definition for WE security should have two properties: (1) Usability, meaning it should suf-
fice to prove security of applications, and (2) Achievability, meaning it should be provably achieved
by the natural constructs, which in this case means the iO-based one of GGHRSW [17]. Our AS
definition has both properties. We have shown that SS [19, 20] lacks (1).

After seeing a prior version of our work, GGSW updated the ePrint version of their paper [21].
Here they acknowledge the gaps we find. They then propose their own modification of SS, that
we call SS2, in an attempt to fill the gaps. This was unnecessary because AS had already been
put forth and shown to fill the gap, but GGSW appeared to want a definition in their quantifier-
based style rather than our game-based style. They viewed the problem in SS as arising from the
“order of quantification” and attempted to address it by changing this order. SS2 quantified the
negligible function first, making it universal. We explain below that SS2 is unachievable, meaning
no WE scheme can be SS2 secure. (More precisely our result is that SS2-secure WE is unachievable
for any NP-complete language unless the polynomial-time hierarchy collapses. Our proof uses
the fact that statistically-secure WE is not achievable [19].) We pointed this out to GGSW in a
personal communication. They acknowledged this and further updated their definition to one we
call SS3 [21], which used another order of quantification. Below we show that SS3 remains limited
in terms of achievability. This is because it does not seem possible to show that the iO-based WE
construction of GGHRSW [17] meets it under the definition of iO-security that is commonly used
in other applications of iO [36, 30, 12] and that we have shown suffices for AS-secure WE.

The updated GGSW papers [21, 22] characterize the gap we find as having to do with the “order
of quantifiers” in the SS definition, and their fixes attempt to change quantifier order. However,
the issue is not quantifier order but, more subtly, the relation between x and λ. More broadly,
game-based definitions are a better fit in this domain than quantifier-based ones. This is because
applications one wants to achieve with WE, as well as primitives one wants to use to achieve WE,
are both themselves underlain by game-based definitions. Reductions are thus facilitated, and
less error-prone, with a game-based WE definition. A quantifier-based one leads to mismatches. In
particular, under certain quantifier orders, one gets definitions like SS that do not provide usability,
and when one changes the order, one gets definitions like SS3 that are too strong and challenge
achievability. Intuitively, the latter is because the quantification ends up demanding security even
on inputs that no adversary could ever find. This does not mean a viable quantifier-based definition
is impossible. Indeed, below, we suggest SS4, a quantifier-based definition of WE that recovers
achievability under weak iO in the non-uniform case. But the game-based AS is simpler and more
user friendly, and does not require non-uniformity to be achieved under weak iO.
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Below we also consider a recent definition of soundness security of KNY [31]. We call it SS5.
It is similar to SS2 and consequently also unachievable.

The above indicates that the problems we find with SS, and the fix we deliver with AS, are
not trivial. Certainly it is easy, once the problem has been pointed out, to propose alternatives,
but our work remains important in having pointed out the need for alternatives and in guiding the
choice of, and verifying, these alternatives.

We believe that WE is an important and useful notion and that our work helps advance its cause
via precise definitions that satisfy the usability and achievability conditions above. We believe it
is important for our field that work like this is published, and that such work is not damaging for
the GGSW authors but rather advances the primitive they proposed.

SS2. WE scheme WE is SS2[L]-secure according to [21] if there exists a negligible function ν : N→ N
such that for any PT adversary A, any x ∈ {0, 1}∗\L, any equal-length m0,m1 ∈ {0, 1}∗, and any
λ ∈ N we have

Advss2WE,L,x,m0,m1,A(λ)

= Pr[A(WE.Enc(1λ, x,m1)) = 1]− Pr[A(WE.Enc(1λ, x,m0)) = 1] < ν(λ) .

We claim this notion is unachievable, meaning, no WE scheme is SS2[L]-secure. The reason is that
ν is universal and in particular not allowed to depend on the adversary. More formally let L be an
NP-complete language. Let WE by any WE scheme and let ν be any negligible function. We show
that if the polynomial-time hierarchy does not collapse then there is a PT adversary A as well as
x ∈ {0, 1}∗ \L, equal-length m0,m1 and λ ∈ N such that Advss2WE,L,x,m0,m1,A(λ) ≥ ν(λ). This shows
that WE is not SS2[L]-secure.

For probability distribution functions µ, µ′ : D → [0, 1], let

‖µ− µ′‖ =
1

2

∑
x∈D
|µ(x)− µ′(x)|

be the statistical distance between µ and µ′. For any λ, x,m let µλ,x,m be the distribution of
WE.Enc(1λ, x,m). Results from GGSW [19] imply that, unless the polynomial hierarchy collapses,
there exists a string x′ ∈ {0, 1}∗\L, equal-length messages m′0,m

′
1 and a constant λ0 ∈ N such

that ‖µλ0,x′,m′
1
− µλ0,x′,m′

0
‖ ≥ ν(λ0). Consider the following adversary A. On input a ciphertext c,

if c is not in the domain of µλ0,x′,m′
1

then A outputs a random guess. Otherwise, A outputs 1 if
µλ0,x′,m′

1
(c) > µλ0,x′,m′

0
(c), and outputs 0 otherwise. Note that the test as to whether c is in the

domain of µλ0,x′,m′
1

only takes polynomial time because λ0, x
′,m′1 are fixed, and all computations

related to them are constant time, and similarly for computations of µλ0,x′,m′
0
(·). Thus A runs in

polynomial time. But Advss2WE,L,x′,m′
0,m

′
1,A

(λ0) = ‖µλ0,x′,m′
1
− µλ0,x′,m′

0
‖ ≥ ν(λ0).

SS3. A WE scheme WE is SS3[L]-secure [22] if for any PT adversary A, there exists a negligible
function ν : N→ N such that for any x ∈ {0, 1}∗\L and any λ ∈ N,

Advss3WE,L,x,A(λ)

= Pr[A(WE.Enc(1λ, x, 1)) = 1]− Pr[A(WE.Enc(1λ, x, 0)) = 1] < ν(λ) .

A first nit is that this considers only encryption of a 1-bit message but for applications one has
to encrypt many bits, and it is not stated how security is defined in this case. More importantly,
however, SS3 has limitations with regard to achievability. Specifically, it seems unlikely one can
show that iO implies SS3[L]-secure WE via the natural GGHRSW construction that worked for
both SS and AS and under the definition of iO that is used for other applications [36, 30, 12]
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and we have shown suffices for AS-secure WE. We now explain, referring to our formulation of
the definition in Section 3. Let L be an NP language. In Section 3 we recalled the GGHRSW
construction WE = WER[P] of a WE scheme from an indistinguishability obfuscator P. Now assume
we are given an arbitrary PT adversary A attacking the SS3[L]-security of WE. To prove security,
we need to build an adversary B attacking the iO-security of P. Adversary B, given 1λ, needs to
efficiently find and output circuits of the form Rx,m that we defined in Section 3, where x intuitively
is an input where the WE security “breaks.” But how is B to find such an x efficiently? There
seems to be no way. Even if we allow B to be non-uniform, its advice string has length polynomial
in λ, and thus it can’t tell what is the “best” x because the set {0, 1}∗\L is infinite. In the case
of AS, this was not a problem because A handed back an x on which it succeeded. Also for the
original SS, it is not a problem because the entire claim pertains to only one, fixed x that can be
assumed known to B. An approach we might consider for SS3 is the following. Given any string
x 6∈ L, we can build an adversary Bx such that Advss3WE,L,x,A(λ) ≤ AdvioP,Bx(λ) for all λ ∈ N. Now

the assumed iO security gives us a negligible function νx such that AdvioP,Bx(·) < νx(·). But the SS3
notion wants a single negligible function ν that is independent of x. It’s unclear how to get ν from
the set {νx : x 6∈ L} since the latter set is infinite. One natural idea is to set ν(λ) = supx6∈L{νx(λ)}.
But this doesn’t work. For example, consider νx(λ) = 1 if λ < |x|, and νx(λ) = 0 otherwise. For
any fixed x, the function νx is negligible, but ν(λ) = 1 for every λ ∈ N, meaning ν is not negligible.
So one appears to need to construct an iO adversary B independent of x, but it is unclear how to
do that.

We note the proof does seem possible under some stronger notions of iO from [17]. However,
iO is a strong assumption no matter what and it is desirable that applications use as weak a form
of it as possible. Also in further work subsequent to ours, GLW [24] claim to achieve SS3 via a
direct construction. However, this requires sub-exponential hardness assumptions. (They call it
complexity leveraging.) Beyond this, trying to achieve SS3 is an unnecessary route to follow, since
AS already provides the properties we want, namely it suffices for applications and is achieved even
under weak iO.

SS4. As we have seen, the game-based AS definition fulfills the usability and achievability conditions
for a good definition. However, GGSW appear to want a quantifier-based definition in the style of
SS. But their SS2, SS3 attempts have been inadequate. Here we accordingly suggest a quantifier-
based definition that we call SS4 which does satisfy, usability and is less limited than SS3 with
regard to achievability, namely weak iO does suffice for it, as long as this is assumed for non-uniform
adversaries. In particular it is implied by the non-uniform generalization of AS and thus can be
built from weak, non-uniform iO by our results. We explain why it suffices for the PKE application
of GGSW.

We say that a WE scheme WE is SS4[L]-secure if for any PT adversary A and any polynomial
` : N→ N, there exists a negligible function ν : N→ N such that, for any string x ∈ {0, 1}∗\L, and
any λ ∈ N, if |x| ≤ `(λ) then

Advss4WE,L,`,x,A(λ)

= Pr[A(1λ, x,WE.Enc(1λ, x, 1)) = 1]− Pr[A(1λ, x,WE.Enc(1λ, x, 0)) = 1]

< ν(λ) .

We now show this notion is implied by non-uniform AS. Given any SS4 adversary A and any
polynomial `, one can build another non-uniform AS adversary B as follows. For each λ ∈ N, let
xλ ∈ {0, 1}∗\L be a string such that |xλ| ≤ `(λ) and Advss4WE,L,`,x,A(λ) ≤ Advss4WE,L,`,xλ,A

(λ) for all

x ∈ {0, 1}∗\L with |x| ≤ `(λ). Adversary B(1λ) outputs (xλ, 0, 1, ε), and B(St, c) runs A(1λ, xλ, c).
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Then for any string x ∈ {0, 1}∗\L, λ ∈ N, if |x| ≤ `(λ) then

AdvasWE,B(λ) = Advss4WE,L,`,xλ,A
(λ) ≥ Advss4WE,L,`,x,A(λ) .

We now briefly explain why SS4 is enough for GGSW’s PKE scheme, but under message space
{0, 1}, because SS4 only allows encrypting a single bit. The INDCPA adversary is assumed to
make only a single query (0, 1). The proof will follow the template in Appendix D but with a
change in constructing WE adversary D from an INDCPA adversary A. Let `(λ) = 2λ for every
λ ∈ N. Adversary D(1λ, x, c) runs A(1λ, pk) with pk = (λ, x). When the latter makes its query,
the former returns c. Finally, D outputs the same guess as A.

For both SS3 and SS4, in the PKE application, to encrypt an n-bit message, one has to make
n calls to WE to encrypt n bits individually, exacerbating the inefficiency of the scheme. If one
modifies SS3 and SS4 for encrypting equal-length m0,m1 of arbitrary length instead of m0 = 0 and
m1 = 1, then the PKE still can only encrypt bit-by-bit. The reason is that, an INDCPA adversary
A is allowed to choose any equal-length m0,m1 but in SS3 and SS4, the WE adversary D has no
control of the messages m0,m1, and thus one can’t construct D from A. This again shows that AS
is superior to SS3 and SS4 in terms of usability.

SS5. In a recent paper, KNY [31] define the following variant of SS, which we call SS5. A scheme
is SS5[L]-secure if for any security parameter λ, any equal-length messages m0,m1 ∈ {0, 1}poly(λ),
any PT adversary A, and any x 6∈ L, we have

Advss5WE,L,x,m0,m1,A(λ)

= Pr[A(WE.Enc(1λ, x,m1) = 1]− Pr[A(WE.Enc(1λ, x,m0)) = 1] < negl(λ) .

This definition doesn’t specify where to place the (existential) quantifier for the negligible function
negl, but the only meaningful position in the context of what is written is to place it prior to the
(universal) quantification of the security parameter. (We certainly don’t want a different negligible
function for every value of λ.) But if so, the function negl is independent of the adversary A. The
same argument against SS2 can be used to show that SS5 is unachievable.

SS5 again demonstrates that quantifier-based notions for WE are error-prone. KNY’s defini-
tion [31] is problematic, although it is subsequent to our work and all of GGSW’s revisions.

B WE for any NP language from WE for an NPC language

A Levin reduction from R2 to R1 is a triple of PT-computable functions (g, µ, ν) such that (i)
g(x) ∈ L(R1) if and only if x ∈ L(R2), (ii) If x ∈ L(R2) and w ∈ R2(x) then µ(x,w) ∈ R1(g(x)),
and (iii) If x ∈ L(R2) and z ∈ R1(g(x)) then ν(g(x), z) ∈ R2(x).

Let R1,R2 be NP-relations such that there is a Levin reduction (g, µ, ν) from R2 to R1. The
transform Transg,µ in Fig. 10 describes how to transform a witness encryption scheme for L(R1) to
a witness encryption scheme for L(R2). Claim (1) of Proposition B.1 below is implicit in [19].

Proposition B.1 Let R1,R2 be NP-relations such that there is a Levin reduction (g, µ, ν) from R2

to R1. Let Transg,µ be the transform specified in Fig. 10 and WE1 be a witness encryption scheme
for L(R1). Let WE2 = Transg,µ(WE1). (1) If WE1 ∈ SS[L(R1)] then WE2 ∈ SS[L(R2)], and (2) If
WE1 ∈ AS[L(R1)] then WE2 ∈ AS[L(R2)].

Proof: For part (1), let A be a PT adversary. Consider arbitrary x ∈ {0, 1}∗\L(R2) and m0,m1 ∈
{0, 1}∗ such that |m0| = |m1|. Note that g(x) ∈ {0, 1}∗\L(R1). Then

AdvssWE2,L(R2),x,m0,m1,A
(λ) = AdvssWE1,L(R1),g(x),m0,m1,A

(λ)
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WE2.Enc(1
λ, x,m)

x′ ← g(x) ; c′←$ WE1.Enc(1
λ, x′,m)

Return (x, c′)

WE2.Dec(c, w)

(x, c′)← c ; w′ ← µ(x,w)

m←$ WE1.Dec(c
′, w′) ; Return m

Figure 10: Witness encryption scheme WE2 = Transg,µ(WE1) for L(R2), with WE2.Msg =
WE1.Msg, where R1,R2 are NP-relations, WE1 is a witness encryption scheme for L(R1), and
(g, µ, ν) is a Levin reduction from R2 to R1.

for every λ ∈ N, and thus WE2 ∈ SS[L(R2)].

For part (2), let A be a PT adversary attacking WE2. Consider the following adversary B attack-
ing WE1.

B(1λ)

(x,m0,m1, St)←$A(1λ) ; x′ ← g(x)
Return (x′,m0,m1, St)

B(St, c)

(x, c′)← c ; b′←$A(St, c′)
Return b′

Then AdvasWE1,L(R1),B
(λ) = AdvasWE2,L(R2),A

(λ) for every λ ∈ N, and thus WE2 ∈ AS[L(R2)].

C Extending our counter-examples

Recall that in Section 4, we have built a counter-example for scheme PKE[G,WE] (specified in Fig. 6)
where G is a length-doubling PRG and WE is a generic SS-secure witness encryption scheme for
LG = {G(s) : s ∈ {0, 1}∗ }. However, GGSW start with a scheme WE ∈ SS[L] for an NP-complete
language L = L(R), transform it to WE ∈ SS[LG] via the transform in Fig. 10 and then define their
scheme as PKE[G,WE]. We now extend our counter-example to the actual scheme.

Let RG be the NP-relation of LG, namely RG(x,w) returns (x = G(w)). Let (g, µ, ν) be a Levin
reduction from LG to L. In the actual scheme, one obtains WE ∈ SS[LG] via Transg,µ(WE), where
WE is a SS[L]-secure witness encryption scheme, and Transg,µ is specified in Fig. 10. Since function
ν is PT-computable, there are constants C, d ≥ 1 such that RG.wl(u) ≤ C · |g(u)|d, for every u ∈ LG.

Consider arbitrary WE ∈ SS[L] and let f(λ) = bλ1/dC c for every λ ∈ N. By way of Lemma 3.1, we can
modify WE to WEf ∈ SS[L] (as specified in Fig. 3) that misbehaves, returning the message in the
clear when |x| ≥ f(λ). When we run scheme PKE[G,Transg,µ(WEf )], we always give WEf (1λ, ·,m)
the string x = g(u) for some u ∈ LG ∩ {0, 1}2λ, and thus |x| ≥ f(RG.wl(u)) = f(λ). Hence
PKE[G,Transg,µ(WEf )] always sends messages in the clear.

D Proof of Theorem 4.1

Let A be a PT attacking PKE[G,WE]. Since one-message INDCPA implies multiple-message IND-
CPA [25, Theorem 5.2.11], wlog, assume that A makes only a single query. Let ρ denote the coin
length of A. Consider the following adversaries B and D:
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B(1λ, x)

pk ← (λ, x) ; b←$ {0, 1}
b′←$ALRSim(1λ,pk)
If b = b′ then return 1 else return 0

LRSim(m0,m1)

c←$ WE.Enc(1λ, x,mb) ; Return c

D(1λ)

x←$ {0, 1}2λ ; pk ← (λ, x) ; r←$ {0, 1}ρ(λ) ; c← ⊥
ALRSim(1λ,pk; r) ; St← (λ,pk, r) ; Return (x,m0,m1, t)

D(St, c)

(λ,pk, r)← St ; b′ ← ALRSim(1λ,pk; r) ; Return b′

LRSim(m0,m1)

Return c

Consider games H1–H3 below, in which game H3 includes the boxed statement but game H2

does not.

Game HA
1 (λ)

s←$ {0, 1}λ ; x← G(s)
b←$ {0, 1} ; passed← true
pk ← (λ, x) ; b′←$ALR(1λ,pk)
Return (b = b′) ∧ passed

LR(m0,m1)

c←$ WE.Enc(1λ, x,mb) ; Return c

Game HA
2 (λ), HA

3 (λ)

x←$ {0, 1}2λ ; b←$ {0, 1} ; passed← true
If x ∈ LG then bad← true ; passed← false
pk ← (λ, x) ; b′←$ALR(1λ, pk)
Return (b = b′) ∧ passed

LR(m0,m1)

c←$ WE.Enc(1λ, x,mb) ; Return c

On the one hand,

Pr[ PRGB
G(λ)⇒ true | a = 1 ] = Pr[HA

1 (λ)] and Pr[ PRGB
G(λ)⇒ false | a = 0 ] = Pr[HA

2 (λ)]

for every λ ∈ N, where a is the challenge bit of game PRGB
G. On the other hand, games H2 and

H3 are identical-until-bad, and from the fundamental lemma of game-playing [10],

Pr[HA
2 (λ)]− Pr[HA

3 (λ)] ≤ Pr[HA
3 (λ) sets bad] ≤ 2−λ

for every λ ∈ N; the last inequality is due to the fact that LG ∩ {0, 1}2λ = { G(s) : s ∈ {0, 1}λ }
contains at most 2λ elements. Moreover,

Pr[INDCPAA
PKE[G,WE](λ)] = Pr[HA

1 (λ)], and Pr[ASDWE,LG
(λ)] = Pr[HA

3 (λ)]

for every λ ∈ N. Summing up, Advind-cpaPKE[G,WE],A(λ) ≤ 2AdvprgG,B(λ) + AdvasWE,LG,D
(λ) + 21−λ for every

λ ∈ N, and thus PKE[G,WE] is INDCPA-secure.

E The APBE1 scheme

Here we describe a simple and fast, but invasive, A-PBE scheme, derived from a RIP function
family H and a PKE scheme PKE.

Results. Let PKE be a PKE scheme and H a function family such that H.ol is the number of coins
used by PKE.Kg. Associate to them the A-PBE scheme F = APBE1[H,PKE] whose constituent
algorithms are shown in Fig. 11. Algorithm F.Ph(1λ, sa, pw) applies H to 1λ, sa,pw to get a string
r, uses the latter as coins to deterministically compute (pk, sk) ← PKE.Kg(1λ; r), and finally
returns hpw = pk as the “hashed password.” Algorithm F.Enc(1λ, pk, sa,m) returns ciphertext
(1λ, sa,PKE.Enc(pk,m)). Finally, F.Dec(pw , (1λ, sa, y)) re-applies H to 1λ, sa, pw to get r, then re-
computes (pk, sk) ← PKE.Kg(1λ; r) and returns m ← PKE.Dec(sk, y). Theorem E.1 below shows
that F is a secure A-PBE scheme.
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F.Ph(1λ, sa,pw)

r ← H(1λ, sa,pw)

(pk, sk)← PKE.Kg(1λ; r)

Return pk

F.Enc(1λ,hpw , sa,m)

y←$ PKE.Enc(hpw ,m)

c← (1λ, sa, y)

Return c

F.Dec(pw , c)

(1λ, sa, y)← c ; r ← H(1λ, sa,pw)

(pk, sk)← PKE.Kg(1λ; r) ; m← PKE.Dec(sk, y)

Return m

Figure 11: A-PBE scheme F = APBE1[H,PKE] associated to hash function family H and public-key
encryption scheme PKE.

Game HA
1 (λ), HA

2 (λ)

b←$ {0, 1} ; pw←$A1(1λ)

For i = 1 to |pw| do

sa[i]←$ {0, 1}H.kl(λ) ; r[i]← H(1λ, sa[i],pw[i])

r[i]←$ {0, 1}H.ol(λ) ; (pk[i], sk[i])← PKE.Kg(1λ; r[i])

b′←$ALR
2 (1λ, sa,pk) ; Return (b′ = b)

LR(m0,m1, i)

y←$ PKE.Enc(pk[i],mb) ; Return (1λ, sa[i], y)

Figure 12: Games in the proof of Theorem E.1.

Theorem E.1 Let H be a RIP-secure function family. Let PKE be an INDCPA-secure PKE
scheme. Let F = APBE1[H,PKE] be the A-PBE scheme defined above. Then F is a secure A-PBE
scheme.

Proof: Let A = (A1, A2) be a PT adversary attacking F. Let p be a polynomial that bounds the
number of entries in the password vector that A1 produces. Consider adversaries B = (B1, B2)
and D in Fig. 13. Since B1 is exactly A1, adversary B is unpredictable. Consider games H1 and
H2 in Fig. 12, in which game H2 includes the boxed statement but game H1 does not. Then
Pr[APBEAF (·)] = Pr[HA

1 (·)] and Pr[INDCPAD
H (·)] ≥ 1

p Pr[HA
2 (·)]. On the other hand,

Pr[ RIPBH (·) | a = 1 ] = Pr[HA
1 (·)], and

Pr[ RIPBH (·) | a = 0 ] = 1− Pr[HA
2 (·)],

where a is the challenge bit of game RIPBH . Summing up, AdvapbeF,A (·) ≤ AdvripH,B(·) + p ·Advind-cpaPKE,D (·).

F Proof of Theorem 5.1

Let A = (A1, A2) be a PT unpredictable adversary attacking F. Let B = (B1, B2) be an adversary
attacking H as follows. Since B1 is exactly A1, and A is unpredictable, B is also unpredictable.

B1(1
λ)

pw←$A1(1
λ) ; Return pw

B2(1
λ, sa,hpw)

b←$ {0, 1} ; b′←$ALRSim
2 (1λ, sa,hpw)

If (b = b′) then return 1 else return 0

LRSim(m0,m1, i)

x← (1λ, sa[i],hpw[i]) ; c←$ WE.Enc(1λ, x,mb)
Return c
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B1(1λ)

pw←$A1(1λ) ; Return pw

B2(1λ, sa,pk)

b←$ {0, 1} ; b′←$ALRSim
2 (1λ, sa,pk)

Return (b = b′)

LRSim(m0,m1, i)

Return PKE.Enc(pk[i],mb)

DLR(1λ,pk)

pw←$A1(1λ) ; s←$ {1, . . . , p(λ)}
For i = 1 to |pw| do

sa[i]←$ {0, 1}H.kl(λ) ; (pk[i], sk[i])← PKE.Kg(1λ)

pk[s]← pk ; b′←$ALRSim
2 (1λ, sa,pk) ; Return b′

LRSim(m0,m1, i)

If i < s then return PKE.Enc(pk[i],m0)

Else if i > s then return PKE.Enc(pk[i],m1)

Else return LR(m0,m1)

Figure 13: Adversaries B = (B1, B2) and D in the proof of Theorem E.1.

D(1λ)

pw←$A1(1λ) ; r←$ {0, 1}ρ(λ)

For i = 1 to |pw| do

sa[i]←$ {0, 1}H.kl(λ) ; hpw[i]←$ {0, 1}H.ol(λ)

j ← 1 ; s←$ {1, . . . , q(λ)} ; ALRSim
2 (1λ, sa,hpw; r)

St← (1λ, c, s, r, sa,hpw)

(x,m0,m1)← p ; Return (x,m0,m1,St)

D(St, c)

(1λ, c, s, r, sa,hpw)← St

c[s]← c ; b′ ← ALRSim
2 (1λ, sa,hpw; r) ; Return b′

LRSim(m0,m1, i)

x← (1λ, sa[i],hpw[i])

If j = s then

p← (x,m0,m1) ; j ← j + 1 ; Return c[s]

If j < s then m← m0 else m← m1

c←$ WE.Enc(1λ, x,m)

If j < s then

If St = ⊥ then c[j]← c else c← c[j]

j ← j + 1 ; Return c

Figure 14: The code of adversary D in Theorem 5.1.

Next, we’ll describe an adversary D attacking WE. Let ρ and q be polynomials that bound the
number of coins and the number of oracle queries used by A2. Adversary D(1λ) runs A1(1

λ) to
generate pw. Instead of hashing passwords, adversary D will generate a vector hpw of uni-
formly random strings. The assumption that 2H.il(·)−H.ol(·) is negligible means it’s likely that
(1λ, sa[i],hpw[i]) 6∈ LH for every i ≤ |hpw|. Recall that A may make several oracle queries
but D is allowed only a single query (x,m0,m1,St). To resolve this, we use the following hybrid
argument. Let D pick a random index s←$ {1, . . . , q(λ)}. For the j-th query (m0,m1, i) of A, if
j = s then D produces its own query (x,m0,m1,St), with x = (1λ, sa[i],hpw[i]), and then later
returns its given ciphertext to A. Otherwise, D returns WE.Enc(1λ, (1λ, sa[i],hpw[i]),m), with
m = m0 if j < s, and m = m1 if j > s. Finally, it outputs A’s guess b′. The code of D is specified
in Fig. 14.
Consider games H1 and H2 below, in which game H2 includes the boxed statement but game H1

doesn’t.

Game HA
1 (λ), HA

2 (λ)

pw←$A1(1
λ) ; b←$ {0, 1}

For i = 1 to |pw| do

sa[i]←$ {0, 1}H.kl(λ)

hpw[i]← H(1λ, sa[i],pw[i]) ; hpw[i]←$ {0, 1}H.ol(λ)
b′←$ALR

2 (1λ, sa,hpw)
Return (b = b′)

LR(m0,m1, i)

x← (1λ, sa[i],hpw[i])
Return WE.Enc(1λ, x,mb)
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On the one hand,

Pr[ RIPBH (λ)⇒ true | a = 1 ] = Pr[HA
1 (λ)] = Pr[APBEAF (λ)], and

Pr[ RIPBH (λ)⇒ false | a = 0 ] = Pr[HA
2 (λ)]

for every λ ∈ N, where a is the challenge bit of game RIPBH . On the other hand, we claim that

2 Pr[ASDWE,LH
(λ)]− 1

≥ 1

q(λ)
(Pr[HA

2 (λ)⇒ true | d = 1 ]− Pr[HA
2 (λ)⇒ false | d = 0 ])− 2H.il(λ)−H.ol(λ)+1,

for every λ ∈ N, where d is the challenge bit b that game HA
2 samples. Summing up, AdvapbeF,A (λ) ≤

2AdvripH,B(λ)+q(λ) ·AdvasWE,LH,D
(λ)+q(λ) ·2H.il(λ)−H.ol(λ)+1, for every λ ∈ N, and thus F is a secure A-

PBE scheme. To justify the claim above, consider the following games Gs, Ps, for s ∈ {1, . . . , q(λ)},
in which each game Ps contains the corresponding boxed statement, but game Gs does not.

Game GAs (λ), PAs (λ)

pw←$A1(1
λ) ; b←$ {0, 1} ; passed← true

For i = 1 to |pw| do

sa[i]←$ {0, 1}H.kl(λ) ; hpw[i]←$ {0, 1}H.ol(λ)
j ← 1 ; b′←$ALR

2 (1λ, sa,hpw)
Return (b = b′) ∧ passed

LR(m0,m1, i)

x← (1λ, sa[i],hpw[i]) ; m← mb

If j = s then
If x ∈ LH then bad← true ; passed← false

If j < s then m← m0 elsif j > s then m← m1

j ← j + 1 ; Return WE.Enc(1λ, x,m)

For each s ∈ {1, . . . , q(λ)}, games GAs and PAs are identical-until-bad, and from the Fundamental
Lemma of game playing [10],

Pr[GAs (λ)]− Pr[PAs (λ)] ≤ Pr[GAs (λ) sets bad] ≤ 2H.il(λ)−H.ol(λ)

for every λ ∈ N; the last inequality is due the fact that, for each fixed λ ∈ N and sa ∈ {0, 1}H.kl(λ),
the set { (1λ, sa,H(1λ, sa,pw)) : pw ∈ {0, 1}H.il(λ) } contains at most 2H.il(λ) elements. Let bs be
the challenge bit b that game GAs samples. Then Pr[GAs (λ) ⇒ true | bs = 1 ] = Pr[GAs−1(λ) ⇒
false | bs−1 = 0 ] for every s ∈ {2, 3, . . . , q(λ)} and every λ ∈ N, and thus

q(λ)∑
s=1

(
2 Pr[GAs (λ)]− 1

)
=

q(λ)∑
s=1

(
Pr[GAs (λ)⇒ true | bs = 1 ]− Pr[GAs (λ)⇒ false | bs = 0 ]

)
= Pr[GA1 (λ)⇒ true | b1 = 1 ]− Pr[GAq(λ)(λ)⇒ false | bq(λ) = 0 ]

= Pr[HA
2 (λ)⇒ true | d = 1 ]− Pr[HA

2 (λ)⇒ false | d = 0 ] (2)

for every λ ∈ N. Moreover,

−1 + 2 · Pr[ASDWE,LH
(λ)] = −1 +

2

q(λ)

q(λ)∑
s=1

Pr[PAs (λ)] ≥ −1 +
2

q(λ)

q(λ)∑
s=1

(
Pr[GAs (λ)]− 2H.il(λ)−H.ol(λ)

)
= −2H.il(λ)−H.ol(λ)+1 +

1

q(λ)

q(λ)∑
s=1

(
2 Pr[GAs (λ)]− 1

)
(3)

for every λ ∈ N. From Equations (2) and (3), the claim follows.
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G Proof of Theorem 5.3

Let A = (A1, A2) be a PT unpredictable adversary attacking F. Let ρ and q be polynomials
that bound the number of coins and the number of oracle queries used by A2. We’ll construct
an adversary D attacking WE. Adversary D(1λ) runs A1(1

λ) to generate pw, and hashes these
passwords to produce hpw. Recall that A may make several oracle queries but D is allowed only
a single query (x,m0,m1, St). To resolve this, we use the following hybrid argument. Let D pick a
random index s←$ {1, . . . , q(λ)}. For the j-th query (m0,m1, i) of A, if j = s then D produces its
own query (x,m0,m1, St), with x = (1λ, sa[i],hpw[i]), and then later returns its given ciphertext
to A. Otherwise, D returns WE.Enc(1λ, (1λ, sa[i],hpw[i]),m), with m = m0 if j < s, and m = m1

if j > s. Finally, it outputs A’s guess b′. The code of D is shown below.

D(1λ)

pw←$A1(1
λ) ; r←$ {0, 1}ρ(λ)

For i = 1 to |pw| do

sa[i]←$ {0, 1}H.kl(λ) ; hpw[i]← H(1λ, sa[i],pw[i])
j ← 1 ; s←$ {1, . . . , q(λ)} ; ALRSim

2 (1λ, sa,hpw; r)
St← (1λ, c, s, r, sa,hpw)
(x,m0,m1)← p ; Return (x,m0,m1,St)

D(St, c)

(1λ, c, s, r, sa,hpw)← St
c[s]← c ; b′ ← ALRSim

2 (1λ, sa,hpw; r) ; Return b′

LRSim(m0,m1, i)

x← (1λ, sa[i],hpw[i])
If j = s then
p← (x,m0,m1) ; j ← j + 1 ; Return c[s]

If j < s then m← m0 else m← m1

c←$ WE.Enc(1λ, x,m)
If j < s then

If St = ⊥ then c[j]← c else c← c[j]
j ← j + 1 ; Return c

Let RH be the NP-relation of LH, that is,RH

(
(1λ, sa,hpw), pw

)
returns (H(1λ, sa, pw) = hpw).

Since D is PT and WE is XS[RH]-secure, there exists a PT extractor E such that AdvxsWE,RH,D,E
(·)

is negligible. Construct B = (B1, B2) attacking H as follows. Since B1 is exactly A1, and A is
unpredictable, B is also unpredictable.

B1(1
λ)

pw←$A1(1
λ) ; Return pw

B2(1
λ, sa,hpw)

b←$ {0, 1} ; j ← 1 ; r←$ {0, 1}ρ(λ)
s←$ {1, . . . , q(λ)} ; ALRSim

2 (1λ, sa,hpw; r)
(w, i)← p ; Return (w, i)

LRSim(m0,m1, i)

x← (1λ, sa[i],hpw[i]) ; m← mb

If j < s then m← m0 elsif j > s then m← m1

c←$ WE.Enc(1λ, x,m)
If j = s then

St← (1λ, c, s, r, sa,hpw)
w←$ E(1λ, x,m0,m1,St, c) ; p← (w, i)

c[j]← c ; j ← j + 1 ; Return c

Consider the following games Gs, for s ∈ {1, . . . , q(λ)}.

Game GA,Es (λ)

pw←$A1(1
λ) ; b←$ {0, 1} ; passed← false

For i = 1 to |pw| do

sa[i]←$ {0, 1}H.kl(λ)
hpw[i]← H(1λ, sa[i],pw[i])

j ← 1 ; r←$ {0, 1}ρ(λ)
b′ ← ALR

2 (1λ, sa,hpw; r)
Return (b = b′)

LR(m0,m1, i)

x← (1λ, sa[i],hpw[i]) ; m← mb

If j < s then m← m0 elsif j > s then m← m1

c←$ WE.Enc(1λ, x,m)
If j = s then

St← (1λ, c, s, r, sa,hpw)
w←$ E(1λ, x,m0,m1, St, c)
If (H(1λ, sa[i], w) = hpw[i]) then passed← true

c[j]← c ; j ← j + 1 ; Return c
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Let PAs and HA
s be identical to GAs , with the following difference: game PAs returns passed and

game HA
s returns (b = b′) ∧ ¬passed. Let bs be the challenge bit b that game GA,Es samples. Then

Pr[GA,Es (·)⇒ true | bs = 1 ] = Pr[GA,Es−1(·)⇒ false | bs−1 = 0 ]

for every s ∈ {2, 3, . . . , q}, and thus

q∑
s=1

(
2 Pr[GA,Es (·)]− 1

)
=

q∑
s=1

(
Pr[GA,Es (·)⇒ true | bs = 1 ]− Pr[GA,Es (·)⇒ false | bs = 0 ]

)
= Pr[GA,E1 (·)⇒ true | b1 = 1 ]− Pr[GA,Eq (·)⇒ false | bq = 0 ]

= Pr[ APBEAF (·)⇒ true | d = 1 ]− Pr[ APBEAF (·)⇒ false | d = 0 ]

= AdvapbeF,A (·),

where d is the challenge bit of game APBEF. Moreover,

−1 + 2 Pr[XSA,EWE,RH
(·)] = −1 +

2

q

q∑
s=1

Pr[HA,E
s (·)]

≥ −1 +
2

q

q∑
s=1

(
Pr[GA,Es (·)]− Pr[PA,Es (·)]

)
= −2

q

q∑
s=1

Pr[PA,Es (·)] +
1

q

q∑
s=1

(
2 Pr[GA,Es (·)]− 1

)
= −2 Pr[ROWB

H (·)] +
1

q

q∑
s=1

(
2 Pr[GA,Es (·)]− 1

)
= −2AdvrowH,B(·) +

1

q
AdvapbeF,A (·) .

Hence, AdvapbeF,A (·) ≤ 2q · AdvrowH,B(·) + q · AdvxsWE,RH,D,E
(·), and thus F is a secure A-PBE scheme.

H Proof of Proposition 5.2

Assume we are given WE ∈ XS[L(R)]. We want to show that WE is AS[L(R)]-secure. Let A be a
PT adversary. Then, there is a PT extractor E such that AdvxsWE,R,A,E(·) is negligible. Consider
the following games H1 and H2; the latter includes the boxed statement but the former does not.

Game HA,E
1 (λ), HA,E

2 (λ)

(x,m0,m1,St)←$A(1λ) ; b←$ {0, 1}
c←$ WE.Enc(1λ, x,mb) ; b′←$A(St, c)
w←$ E(1λ, x,m0,m1, St, c)

If (x ∈ L(R)) ∧ ¬R(x,w) then return false
Return (b = b′) ∧ ¬R(x,w)

On the one hand, Pr[HA,E
1 (·)] = Pr[XSA,EWE,R(·)] and Pr[HA,E

2 (·)] = Pr[ASAWE,L(R)(·)]. On the

other hand, Pr[HA,E
1 (·)] ≥ Pr[HA,E

2 (·)]. Hence AdvasWE,L(R),A(·) ≤ AdvxsWE,R,A,E(·), and thus WE ∈
AS[L(R)].
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I Constructing XS-secure WE

We begin by giving an alternative definition for the recent notion of extractability obfuscator,
equivalently differing-input obfuscator [4, 13, 1].

Extractability obfuscators. Let P be an obfuscator, defining a PT obfuscation algorithm P.Ob
and a PT evaluation algorithm P.Ev. We say that P is xO-secure if for every PT adversary A, there
is a PT algorithm (extractor) E such that AdvxoP,A,E(λ) = 2 Pr[XOA,E

P (λ)] − 1 is negligible, where
game XO is defined at as follows:

Game XOA,E
P (λ)

(C0, C1, St)←$A(1λ) ; b←$ {0, 1} ; c←$ P.Ob(1λ, Cb)
b′←$A(St, c) ; w←$ E(1λ, C0, C1, St, c)
Return (b = b′) ∧ (C0(w) = C1(w))

In the game above, circuits C0, C1 must have the same size.

Achieving XS security. Recall that in Section 3, we have the construction WER[P] of witness
encryption for language L(R) ∈ NP from obfuscator P. The following says that if P is assumed to
be xO-secure then WER[P] is XS[L(R)]-secure.

Theorem I.1 Let R be an NP relation, and let P be an obfuscator. Construct WER[P] as in
Section 3. If P is xO-secure then WER[P] ∈ XS[L(R)].

Proof: For each x,m ∈ {0, 1}∗, let Rx,m be a circuit that on input w ∈ {0, 1}R.wl(|x|), returns m
if R(x,w) and returns 0|m| otherwise. Let A be a PT adversary attacking WER[P]. Wlog, assume
that A produces distinct m0 and m1. Consider the following adversary B attacking P.

B(1λ)

(x,m0,m1, St)←$A(1λ) ; Return (Rx,m0 , Rx,m1 , St)

B(St, c)

b′←$A(St, c) ; Return b′

Since B is PT and P is xO-secure, there is a PT extractor E such that AdvxoP,B,E(·) is negligible.

Consider the following extractor E for A:

E(1λ, x,m0,m1, St, c)

w←$ E(1λ, Rx,m0 , Rx,m1 , St, c) ; Return w

This extractor E is PT. Note that for any w ∈ {0, 1}R.wl(x), we have Rx,m0(w) 6= Rx,m1(w) if and

only if R(x,w). Then Pr[XSA,EWER[P],R
(·)] = Pr[XOB,E

P (·)], and thus Advxs
WER[P],R,A,E

(·) = AdvxoP,B,E(·).
Hence WER[P] is XS[L(R)]-secure.
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