
Adaptive Work Stealing with Parallelism Feedback

Kunal Agrawal Yuxiong He ∗ Charles E. Leiserson
Computer Science and Artificial Intelligence Laboratory

Massachusetts Institute of Technology
Cambridge, MA 02139

{kunal ag, yxhe, cel}@mit.edu

Abstract
We present an adaptive work-stealing thread scheduler, A-STEAL,
for fork-join multithreaded jobs, like those written using the Cilk
multithreaded language or the Hood work-stealing library. The A-
STEAL algorithm is appropriate for large parallel servers where
many jobs share a common multiprocessor resource and in which
the number of processors available to a particular job may vary dur-
ing the job’s execution. A-STEAL provides continual parallelism
feedback to a job scheduler in the form of processor requests, and
the job must adapt its execution to the processors allotted to it. As-
suming that the job scheduler never allots any job more processors
than requested by the job’s thread scheduler, A-STEAL guarantees
that the job completes in near-optimal time while utilizing at least
a constant fraction of the allotted processors.

Our analysis models the job scheduler as the thread scheduler’s
adversary, challenging the thread scheduler to be robust to the sys-
tem environment and the job scheduler’s administrative policies.
We analyze the performance of A-STEAL using “trim analysis,”
which allows us to prove that our thread scheduler performs poorly
on at most a small number of time steps, while exhibiting near-
optimal behavior on the vast majority. To be precise, suppose that
a job has work T1 and span (critical-path length) T∞. On a ma-
chine with P processors, A-STEAL completes the job in expected
O(T1/P̃ + T∞ + L lg P) time steps, where L is the length of a
scheduling quantum and P̃ denotes the O(T∞ + L lg P)-trimmed
availability. This quantity is the average of the processor availabil-
ity over all but the O(T∞ + L lg P) time steps having the high-
est processor availability. When the job’s parallelism dominates the
trimmed availability, that is, P̃ � T1/T∞, the job achieves nearly
perfect linear speedup. Conversely, when the trimmed mean dom-
inates the parallelism, the asymptotic running time of the job is
nearly its span.

Categories and Subject Descriptors D.4.1 [Software]: Operating
Systems — process management; F.2 [Theory of Computation]:
Analysis of Algorithms and Problem Complexity.

General Terms Algorithms, Performance, Theory.

∗ Yuxiong He is a Visiting Scholar at MIT CSAIL and a Ph.D. candidate at
the Nanyang Technological University.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

PPoPP’07 March 14–17, 2007, San Jose, California, USA.
Copyright c© 2007 ACM 978-1-59593-602-8/07/0003. . . $5.00

Keywords Adaptive scheduling, Adversary, Critical path, Dis-
tributed scheduling, Job scheduling, Multithreaded Languages,
Multiprocessing, Multiprogramming, Parallelism feedback, Paral-
lel computation, Processor allocation, Space sharing, Span, Thread
scheduling, Two-level scheduling, Trim analysis, Work, Work
stealing.

1. Introduction
The large expense of high-end multiprocessors makes it attractive
for them to run multiprogrammed workloads, where many parallel
applications share the same machine. As Feitelson describes in
his excellent survey [29], schedulers for these machines can be
implemented using two levels: a kernel-level job scheduler to allot
processors to jobs, and a user-level thread scheduler to schedule
the threads belonging to a given job onto the allotted processors.
The job schedulers may implement either space-sharing, where
jobs occupy disjoint processor resources, or time-sharing, where
different jobs may share the same processor resources at different
times. Moreover, both the thread scheduler and the job scheduler
may be adaptive (called “dynamic” in [21]), where the number of
processors allotted to a job may change while the job is running, or
nonadaptive (called “static” in [21]), where a job runs on a fixed
number of processors for its lifetime.

Randomized work-stealing [4,13,31] has proved to be an effec-
tive way to design a thread scheduler, both in theory and in practice.
The decentralized thread scheduler is unaware of all the available
threads to execute at a given moment. Whenever a processor runs
out of work, it “steals” work from another processor chosen a ran-
dom. To date, however, no work-stealing thread schedulers have
been designed that provide provably effective parallelism feedback
to a job scheduler.

In this paper we present an adaptive work-stealing thread sched-
uler, A-STEAL, which provides feedback about the job’s par-
allelism to a space-sharing job scheduler by requesting proces-
sors from the job scheduler at regular intervals, called schedul-
ing quanta. Based on this parallelism feedback, the job scheduler
can alter the allotment of processors to the job for the upcoming
quantum according to the availability of processors in the current
system environment and the job scheduler’s administrative pol-
icy. A-STEAL is inspired by a task-scheduling algorithm, called
A-GREEDY, which we developed in previous work [2] with Wen
Jing Hsu from Nanyang Technological University in Singapore.
Whereas A-GREEDY uses a centralized algorithm to schedule tasks
on allotted processors, our new A-STEAL algorithm works in a de-
centralized fashion, using work-stealing to schedule the threads on
allotted processors. We prove that A-STEAL is efficient, minimiz-
ing both execution time and wasted processor cycles.

While A-STEAL is an extension of classic randomized work
stealing and the feedback algorithm of A-GREEDY, combining the

112

algorithms posed novel technical challenges, because unlike classi-
cal randomized work-stealing, A-STEAL must deal with dynamic
changes in the job’s processor allotment. In particular, when the
allotment decreases, we use a mechanism called “mugging” [14],
which involves a processor stealing all the work of another proces-
sor, rather than just a single task. Paradoxically, although muggings
are considered as waste in our analysis, they are treated as produc-
tive work for the purpose of providing parallelism feedback.

Like prior work on scheduling of multithreaded jobs [7, 9, 10,
12,13,28,38,44], we model the execution of a multithreaded job as
a dynamically unfolding directed acyclic graph (dag). Each node in
the dag represents a unit-time instruction, and an edge represents
a serial dependence between nodes. A thread is a chain of nodes
with no branches. A node becomes ready when all its predecessors
have been executed, and a thread becomes ready when its first node
becomes ready. The work T1 of the job corresponds to the total
number of nodes in the dag, and the span or critical-path length
T∞ corresponds to the length of the longest chain of dependencies.
The parallelism of the job is the quantity T1/T∞, which represents
the average amount of work along each step of the critical path.
Each job has its own thread scheduler, which operates in an online
manner, oblivious to the future characteristics of the dynamically
unfolding dag.

In the scheduling model, we assume that time is broken into a
sequence of equal-size scheduling quanta 1, 2, . . ., each consisting
of L time steps, and the job scheduler is free to reallocate proces-
sors between quanta. The quantum length L is a system configu-
ration parameter chosen to be long enough to amortize the time to
reallocate processors among the various jobs and to perform var-
ious other bookkeeping for scheduling, including communication
between the thread scheduler and the job scheduler, which typically
involves a system call.

The thread scheduler operates as follows. Between quanta q−1
and q, it determines its job’s desire dq, which is the number of
processors the job wants for quantum q. The thread scheduler pro-
vides the desire dq to the job scheduler as its parallelism feedback.
The job scheduler follows some processor allocation policy to de-
termine the processor availability pq — the number of processors
to which the job is entitled for the quantum q. In order to make
the thread scheduler robust to different system environments and
administrative policies, our analysis of A-STEAL assumes that the
job scheduler decides the availability of processors as an adversary.
The number of processors the job receives for quantum q is the
job’s allotment aq = min {dq, pq}, the smaller of the job’s desire
and the processor availability. Once a job is allotted its processors,
the allotment does not change during the quantum. Consequently,
the thread scheduler must do a good job before a quantum of esti-
mating how many processors it will need for all L time steps of the
quantum, as well as do a good job of scheduling the ready threads
on the allotted processors.

In an adaptive setting where the number of processors allotted
to a job can change during execution, both T1/P and T∞ are lower
bounds on the running time, where P is the mean of the proces-
sor availability during the computation. In the worst case, however,
an adversarial job scheduler can prevent any thread scheduler from
providing good speedup with respect to the mean availability P .
For example, if the adversary chooses a huge number of processors
for the job’s processor availability just when the job has little in-
stantaneous parallelism — the number of threads ready to run at a
given moment — no adaptive scheduling algorithm can effectively
utilize the available processors on that quantum.1

1 Using mean processor allotment instead of mean availability does not
provide useful results. The trivial thread scheduler that always requests
(and receives) 1 processor can achieve perfect linear speedup with respect

We use trim analysis [2] to analyze the time bound of adaptive
thread schedulers under these adversarial conditions. Trim analysis
borrows from the field of statistics the idea of ignoring a few “out-
liers.” A trimmed mean, for example, is calculated by discarding
a certain number of lowest and highest values and then computing
the mean of those that remain. For our purposes, it suffices to trim
the availability from just the high side. For a given value R, we de-
fine the R-high-trimmed mean availability as the mean availabil-
ity after ignoring the R steps with the highest availability, or just
R-trimmed availablility, for short. A good thread scheduler should
provide linear speedup with respect to an R-trimmed availability,
where R is as small as possible.

We prove that A-STEAL guarantees linear speedup with respect
to O(T∞ + L lg P)-trimmed availability. Specifically, consider a
job with work T1 and span T∞ running on a machine with P pro-
cessors and a scheduling quantum of length L. A-STEAL com-
pletes the job in expected O(T1/P̃ + T∞ + L lg P) time steps,
where P̃ denotes the O(T∞ + L lg P)-trimmed availability. Thus,
the job achieves linear speed up with respect to the trimmed avail-
ability P̃ when the parallelism T1/T∞ dominates P̃ . In addition,
we prove that the total number of processor cycles wasted by the
job is O(T1), representing at most a constant-factor overhead.

Although this paper concerns itself only with the theoretical
performance of A-STEAL, we have also studied its empirical per-
formance using simulations [3]. To summarize that work, a linear-
regression analysis using a variety of availability profiles indicates
that A-STEAL provides almost perfect linear speedup with respect
to the mean availability. The simulations indicate that A-STEAL
typically wastes less than 20% of the processor cycles allotted to
the job. We also compared A-STEAL with the ABP algorithm, an
adaptive work-stealing thread scheduler developed by Arora, Blu-
mofe, and Plaxton which does not employ parallelism feedback.
We ran single jobs using both A-STEAL and ABP with the same
availability profiles. We found that on moderately to heavily loaded
large machines, when P � P , A-STEAL completes almost all jobs
about twice as fast as ABP on average, despite the fact that ABP’s
allotment on any quantum always equals or exceeds A-STEAL’s
allotment on the same quantum. In virtually all of these job runs,
A-STEAL wastes less than 10% of the processor cycles wasted by
ABP.

The remainder of this paper is organized as follows. Section 2
describes the A-STEAL algorithm and Section 3 provides a trim
analysis of its completion time, while Section 4 provides the waste
analysis. Section 5 explains the trade-offs among various parame-
ters. Section 6 describes related work in adaptive and nonadaptive
scheduling, putting this paper into an historical perspective. Finally,
Section 7 offers some concluding remarks.

2. Adaptive work-stealing
This section presents the adaptive work-stealing thread scheduler
A-STEAL. Before the start of a quantum, A-STEAL estimates pro-
cessor desire based on the job’s history of utilization. It uses this
estimate as its parallelism feedback to the job scheduler, which it
provides in the form of a request for processors. In this section, we
describe A-STEAL and its desire-estimation heuristic.

During a quantum, A-STEAL uses work-stealing [4, 13, 41] to
schedule the job’s threads on the allotted processors. A-STEAL
can use any provably good work-stealing algorithm, such as that
of Blumofe and Leiserson [13] or the nonblocking one presented
by Arora, Blumofe, and Plaxton [4]. In a work-stealing thread
scheduler, every processor alloted to the job maintains a queue of

to its mean allotment (which is 1) while wasting no processor cycles. By
using a measure of availability, the thread scheduler must attempt to exploit
parallelism.

113

ready threads for the job. When the ready queue of a processor
becomes empty, the processor becomes a thief , randomly picking
a victim processor and stealing work from the victim’s ready queue.
If the victim has no available work, then the steal is unsuccessful,
and the thief continues to steal at random from other processors
until it is successful and finds work. At all times, every processor
is either working or stealing.

This basic work-stealing algorithm must be modified to deal
with dynamic changes in processor allotment to the job between
quanta. Two simple modifications make the work-stealing algo-
rithm adaptive.

Allotment gain: When the allotment increases from quantum
q − 1 to q, the thread scheduler obtains aq − aq−1 additional
processors. Since the ready queues of these new processors start out
empty, all these processors immediately start stealing to get work
from the other processors.

Allotment loss: When the allotment decreases from quantum
q − 1 to q, the job scheduler deallocates aq−1 − aq processors,
whose ready queues may be nonempty. To deal with these queues,
we use the concept of “mugging” [14]. When a processor runs out
of work, instead of stealing immediately, it looks for a muggable
queue, a nonempty queue that has no associated processor working
on it. Upon finding a muggable queue, the thief mugs the queue by
taking over the entire queue as its own. Thereafter, it works on the
queue as if it were its own. If there are no muggable queues, the
thief steals normally.

At all time steps during the execution of A-STEAL, every pro-
cessor is either working, stealing, or mugging. We call the cycles
a processor spends on working, stealing, and mugging as work-
cycles, steal-cycles, and mug-cycles, respectively. Cycles spent
stealing and mugging are wasted.

The salient part of A-STEAL is its desire-estimation algorithm,
which is extended from the desire-estimation heuristic for the A-
GREEDY algorithm originally presented in [2]. To estimate the de-
sire for the next quantum q + 1, A-STEAL classifies the previ-
ous quantum q as either “satisfied” or “deprived” and either “ef-
ficient” or “inefficient.” Of the four possibilities for classification,
A-STEAL only uses three: inefficient, efficient-and-satisfied, and
efficient-and-deprived. Using this three-way classification and the
job’s desire for the previous quantum q, it computes the desire for
the next quantum q + 1.

A-STEAL classifies a quantum as satisfied versus deprived by
comparing the allotment aq with the desire dq. The quantum q is
satisfied if aq = dq, that is, the job receives as many processors
as A-STEAL requested for it from the job scheduler. Otherwise, if
aq < dq , the quantum is deprived, because the job did not receive
as many processors as it requested.

A-STEAL classifies a quantum as efficient versus inefficient
by comparing the usage with the allotment. We define the usage
uq of quantum q as the total number of work-cycles in q and
the nonsteal usage nq as the sum of the number of work-cycles
and mug-cycles. Therefore, we have uq ≤ nq. A-STEAL uses a
utilization parameter δ as the threshold to differentiate between
efficient and inefficient quanta. The utilization parameter δ in A-
STEAL is a lower bound on the fraction of available processors
used to work or mug on accounted steps. Typical values for δ might
be in the range of 80% to 95%. We call a quantum q efficient if
nq ≥ δLaq, that is, the nonsteal usage is at least a δ fraction of the
total processor cycles allotted. A quantum is inefficient otherwise.
Inefficient quanta contain at least (1− δ)Laq steal-cycles.

It might seem counterintuitive for the definition of “efficient” to
include mug-cycles. After all, mug-cycles are wasted. The rationale
is that mug-cycles arise as a result of an allotment loss. Thus, they
do not generally indicate that the job has a surplus of processors.

A-STEAL (q, δ, ρ)

1 if q = 1
2 then dq ← 1 � base case
3 elseif nq−1 < Lδaq−1

4 then dq ← dq−1/ρ � inefficient
5 elseif aq−1 = dq−1

6 then dq ← ρdq−1 � efficient-and-satisfied
7 else dq ← dq−1 � efficient-and-deprived
8 Report dq to the job scheduler.
9 Receive allotment aq from the job scheduler.

10 Schedule on aq processors using randomized work
stealing for L time steps.

Figure 1: Pseudocode for the adaptive work-stealing thread scheduler A-
STEAL, which provides parallelism feedback to a job scheduler in the form
of processor desire. Before quantum q, A-STEAL uses the previous quan-
tum’s desire dq−1, allotment aq−1, and nonsteal usage nq−1 to compute
the current quantum’s desire dq based on the utilization parameter δ and the
responsiveness parameter ρ.

Therefore, A-STEAL does not penalize jobs for too many mug
cycles in a quantum.

A-STEAL calculates the desire dq of the current quantum q
based on the previous desire dq−1 and the three-way classification
of quantum q−1 as inefficient, efficient-and-satisfied, and efficient-
and-deprived. The initial desire is d1 = 1. Like A-GREEDY, A-
STEAL uses a responsiveness parameter ρ > 1 to determine how
quickly the scheduler responds to changes in parallelism. Typical
values of ρ might range between 1.2 and 2.0.

Figure 1 shows the pseudocode of A-STEAL for one quantum.
A-STEAL takes as input the quantum q, the utilization parameter
δ, and the responsiveness parameter ρ. For the first quantum, it
requests 1 processor. Thereafter, it operates as follows:
• Inefficient: If quantum q−1 was inefficient, it contained many

steal-cycles, which indicates that most of the processors had
insufficient work to do. Therefore, A-STEAL overestimated the
desire for quantum q − 1. In this case, A-STEAL does not care
whether quantum q − 1 was satisfied or deprived. It simply
decreases the desire (line 4) for quantum q.
• Efficient-and-satisfied: If quantum q − 1 was efficient-and-

satisfied, the job effectively utilized the processors that A-
STEAL requested on its behalf. In this case, A-STEAL specu-
lates that the job can use more processors. It increases the desire
(line 6) for quantum q.
• Efficient-and-deprived: If quantum q − 1 was efficient-and-

deprived, the job used all the processors it was allotted, but A-
STEAL had requested more processors for the job than the job
actually received from the job scheduler. Since A-STEAL has
no evidence whether the job could have used all the processors
requested, it maintains the same desire (line 7) for quantum q.

After determining the job’s desire, A-STEAL requests that many
processors from the job scheduler, receives its allotment, and then
schedules the job on the allotted processors for the L time steps of
the quantum.

3. Time analysis
This section uses a trim analysis to analyze A-STEAL with re-
spect to the completion time. Suppose that A-STEAL sched-
ules a job with work T1 and span T∞ on a machine with P
processors. Let ρ denote A-STEAL’s responsiveness parameter,

114

δ its utilization parameter, and L the quantum length. For any
constant 0 < ε < 1, A-STEAL completes the job in time
T = O

(
T1/P̃ + T∞ + L logρ P + L ln(1/ε)

)
, with probability

at least 1 − ε, where P̃ is the O(T∞ + L logρ P + L ln(1/ε))-
trimmed availability. This bound implies that A-STEAL achieves
linear speedup on all the time steps excluding O(T∞ +L logρ P +
L ln(1/ε)) time steps with the highest processor availability.

We make two assumptions to simply the presentation of the
analysis. First, we assume that there is no contention for steals
and that every steal attempt (successful or unsuccessful) can be
completed on a single time step. Second, we assume that a mug
can be completed on one time step as well. That is, if there is a
muggable queue, then a thief processor can find it instantly and
mug it. If there is no muggable queue, then a thief processor
knows instantly that there is no muggable queue and it should start
stealing. We shall relax these assumptions at the end of this section.

We prove our completion-time bound using a trim analysis,
which calculates the performance by discarding a few outliers and
measures that for the remaining majority. We label each quantum
as either accounted or deductible. Accounted quanta are those for
which nq ≥ Lδpq, where nq is the nonsteal usage. That is, the job
works or mugs for at least a δ fraction of the Lpq processor cycles
available during the quantum. Conversely, the deductible quanta are
those for which nq < Lδpq. Our trim analysis will show that when
we ignore the relatively few deductible quanta, we obtain linear
speedup on the more numerous accounted quanta.

We can relate this labeling of quanta as accounted versus de-
ductible to our three-way classification of quanta as inefficient,
efficient-and-satisfied, and efficient-and-deprived:
• Inefficient: On an inefficient quantum q, we have nq <

Lδaq ≤ Lδpq, since the allotment aq never exceeds the avail-
ability pq. We label all inefficient quanta as deductible, irre-
spective of whether they are satisfied or deprived.
• Efficient-and-satisfied: On an efficient quantum q, we have

nq ≥ Lδaq. Since we have aq = min {pq, dq} for a satisfied
quantum, it follows that aq = dq ≤ pq. Despite these two
bounds, we may nevertheless have nq < Lδpq. Since we
cannot guarantee that nq ≥ Lδpq, we pessimistically label the
quantum q as deductible.
• Efficient-and-deprived: As before, on an efficient quantum q,

we have nq ≥ Lδaq. On a deprived quantum, we have aq < dq

by definition. Since aq = min {pq, dq}, we must have aq = pq.
Hence, it follows that nq ≥ Lδaq = Lδpq, and we label
quantum q as accounted.
We now analyze the execution time of A-STEAL by bounding

the number of deductible and accounted quanta separately. Two
observations provide intuition for the proof. First, each inefficient
quantum contains a large number of steal-cycles, which we can ex-
pect to reduce the remaining span. This observation helps us bound
the number of deductible quanta. Second, most of the processor cy-
cles on an efficient quantum are spent either working or mugging.
We shall show that there cannot be too many mug-cycles during
the job’s execution, and thus most of the processor cycles on effi-
cient quanta are spent doing useful work. This observation helps us
bound the number of accounted quanta.

The following lemma, proved in [13], shows how steal-cycles
reduce the job’s span.

LEMMA 1. If a job has r ready queues, then 3r steal-cycles suffice
to reduce the job’s remaining span by at least 1 with probability at
least 1− 1/e, where e is the base of the natural logarithm.

The next lemma shows that an inefficient quantum reduces the
job’s span, which we shall later use to bound the total number of
inefficient quanta.

LEMMA 2. If ρ is A-STEAL’s responsiveness parameter and L is
the quantum length, on an inefficient quantum, A-STEAL reduces
the job’s remaining span by at least (1 − δ)L/6 with probability
greater than 1/4.

Proof. Let q be an inefficient quantum. A processor with an
empty ready queue steals only when it cannot mug a queue, and
hence, all the steal-cycles on quantum q occur when the number of
nonempty queues is at most the allotment aq . Therefore, Lemma 1
dictates that 3aq steal-cycles suffice to reduce the span by 1 with
probability at least 1 − 1/e. Since the quantum q is inefficient, it
contains at least (1 − δ)Laq steal-cycles. Divide the time steps
of the quantum into rounds such that each round contains 3aq

steal-cycles. Thus, there are at least j = (1 − δ)Laq/3aq =
(1 − δ)L/3 rounds.2 We call a round good if it reduces the
span by at least 1; otherwise, the round is bad. For each round
i on quantum q, we define the indicator random variable Xi to
be 1 if round i is a bad round and 0 otherwise, and let X =∑j

i=1
Xi. Since Pr {Xi = 1} < 1/e, linearity of expectation

dictates that E [X] < j/e. We now apply Markov’s inequality [22,
p. 1111], which says that for a nonnegative random variable, we
have Pr {X ≥ t} ≤ E [X] /t for all t > 0. Substituting t = j/2,
we obtain Pr {X > j/2} ≤ E [X] /(j/2) ≤ (j/e)/(j/2) =
2/e < 3/4. Thus, with probability greater than 1/4, the quantum q
contains at least j/2 good rounds. Since each good round reduces
the span by at least 1, with probability greater than 1/4, the span
reduces by least j/2 = ((1 − δ)L/3)/2 = (1 − δ)L/6 during
quantum q.

LEMMA 3. Suppose that A-STEAL schedules a job with span T∞.
If L is the quantum length, then for any ε > 0, the schedule
produces at most 48T∞/(L(1−δ))+16 ln(1/ε) inefficient quanta
with probability at least 1− ε.

Proof. Let I be the set of inefficient quanta. Define an ineffi-
cient quantum q as productive if it reduces the span by at least
(1− δ)L/6 and unproductive otherwise. For each quantum q ∈ I ,
define the indicator random variable Yq to be 1 if q is produc-
tive and 0 otherwise. By Lemma 2, we have Pr {Yq = 1} > 1/4.
Let the total number of unproductive quanta be Y =

∑
q∈I

Yq.
For simplicity in notation, let A = 6T∞/(1 − δ)L. If the job’s
execution contains |I | ≥ 48T∞/(1 − δ)L + 16 ln(1/ε) inef-
ficient quanta, then we have E [Y] > |I | /4 ≥ 12T∞/(1 −
δ)L + 4 ln(1/ε) = 2A + 4 ln(1/ε). Using the Chernoff bound
Pr {Y < (1− λ)E[Y]} < exp(−λ2E[Y]/2) [43, p. 70] and
choosing λ = (A + 4 ln(1/ε)) / (2A + 4 ln(1/ε)), we obtain

Pr {Y < A}

= Pr

{
Y <

(
1− A + 4 ln(1/ε)

2A + 4 ln(1/ε)

)
(2A + 4 ln(1/ε))

}
= Pr {Y < (1− λ) (2A + 4 ln(1/ε))}

≤ exp

(
−λ2

2
(2A + 4 ln(1/ε))

)

= exp

(
−1

2
· (A + 4 ln(1/ε))2

2A + 4 ln(1/ε)

)

< exp
(
−1

2
· 4 ln(1/ε) · 1

2

)
= ε .

Therefore, if the number |I | of inefficient quanta is at least
48T∞/(1 − δ)L + 16 ln(1/ε), the number of productive quanta

2 Actually, the number of rounds is j = �(1 − δ)L/3�, but we shall
ignore the roundoff for simplicity. A more detailed analysis can nevertheless
produce the same constants in the bounds for Lemmas 3 and 6.

115

is at least A = 6T∞/(1 − δ)L with probability at least 1 − ε.
By Lemma 2 each productive quantum reduces the span by at
least (1 − δ)L/6, and therefore at most A = 6T∞/(1 − δ)L
productive quanta occur during job’s execution. Consequently,
with probability at least 1 − ε, the number of inefficient quanta
is |I | ≤ 48T∞/(1− δ)L + 16 ln(1/ε).

The following technical lemma proved in [2] bounds the maxi-
mum value of the desire.

LEMMA 4. Suppose that A-STEAL schedules a job on a machine
with P processors. If ρ is A-STEAL’s responsiveness parameter,
then before any quantum q, the desire dq of the job is bounded by
dq < ρP .

The next lemma reveals a relationship between inefficient
quanta and efficient-and-satisfied quanta.

LEMMA 5. Suppose that A-STEAL schedules a job on a machine
with P processors. If ρ is A-STEAL’s responsiveness parameter
and the schedule produces m inefficient quanta, then it produces at
most m + logρ P + 1 efficient-and-satisfied quanta.

Proof. Assume for the purpose of contradiction that a job’s exe-
cution has m inefficient quanta, but k > m + logρ P + 1 efficient-
and-satisfied quanta. Recall that desire increases by ρ after every
efficient-and-satisfied quantum, decreases by ρ after every inef-
ficient quantum, and does not change otherwise. Thus, the total
increase in desire is ρk, and the total decrease in desire is ρm.
Since the desire starts at 1, the desire at the end of the job is
ρk−m > ρlogρ P+1 = ρP , contradicting Lemma 4.

The following lemma bounds the number of efficient-and-
satisfied quanta.

LEMMA 6. Suppose that A-STEAL schedules a job with span T∞
on a machine with P processors. If ρ is A-STEAL’s responsive-
ness parameter, δ is its utilization parameter, and L is the quan-
tum length, then the schedule produces at most 48T∞/(1− δ)L +
logρ P + 16 ln(1/ε) + 1 efficient-and-satisfied quanta with proba-
bility at least 1− ε for any ε > 0.

Proof. The lemma follows directly from Lemmas 3 and 5.

The next lemma exhibits the relationship between inefficient
quanta and efficient-and-satisfied quanta.

LEMMA 7. Suppose that A-STEAL schedules a job, and let I and
C denote the sets of inefficient and efficient-and-satisfied quanta,
respectively, produced by the schedule. If ρ is A-STEAL’s respon-
siveness parameter, then there exists an injective mapping f : I →
C such that for all q ∈ I , we have f(q) < q and df(q) = dq/ρ.

Proof. For every inefficient quantum q ∈ I , define r = f(q) to
be the latest efficient-and-satisfied quantum such that r < q and
dr = dq/ρ. Such a quantum always exists, because the initial de-
sire is 1 and the desire increases only after an efficient-and-satisfied
quantum. We must prove that f does not map two inefficient quanta
to the same efficient-and-satisfied quantum. Assume for the sake of
contradiction that there exist two inefficient quanta q < q′ such
that f(q) = f(q′) = r. By definition of f , the quantum r is
efficient-and-satisfied, r < q < q′, and dq = dq′ = ρdr. Af-
ter the inefficient quantum q, A-STEAL reduces the desire to dq/ρ.
Since the desire later increases again to dq′ = dq and the desire
increases only after efficient-and-satisfied quanta, there must be an
efficient-and-satisfied quantum r′ in the range q < r′ < q′ such
that d(r′) = d(q′)/ρ. But then, by the definition of f , we would
have f(q′) = r′. Contradiction.

We can now bound the total number of mug-cycles executed by
processors.

LEMMA 8. Suppose that A-STEAL schedules a job with work T1

on a machine with P processors. If ρ is A-STEAL’s responsiveness
parameter, δ is its utilization parameter, and L is the quantum
length, the schedule produces at most ((1 + ρ)/(Lδ − 1 − ρ))T1

mug-cycles.

Proof. When the allotment decreases, some processors are deal-
located, and their ready queues are declared muggable. The to-
tal number M of mug-cycles is at most the number of muggable
queues during the job’s execution. Since the allotment reduces
by at most aq − 1 from quantum q to quantum q + 1, there are
M ≤∑

q
(aq − 1) <

∑
q
aq mug-cycles during the execution of

the job.
By Lemma 7, for each inefficient quantum q, there is a distinct

corresponding efficient-and-satisfied quantum r = f(q) that sat-
isfies dq = ρdr. By definition, each efficient-and-satisfied quan-
tum r has a nonsteal usage nr ≥ Lδar and allotment ar = dr .
Thus, we have nr + nq ≥ Lδar = (Lδ/(1 + ρ))(ar + ρar) =
(Lδ/(1+ρ))(ar +ρdr) ≥ (Lδ/(1+ρ))(ar +aq), since aq ≤ dq

and dq = ρdr. Except for these inefficient quanta and their cor-
responding efficient-and-satisfied quanta, every other quantum q is
efficient, and hence nq ≥ Lδaq for these quanta. Let N =

∑
q
nq

be the total number of nonsteal-cycles during the job’s execution.
We have N =

∑
q
nq ≥ (Lδ/(1+ρ))

∑
q
aq ≥ (Lδ/(1+ρ))M .

Since the total number of nonsteal-cycles is the sum of work-
cycles and mug-cycles and the total number of work-cycles is
T1, we have N = T1 + M , and hence, T1 = N − M ≥
(Lδ/(1 + ρ))M −M = ((Lδ− 1− ρ)/(1 + ρ))M , which yields
M ≤ ((1 + ρ)/(Lδ − 1− ρ))T1.

LEMMA 9. Suppose that A-STEAL schedules a job with work T1

on a machine with P processors. If ρ is A-STEAL’s responsive-
ness parameter, δ is its utilization parameter, and L is the quan-
tum length, the schedule produces at most (T1/(LδPA))(1 + (1 +
ρ)/(Lδ − 1− ρ)) accounted quanta, where PA is the mean avail-
ability on the accounted quanta.

Proof. Let A and D denote the set of accounted and deductible
quanta, respectively. The mean availability on accounted quanta is
PA = (1/ |A|)∑

q∈A
pq. Let N be the total number of nonsteal-

cycles. By definition of accounted quanta, the nonsteal usage satis-
fies nq ≥ Lδaq. Thus, we have N =

∑
q∈A∪D

nq ≥
∑

q∈A
nq ≥∑

q∈A
δLpq = δL |A|PA, and hence, we obtain

|A| ≤ N/LδPA . (1)

But, the total number of nonsteal-cycles is the sum of the number
of work-cycles and mug-cycles. Since there are at most T1 work-
cycles on accounted quanta and Lemma 8 shows that there are
at most M ≤ ((1 + ρ)/(Lδ − 1 − ρ))T1 mug-cycles, we have
N ≤ T1 + M ≤ T1(1 + (1 + ρ)/(Lδ − 1− ρ)). Substituting this
bound on N into Inequality (1) completes the proof.

We are now ready to bound the running time of jobs scheduled
with A-STEAL.

THEOREM 10. Suppose that A-STEAL schedules a job with work
T1 and span T∞ on a machine with P processors. If ρ is A-
STEAL’s responsiveness parameter, δ is its utilization parameter,
and L is the quantum length, then for any ε > 0, with probability
at least 1− ε, A-STEAL completes the job in

T ≤ T1

δP̃

(
1 +

1 + ρ

Lδ − 1− ρ

)

+ O
(

T∞
1− δ

+ L logρ P + L ln(1/ε)
)

(2)

116

time steps, where P̃ is the O(T∞/(1−δ)+L logρ P +L ln(1/ε))-
trimmed availability.

Proof. The proof uses trim analysis. Let A be the set of accounted
quanta, and let D be the set of deductible quanta. Lemmas 3
and 6 show that there are |D| = O(T∞/((1 − δ)L) + logρ P +
ln(1/ε)) deductible quanta, and hence L |D| = O(T∞/(1− δ) +
L logρ P + L ln(1/ε)) time steps belong to deductible quanta. We
have that PA ≥ P̃ , since the mean availability on the accounted
time steps (we trim the L |D| deductible steps) must be at least the
O(T∞/(1− δ) + L logρ P + L ln(1/ε))-trimmed availability (we
trim the O(T∞/(1 − δ) + L logρ P + L ln(1/ε)) steps that have
the highest availability). From Lemma 9, the number of accounted
quanta is at most (T1/(LδPA))(1 + (1 + ρ)/(Lδ − 1 − ρ)), and
since T = L(|A|+ |D|), the desired time bound follows.

COROLLARY 11. Suppose that A-STEAL schedules a job with
work T1 and span T∞ on a machine with P processors. If ρ is
A-STEAL’s responsiveness parameter, δ is its utilization parame-
ter, and L is the quantum length, then A-STEAL completes the job
in expected time E [T] = O(T1/P̃ + T∞ + L lg P), where P̃ is
the O(T∞ + L lg P)-trimmed availability.

Proof. Straightforward conversion of high-probability bound to
expectation, together with setting δ and ρ to suitable constants.

Our analysis made two assumptions to ease the presentation.
First, we assumed that there is no contention for steals. Second, we
assumed that a thief processor can find a muggable queue and mug
it in unit time. Now, let us relax these assumptions.

The first issue dealing with the contention on steals has been
addressed by Blumofe and Leiserson in [13]. A balls-and-bins
argument can be used to prove that taking the contention of steals
into account would increase the running time by at most O(lg P),
which is tiny compared to the other terms in our running time.

Mugging requires more data-structure support. When a proces-
sor runs out of work, it needs to find out if there are any muggable
queues for the job. As a practical matter, these muggable queues can
be placed in a set (using any synchronous queue or set implementa-
tions as in [49,52,53,57]). This strategy could increase the number
of mug-cycles by a factor of P in the worse case. If P � L, how-
ever, this change does not affect the running time bound by much.
Moreover, in practice, the number of muggings is so small that the
time spent on muggings is insignificant compared to the total run-
ning time of the job. Alternatively, to obtain a better theoretical
bound, we could use a counting network [5] with width P to im-
plement the list of muggable queues, in which case each mugging
operation would consume O(lg2 P) processor cycles. The num-
ber of accounted steps in the time bound from Lemma 9 would
increase slightly to (T1/δP̃)

(
1 + (1 + ρ) lg2 P/(Lδ − 1− ρ)

)
,

but the number of deductible steps would not change.

4. Waste analysis
This section proves that when a job is scheduled by A-STEAL, the
total number of processor cycles wasted during the job’s execution
is W = O(T1) in the worst case.

THEOREM 12. Suppose that A-STEAL schedules a job with work
T1 on a machine with P processors. If ρ is A-STEAL’s responsive-
ness parameter, δ is its utilization parameter, and L is the quantum
length, then A-STEAL wastes at most

W ≤
(

1 + ρ− δ

δ
+

(1 + ρ)2

δ(Lδ − 1− ρ)

)
T1 (3)

processor cycles during the course of the computation.

Proof. Let M be the total number of mug-cycles, and let S be the
total number of steal-cycles. Hence, we have W = S + M . Since
Lemma 8 provides an upper bound of M , we only need to bound S.
We use an accounting argument to calculate S based on whether a
quanta is inefficient or efficient. Let Sineff and Seff , where S =
Sineff + Seff , be the numbers of steal-cycles on inefficient and
efficient quanta, respectively.

Inefficient quanta: Lemma 7 shows that every inefficient quan-
tum q with desire dq corresponds to a distinct efficient-and-satisfied
quantum r = f(q) with desire dr = dq/ρ. Thus, the steal-
cycles on quantum q can be amortized against the nonsteal-cycles
on quantum r. Since quantum r is efficient-and-satisfied, its non-
steal usage satisfies nr ≥ Lδaq/ρ, and its allocation is ar = dr .
Therefore, we have nr ≥ Lδar = Lδdr = Lδdq/ρ ≥ Lδaq/ρ.
Let sq be the number of steal-cycles on quantum q. Since the
quantum contains at most Laq total processor cycles, we have
sq ≤ Laq ≤ ρnr/δ, that is, the number of steal-cycles in the in-
efficient quantum q is at most a ρ/δ fraction of the nonsteal-cycles
in its corresponding efficient-and-satisfied quantum r. Therefore,
the total number of steal-cycles in all inefficient quanta satisfies
Sineff ≤ (ρ/δ)(T1 + M).

Efficient quanta: On any efficient quantum q, the job performs
at least Lδaq work- and mug-cycles and at most L(1− δ)aq steal-
cycles. Summing over all efficient quanta, the number of steal-
cycles on efficient quanta is Seff ≤ ((1− δ)/δ)(T1 + M).

Using the bound M ≤ ((1+ρ)/(Lδ−1−ρ))T1 from Lemma 8,
we obtain

W = S + M

= Sineff + Seff + M

≤ (ρ/δ)(T1 + M) + ((1− δ)/δ)(T1 + M) + M

= (T1 + M)
1 + ρ− δ

δ
+ M

≤
(

T1 + T1
1 + ρ

Lδ − 1− ρ

)
1 + ρ− δ

δ
+ T1

1 + ρ

Lδ − 1− ρ

= T1

((
1 +

1 + ρ

Lδ − 1− ρ

)
1 + ρ− δ

δ
+

1 + ρ

Lδ − 1− ρ

)

= T1

(
1 + ρ− δ

δ
+

(1 + ρ)2

δ(Lδ − 1− ρ)

)
,

which proves the theorem.

5. Interpretation of the bounds
In this section, we simplify the bounds on A-STEAL’s behavior
to understand the tradeoffs involved in completion time and waste
due to parameter settings. Although our bounds are good asymp-
totically, they contain large constants. Some might wonder whether
these large constants might adversely affect A-STEAL’s practical
utility. We argue that most of the large constants are due to the
assumption of the adversarial behavior of the job scheduler, and
thus, we should expect the practical performance of A-STEAL to
be better than that indicated by our bounds. Moreover, we have
implemented A-STEAL in a simulation environment [3] using the
DESMO-J [24] Java simulator, which provides strong evidence that
A-STEAL should be efficient in practice.

If the utilization parameter δ and responsiveness parameter ρ are
constants, the bounds in Inequalities (2) and (3) can be simplified
as follows:

T ≤ T1

δP̃
(1 + O(1/L))

+ O
(

T∞
1− δ

+ L logρ P + L ln(1/ε)
)

, (4)

117

W ≤
(

1 + ρ− δ

δ
+ O(1/L)

)
T1 . (5)

This reformulation allows us to see the trade-offs due to the set-
ting of the δ and ρ parameters more easily. As δ increases and ρ
decreases, the completion time increases and the waste decreases.
Thus, reasonable values for the utilization parameter δ might lie be-
tween 80% and 95%, and the responsiveness parameter ρ might be
set between 1.2 and 2.0. The quantum length L is a system config-
uration parameter, which might have values in the range 103 to 105.

For the time bound in Inequality (4), as δ increases toward 1, the
coefficient of T1/P̃ decreases toward 1, and the job comes closer
to perfect linear speedup on accounted steps, but the number of
deductible steps increases as well. The large number of deductible
steps is due to the adversarial job scheduler, and are not expected
to materialize when a non-adversarial job scheduler is being used.

To see how these settings affect the waste bound, consider the
waste bound in Inequality (5) as two parts, where the waste due to
steal-cycles is S ≤ (1 + ρ − δ)T1/δ, and the waste due to mug-
cycles is only M = O(1/L)T1. Since the waste on mug-cycles
is just a tiny fraction compared to the work T1, an implementation
of A-STEAL need not overly concern itself with the bookkeeping
overhead of adding and removing processors from jobs.

The major part of waste comes from steal-cycles, where S is
generally less than 2T1 for typical parameter values. The analysis
of Theorem 12 shows that the number of steal-cycles on efficient
steps is bounded by ((1− δ)/δ)T1, which is a small fraction of S.
Thus, most of the waste that occurs in the bound can be attributed to
the steal-cycles on the inefficient quanta. To ensure the robustness
of A-STEAL, our analysis assumes that the job scheduler is an
adversary, which creates as many inefficient quanta as possible.
Since job schedulers are generally not adversarial, we should not
expect these large overheads to materialize in practice.

We have performed simulations [3] which confirm our expecta-
tion that A-STEAL performs well when scheduling on large mul-
tiprocessors. We measured the completion time and waste of A-
STEAL on over 2300 job runs using a variety of processor avail-
ability profiles. Linear-regression analysis indicates that A-STEAL
provides almost perfect linear speedup. In addition, A-STEAL typ-
ically wasted less than 20% of the processor cycles allotted to the
job. We compared A-STEAL with the ABP algorithm, an adaptive
work-stealing thread scheduler developed by Arora, Blumofe, and
Plaxton which does not employ parallelism feedback. On moder-
ately to heavily loaded large machines with predetermined avail-
ability profiles, A-STEAL typically completed jobs more than twice
as quickly, despite being allotted the same or fewer processors on
every step, while wasting only 10% of the processor cycles wasted
by ABP.

In addition, we compared A-STEAL with ABP on a large server
where many jobs are running simultaneously and jobs arrive and
leave dynamically. We implemented job schedulers to allocate pro-
cessors among various jobs: dynamic equipartitioning [40] for A-
STEAL and equipartitioning [56] for ABP.3 We simulated a 1000-
processor machine for about 106 time steps, where jobs had a mean
interarrival time of 1000 time steps. We compared the utilization
provided by A-STEAL and ABP over time. The jobs were generated
randomly using a variety of distributions, and as it turned out, our
results were fairly insensitive to which we chose. In all these experi-
ments, A-STEAL consistently provides higher utilization than ABP.
Figure 2 shows the utilization as a function of time (log-scale) for
one such experiment. ABP+EQ starts out with a higher utilization,
since A-STEAL+DEQ initially requests just one processor. Before
10% of the simulation has elapsed, however, A-STEAL+DEQ over-

3 Dynamic equipartitioning needs parallelism feedback, and therefore can-
not be used with ABP, since it does not provide parallelism feedback.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

1e+003 1e+004 1e+005 1e+006

U
til

iz
at

io
n

Time Steps

A-STEAL+DEQ
ABP+EQ

Figure 2: Comparing the utilization over time of A-STEAL+DEQ and
ABP+EQ. The critical path length of the jobs is picked uniformly from the
range 1, 000 to 99, 000, and the parallelism is generated uniformly in the
range [1, 80].

takes ABP+EQ with respect to the utilization and then consistently
provides a higher utilization. Although the figure does not show it,
the mean completion time of jobs under ABP+EQ is nearly 50%
slower than those under A-STEAL+DEQ for both these distribu-
tions.

6. Related work
This section discusses related work on adaptive and nonadaptive
schedulers for multithreaded jobs. Prior work on thread schedul-
ing for multithreaded jobs has tended to focus on nonadaptive
scheduling [8, 9, 13, 19, 33, 44] or adaptive scheduling without par-
allelism feedback [4]. We start by discussing nonadaptive work-
stealing schedulers. We then discuss empirical and theoretical work
on adaptive thread schedulers. Finally, we give a brief summary of
research on adaptive job schedulers.

Work-stealing has been used as a heuristic since Burton and
Sleep’s research [20] and Halstead’s implementation of Multi-
lisp [36]. Many variants have been implemented since then [30,
35, 41], and it has been analyzed in the context of load balanc-
ing [48], backtrack search [39], etc. Blumofe and Leiserson [13]
proved that the work-stealing algorithm is efficient with respect to
time, space, and communication for the class of “fully strict” multi-
threaded computations. Arora, Blumofe, and Plaxton [4] extended
the time bound result to arbitrary multithreaded computations. In
addition, Acar, Blelloch, and Blumofe [1] show that work-stealing
schedulers are efficient with respect to cache misses for jobs with
“nested parallelism.” Moreover, variants of work-stealing algo-
rithms have been implemented in many systems [11, 17, 31] and
empirical studies show that work-stealing schedulers are scalable
and practical [16, 31].

Adaptive thread scheduling without parallelism feedback has
been studied in the context of multithreading, primarily by Blumofe
and his coauthors [4, 15, 16, 18]. In this work, the thread sched-
uler uses randomized work-stealing strategy to schedule threads
on available processors but does not provide the feedback about
the job’s parallelism to the job scheduler. The research in [15, 18]
addresses networks of workstations where processors may fail or
join and leave a computation while the job is running, showing
that work-stealing provides a good foundation for adaptive task

118

scheduling. In theoretical work, Arora, Blumofe, and Plaxton [4]
show that their task scheduler (we call it the ABP scheduler) prov-
ably completes a job in O(T1/P + PT∞/P) expected time. Blu-
mofe and Papadopoulos [16] perform an empirical evaluation of
ABP and show that on an 8-processor machine, ABP provides al-
most perfect linear speedup for jobs with reasonable parallelism.

Adaptive task scheduling with parallelism feedback has also
been studied empirically in [50, 54, 55]. These researchers use
a job’s history of processor utilization to provide feedback to
dynamic-equipartitioning job schedulers. Their studies use differ-
ent strategies for parallelism feedback, and all report better system
performance with parallelism feedback than without, but it is not
apparent which of their strategies is best. Our earlier work [2] ap-
pears to be the only theoretical analysis of a task scheduler with
parallelism feedback.

In contrast to adaptive thread schedulers, adaptive job sched-
ulers have been studied extensively, both empirically [21, 25, 32,
40, 45–47, 51, 58] and theoretically [6, 23, 26, 27, 34, 42]. McCann,
Vaswani, and Zahorjan [40] studied many different job schedulers
and evaluated them on a set of benchmarks. They also introduced
the notion of dynamic equipartitioning, which gives each job a fair
allotment of processors, while allowing processors that cannot be
used by a job to be reallocated to other jobs. Gu [34] proved that
dynamic equipartitioning with instantaneous parallelism feedback
is 4-competitive with respect to makespan for batched jobs with
multiple phases, where the parallelism of the job remains constant
during the phase and the phases are relatively long compared with
the length of a scheduling quantum. Deng and Dymond [23] proved
a similar result for mean response time for multiphase jobs regard-
less of their arrival times. He, Hsu, and Leiserson [37] recently
proved that two-level schedulers which combine A-STEAL (or A-
GREEDY) with dynamic equipartitioning are constant competitive
with respect to makespan (for arbitrary job arrivals) and mean com-
pletion time (for batched arrivals). Song [54] proves that a random-
ized distributed strategy can implement dynamic equipartitioning.

7. Conclusions
This section offers some conclusions and directions for future
work.

This and previous research [2] has used the technique of trim-
ming to limit a powerful adversary, enabling us to analyze adap-
tive schedulers with parallelism feedback. The idea of ignoring a
few outliers while calculating averages is often used in statistics
to ignore anomalous data points. For example, teachers often ig-
nore the lowest score while computing a student’s grade, and in the
Olympic Games, the lowest and the highest scores are sometimes
ignored when computing an athlete’s average. In theoretical com-
puter science, when an adversary is too powerful, we sometimes
make statistical assumptions about the input to render the analysis
tractable, but statistical assumptions may not be valid in practice.
Trimming may prove itself of value for analyzing such problems.

A-STEAL needs full information about the previous quantum to
estimate the desire of the current quantum. Collecting perfect in-
formation might become difficult as the number of processors be-
comes larger, especially if the number of processors exceeds the
quantum length. A-STEAL only estimates the desire, however, and
therefore approximate information should be enough to provide
feedback. We are currently studying the possibility of using sam-
pling techniques to estimate the number of steal-cycles, instead of
counting the exact number.

Our model for jobs and scheduling takes only computation into
account and has no performance model for handling input and
output operations. But there is a large class of parallel applications
which perform a large number of input/output operations. It is
unclear how the thread scheduler should respond when a thread

is performing I/O even in the case of nonadaptive work-stealing
schedulers and the effect of I/O on all kinds of thread schedulers in
theory and in practice is an interesting open question.

Acknowledgments
Thanks to the members of the Supercomputing Technologies group
at MIT CSAIL and to Wen Jing Hsu of the Nanyang Technological
University in Singapore for numerous helpful discussions. This
research was supported in part by the Singapore-MIT Alliance and
NSF grants ACI-0324974 and CNS-0615215.

References
[1] Umut A. Acar, Guy E. Blelloch, and Robert D. Blumofe. The data

locality of work stealing. In SPAA, pages 1–12, New York, NY, USA,
2000.

[2] Kunal Agrawal, Yuxiong He, Wen Jing Hsu, and Charles E. Leiserson.
Adaptive task scheduling with parallelism feedback. In PPoPP, 2006.

[3] Kunal Agrawal, Yuxiong He, Wen Jing Hsu, and Charles E. Leiserson.
An empirical evaluation of work stealing with parallelism feedback.
In ICDCS, 2006.

[4] Nimar S. Arora, Robert. D. Blumofe, and C. Greg Plaxton. Thread
scheduling for multiprogrammed multiprocessors. In SPAA, pages
119–129, Puerto Vallarta, Mexico, 1998.

[5] James Aspnes, Maurice Herlihy, and Nir Shavit. Counting networks.
Journal of the ACM, 41(5):1020–1048, 1994.

[6] Nikhil Bansal, Kedar Dhamdhere, Jochen Konemann, and Amitabh
Sinha. Non-clairvoyant scheduling for minimizing mean slowdown.
Algorithmica, 40(4):305–318, 2004.

[7] Guy Blelloch, Phil Gibbons, and Yossi Matias. Provably efficient
scheduling for languages with fine-grained parallelism. Journal of the
ACM, 46(2):281–321, 1999.

[8] Guy E. Blelloch, Phillip B. Gibbons, and Yossi Matias. Provably
efficient scheduling for languages with fine-grained parallelism. In
SPAA, pages 1–12, Santa Barbara, California, 1995.

[9] Guy E. Blelloch and John Greiner. A provable time and space efficient
implementation of NESL. In ICFP, pages 213–225, 1996.

[10] Robert D. Blumofe. Executing Multithreaded Programs Efficiently.
PhD thesis, Massachusetts Institute of Technology, Cambridge, MA,
USA, 1995.

[11] Robert D. Blumofe, Christopher F. Joerg, Bradley C. Kuszmaul,
Charles E. Leiserson, Keith H. Randall, and Yuli Zhou. Cilk:
An efficient multithreaded runtime system. In Proceedings of the
ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, pages 207–216, Santa Barbara, California, July 1995.

[12] Robert D. Blumofe and Charles E. Leiserson. Space-efficient
scheduling of multithreaded computations. SIAM Journal on
Computing, 27(1):202–229, February 1998.

[13] Robert D. Blumofe and Charles E. Leiserson. Scheduling mul-
tithreaded computations by work stealing. Journal of the ACM,
46(5):720–748, 1999.

[14] Robert D. Blumofe, Charles E. Leiserson, and Bin Song. Automatic
processor allocation for work-stealing jobs. 1998.

[15] Robert D. Blumofe and Philip A. Lisiecki. Adaptive and reliable
parallel computing on networks of workstations. In USENIX, pages
133–147, Anaheim, California, 1997.

[16] Robert D. Blumofe and Dionisios Papadopoulos. The performance of
work stealing in multiprogrammed environments. In SIGMETRICS,
pages 266–267, 1998.

[17] Robert D. Blumofe and Dionisios Papadopoulos. Hood: A user-
level threads library for multiprogrammed multiprocessors. Technical
report, University of Texas at Austin, 1999.

119

[18] Robert D. Blumofe and David S. Park. Scheduling large-scale parallel
computations on networks of workstations. In HPDC, pages 96–105,
San Francisco, California, 1994.

[19] R. P. Brent. The parallel evaluation of general arithmetic expressions.
Journal of the ACM, pages 201–206, 1974.

[20] F. Warren Burton and M. Ronan Sleep. Executing functional programs
on a virtual tree of processors. In FPCA, pages 187–194, Portsmouth,
New Hampshire, October 1981.

[21] Su-Hui Chiang and Mary K. Vernon. Dynamic vs. static quantum-
based parallel processor allocation. In JSSPP, pages 200–223,
Honolulu, Hawaii, United States, 1996.

[22] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and
Clifford Stein. Introduction to Algorithms. The MIT Press and
McGraw-Hill, second edition, 2001.

[23] Xiaotie Deng and Patrick Dymond. On multiprocessor system
scheduling. In SPAA, pages 82–88, 1996.

[24] DESMO-J: A framework for discrete-event modelling and simula-
tion. http://asi-www.informatik.uni-hamburg.de/
desmoj/.

[25] Derek L. Eager, John Zahorjan, and Edward D. Lozowska. Speedup
versus efficiency in parallel systems. IEEE Transactions on
Computers, 38(3):408–423, 1989.

[26] Jeff Edmonds. Scheduling in the dark. In STOC, pages 179–188,
1999.

[27] Jeff Edmonds, Donald D. Chinn, Timothy Brecht, and Xiaotie Deng.
Non-clairvoyant multiprocessor scheduling of jobs with changing
execution characteristics. Journal of Scheduling, 6(3):231–250, 2003.

[28] Zhixi Fang, Peiyi Tang, Pen-Chung Yew, and Chuan-Qi Zhu. Dynamic
processor self-scheduling for general parallel nested loops. IEEE
Transactions on Computers, 39(7):919–929, 1990.

[29] Dror G. Feitelson. Job scheduling in multiprogrammed parallel
systems (extended version). Technical report, IBM Research Report
RC 19790 (87657) 2nd Revision, 1997.

[30] Raphael Finkel and Udi Manber. DIB—A distributed implementation
of backtracking. TOPLAS, 9(2):235–256, April 1987.

[31] Matteo Frigo, Charles E. Leiserson, and Keith H. Randall. The
implementation of the Cilk-5 multithreaded language. In PLDI, pages
212–223, 1998.

[32] Dipak Ghosal, Giuseppe Serazzi, and Satish K. Tripathi. The
processor working set and its use in scheduling multiprocessor
systems. IEEE Transactions on Software Engineering, 17(5):443–
453, 1991.

[33] R. L. Graham. Bounds on multiprocessing anomalies. SIAM Journal
on Applied Mathematics, pages 17(2):416–429, 1969.

[34] Nian Gu. Competitive analysis of dynamic processor allocation
strategies. Master’s thesis, York University, 1995.

[35] Michael Halbherr, Yuli Zhou, and Chris F. Joerg. MIMD-style parallel
programming with continuation-passing threads. In Proceedings of the
International Workshop on Massive Parallelism: Hardware, Software,
and Applications, Capri, Italy, September 1994.

[36] Robert H. Halstead, Jr. Implementation of Multilisp: Lisp on a
multiprocessor. In LFP, pages 9–17, Austin, Texas, August 1984.

[37] Yuxiong He, Hsu Wen Jing, and Charles E. Leiserson. Provably
efficient two-level adaptive scheduling for multithreaded jobs on
parallel computers. JSSPP, 2006.

[38] S. F. Hummel and E. Schonberg. Low-overhead scheduling of nested
parallelism. IBM Journal of Research and Development, 35(5-6):743–
765, 1991.

[39] Richard M. Karp and Yanjun Zhang. A randomized parallel branch-
and-bound procedure. In STOC, pages 290–300, Chicago, Illinois,
May 1988.

[40] Cathy McCann, Raj Vaswani, and John Zahorjan. A dynamic
processor allocation policy for multiprogrammed shared-memory
multiprocessors. ACM Transactions on Computer Systems, 11(2):146–
178, 1993.

[41] Eric Mohr, David A. Kranz, and Jr. Robert H. Halstead. Lazy
task creation: A technique for increasing the granularity of parallel
programs. In LFP, pages 185–197, 1990.

[42] Rajeev Motwani, Steven Phillips, and Eric Torng. Non-clairvoyant
scheduling. In SODA, pages 422–431, 1993.

[43] Rajeev Motwani and Prabhakar Raghavan. Randomized Algorithms.
Cambridge University Press, 1 edition, 1995.

[44] Girija J. Narlikar and Guy E. Blelloch. Space-efficient scheduling of
nested parallelism. ACM Transactions on Programming Languages
and Systems, 21(1):138–173, 1999.

[45] Thu D. Nguyen, Raj Vaswani, and John Zahorjan. Maximizing
speedup through self-tuning of processor allocation. In IPPS, pages
463–468, 1996.

[46] Thu D. Nguyen, Raj Vaswani, and John Zahorjan. Using runtime
measured workload characteristics in parallel processor scheduling.
In Dror G. Feitelson and Larry Rudolph, editors, JSSPP, pages 155–
174. Springer-Verlag, 1996.

[47] Eric W. Parsons and Kenneth C. Sevcik. Multiprocessor scheduling for
high-variability service time distributions. In IPPS, pages 127–145,
London, UK, 1995. Springer-Verlag.

[48] Larry Rudolph, Miriam Slivkin-Allalouf, and Eli Upfal. A simple
load balancing scheme for task allocation in parallel machines. In
SPAA, pages 237–245, Hilton Head, South Carolina, July 1991.

[49] William Scherer, Doug Lea, and Michael Scott. Scalable synchronous
queues. In PPoPP, 2006.

[50] Siddhartha Sen. Dynamic processor allocation for adaptively parallel
jobs. Master’s thesis, Massachusetts Institute of technology, 2004.

[51] K. C. Sevcik. Characterizations of parallelism in applications and
their use in scheduling. In SIGMETRICS, pages 171–180, 1989.

[52] Nir Shavit and Dan Touitou. Elimination trees and the construction of
pools and stacks: preliminary version. In SPAA, pages 54–63, 1995.

[53] Nir Shavit and Asaph Zemach. Diffracting trees. ACM Transactions
of Computer Systems, 14(4):385–428, 1996.

[54] B. Song. Scheduling adaptively parallel jobs. Master’s thesis,
Massachusetts Institute of Technology, 1998.

[55] Kaushik Guha Timothy B. Brecht. Using parallel program char-
acteristics in dynamic processor allocation policies. Performance
Evaluation, 27-28:519–539, 1996.

[56] Andrew Tucker and Anoop Gupta. Process control and scheduling
issues for multiprogrammed shared-memory multiprocessors. In
SOSP, pages 159–166, New York, NY, USA, 1989. ACM Press.

[57] Roger Wattenhofer and Peter Widmayer. The counting pyramid:
an adaptive distributed counting scheme. Journal of Parallel and
Distributed Computing, 64(4):449–460, 2004.

[58] K. K. Yue and D. J. Lilja. Implementing a dynamic processor
allocation policy for multiprogrammed parallel applications in the
SolarisTMoperating system. Concurrency and Computation-Practice
and Experience, 13(6):449–464, 2001.

120

