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Abstract. In the setting of secure computation, a set of parties wish to securely
compute some function of their inputs, in the presence of an adversary. The adversary
in question may be static (meaning that it controls a predetermined subset of the parties)
or adaptive (meaning that it can choose to corrupt parties during the protocol execution
and based on what it sees). In this paper, we study two fundamental questions relating
to the basic zero-knowledge and oblivious transfer protocol problems:

• Adaptive zero-knowledge proofs: We ask whether it is possible to construct adap-
tive zero-knowledge proofs (with unconditional soundness) for all of N P . Beaver
(STOC 1996) showed that known zero-knowledge proofs are not adaptively se-
cure, and in addition showed how to construct zero-knowledge arguments (with
computational soundness).

• Adaptively secure oblivious transfer: All known protocols for adaptively secure
oblivious transfer rely on seemingly stronger hardness assumptions than for the
case of static adversaries. We ask whether this is inherent, and in particular,
whether it is possible to construct adaptively secure oblivious transfer from en-
hanced trapdoor permutations alone.

We provide surprising answers to the above questions, showing that achieving adaptive
security is sometimes harder than achieving static security, and sometimes not. First, we
show that assuming the existence of one-way functions only, there exist adaptive zero-
knowledge proofs for all languages in N P . In order to prove this, we overcome the
problem that all adaptive zero-knowledge protocols known until now used equivocal
commitments (which would enable an all-powerful prover to cheat). Second, we prove
a black-box separation between adaptively secure oblivious transfer and enhanced trap-
door permutations. As a corollary, we derive a black-box separation between adaptively
and statically secure oblivious transfer. This is the first black-box separation to relate to
adaptive security and thus the first evidence that it is indeed harder to achieve security
in the presence of adaptive adversaries than in the presence of static adversaries.
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1. Introduction

In the setting of secure two-party and multiparty computation, parties with private in-
puts wish to securely compute some joint function of their inputs, where “security”
must hold in the presence of adversarial behavior by some of the parties. An important
parameter in any definition of security relates to the adversary’s power. Is the adversary
computationally bounded or all powerful? Is the adversary semi-honest (meaning that it
follows all protocol instructions but tries to learn more than it’s supposed to by analyz-
ing the messages it receives) or is it malicious (meaning that it can arbitrarily deviate
from the protocol specification)? Finally, are the adversarial corruptions static (mean-
ing that the set of corrupted parties is fixed) or adaptive (meaning that the adversary
can corrupt parties throughout the computation and the question of who to corrupt and
when may depend on the adversary’s view in the protocol execution). It is desirable to
achieve security in the presence of adaptive adversaries where possible, since it mod-
els the real-world phenomenon of “hackers” actively breaking into computers, possibly
while they are executing secure protocols. However, it seems to be technically harder to
achieve security in the presence of adaptive adversaries. Among other things, it requires
the ability to construct a simulator who can first generate a transcript blindly (without
knowing any party’s input) and then later, upon receiving inputs, “explain” the transcript
as an execution of honest parties with those inputs.

In this paper, we ask two basic questions related to the feasibility of achieving security
in the presence of adaptive adversaries. Our questions were borne out of the following
two observations:

1. Adaptive zero-knowledge proofs: It has been shown that the zero-knowledge proof
system of [24] (and all others known) for N P -complete languages is not se-
cure in the presence of adaptive adversaries, or else the polynomial hierarchy
collapses [1]. Due to this result, all known zero-knowledge protocols for N P -
complete languages in the adaptive setting are arguments, meaning that soundness
only holds in the presence of a polynomial-time prover (adaptive zero-knowledge
arguments were presented by [1] and later in the context of universal compos-
ability; e.g., see [7,9]). However, the question of whether or not adaptive zero-
knowledge proofs exist for all of N P has not been addressed.

2. Adaptively secure oblivious transfer: One of the goals of the theory of cryptog-
raphy is to understand what assumptions are necessary and sufficient for carrying
out cryptographic tasks; see, for example, [26]. Despite this, no such study has
been carried out regarding adaptively secure protocols. In particular, we do not
know what assumptions are necessary for achieving adaptively secure oblivious
transfer (since oblivious transfer is complete for secure computation, this question
has important ramifications to adaptively secure computation in general). Cur-
rently, what is known is that although statically secure oblivious transfer can be
constructed from enhanced trapdoor permutations [15,23], all constructions for
adaptively secure oblivious transfer use additional assumptions like the ability to
sample a permutation without knowing its trapdoor [3,9].

Our Results—Adaptive Zero-Knowledge Proofs All known zero-knowledge protocols
for N P essentially follow the same paradigm: the prover sends the verifier commit-
ments that are based on the statement being proved (and its witness), and the verifier
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then asks the prover to open part or all of the commitments. Based on the prover’s
answer, the verifier is either convinced that the statement is true or detects the prover
cheating. It therefore follows that soundness only holds if the commitment scheme used
is binding, and this is a problem in the setting of adaptive security. Consider an adver-
sary that corrupts the verifier at the beginning of the execution and the prover at the end.
In this case, the zero-knowledge simulator must generate a transcript without knowing
the NP-witness. However, at the end, after the prover is corrupted (and the simulator
then receives a witness), it must be able to show that the commitments were generated
using that witness. Until now, this has been solved by using equivocal commitments
that can be opened to any value desired (in order for soundness to hold, the ability to
equivocate is given to the simulator and not the real prover). However, equivocability
needed by the simulator for the ‘yes’ instances allows an all-powerful prover to break
binding and thus soundness on ‘no’ instances and this means that the protocol has only
computational soundness. Indeed, the above observation led us to initially conjecture
that adaptive zero-knowledge proofs exist only for S Z K. However, our conjecture was
wrong, and in this paper we prove the following theorem:

Theorem 1. Assuming the existence of one-way functions that are hard to invert for
non-uniform adversaries, there exist adaptive zero-knowledge proofs for all of N P .

We prove Theorem 1 by constructing a new type of instance-dependent commit-
ment scheme. Instance-dependent commitment schemes are commitments whose prop-
erties depend on whether the instance (or statement) in question is in the language or
not [4,28]. Typically, they are defined for a language L as follows. Let x be a statement.
If x ∈ L then the commitment associated with x is computationally hiding and if x /∈ L

then the commitment associated with x is perfectly binding. This has proven very useful
in the context of zero-knowledge where hiding alone is needed for the case of x ∈ L, and
binding alone is needed in the case of x /∈ L; see, for example, [33,34,41]. We construct
an instance-dependent commitment scheme with the additional property that if x ∈ L

then the commitment is equivocal and the simulator can open it to any value it wishes.
To be more exact, we need the commitment itself to be adaptively secure, meaning that
it must be possible to generate a commitment value c and then later find “random coins”
r for any bit b so that c is a commitment string generated by an honest committer with
input b and random coins r .1 In contrast to the above, if x /∈ L then the commitment
is still perfectly binding. Given such a commitment (which is actually very similar to
the commitment schemes presented in [16] and [9]) we are able to construct the first
computational zero-knowledge proof for all of N P that is secure also in the case of
adaptive corruptions.2

1 We stress that this is a strictly stronger requirement than equivocality. In most equivocal commitments,
the committer reveals only some of its coins upon decommitting. This does not suffice for achieving adaptive
commitments.

2 In [34], adaptively secure commitment schemes were constructed for the languages of Graph Isomor-
phism and Quadratic Residuosity (although they were not presented in this way nor for this purpose). The con-
structions in [34] are incomparable to ours. On the one hand, they require no hardness assumptions whereas
we use one-way functions. On the other hand, our construction is for all languages in N P whereas they are
restricted to the above two specific languages (which are also in S Z K).
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Our Results—Adaptively Secure Oblivious Transfer As we have mentioned, all known
protocols for adaptively secure oblivious transfer require assumptions of the flavor that
it is possible to sample a permutation without its trapdoor. In contrast, standard trapdoor
permutations do not have this property. We remark that enhanced trapdoor permutations
do have the property that it is possible to sample an element in the domain of the permu-
tation without knowing its preimage. This begs the question as to whether such “obliv-
ious sampling” of the permutation’s domain suffices for achieving adaptively secure
oblivious transfer, or is something stronger needed (like oblivious sampling of permuta-
tions themselves). We remark that oblivious sampling is used in this context by having
the simulator sample unobliviously and then “lie” in its final transcript by claiming to
have sampled in the regular way. However, this strategy is problematic when the oblivi-
ous sampling is carried out on elements in the domain because if the trapdoor is known
then it may be possible to see if the preimage of the sampled value appears implicitly
in the protocol transcript. (For example, in the protocol of [15], the preimages fully de-
fine the sender’s input and so if the trapdoor is known, the values can be checked.) Of
course, such arguments do not constitute any form of evidence. In order to demonstrate
hardness, we use the methodology of black-box separations, introduced by [27] and
later used in [19,31,39,40] amongst others. We prove the following informally stated
theorem:

Theorem 2. There exists an oracle relative to which enhanced trapdoor permutations
exist but adaptively secure oblivious transfer does not exist.

Recalling that statically secure oblivious transfer can be constructed from any en-
hanced trapdoor permutation in a black-box way [15,23], we obtain the following corol-
lary:

Corollary 3. There exists an oracle relative to which statically secure oblivious trans-
fer exists but adaptively secure oblivious transfer does not exist.

This is the first evidence that it is strictly harder to achieve security in the presence
of adaptive adversaries than to achieve security in the presence of static adversaries. We
prove Theorem 2 by showing that if it is possible to achieve adaptively secure oblivi-
ous transfer using only enhanced trapdoor permutations, then it is possible to achieve
statically secure oblivious transfer using only symmetric encryption (this is very inex-
act but sufficient for intuition). We then show that statically secure oblivious transfer
does not exist relative to most symmetric encryption oracles. In order to prove this, we
use the recent result of [11] that shows the equivalence of the random oracle and ideal
cipher models, to replace a symmetric encryption oracle by a “plain” random oracle (us-
ing six rounds of the Luby–Rackoff construction [32]).3 This enables us to extend the
black-box separation of [27] to show that key agreement does not exist relative to most
symmetric encryption oracles. (Indeed this is a novel interpretation of that result and
it means that all black-box separations with random oracles hold also with symmetric

3 The reason that 6 rounds are needed and not 4 (as in the construction of pseudorandom permutations
from pseudorandom functions) is due to the fact that the distinguisher has access to the intermediate values.
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encryption). We conclude the proof by recalling that key agreement can be constructed
from oblivious transfer [19]. Thus, adaptively secure oblivious transfer cannot be con-
structed in a black-box way from enhanced trapdoor permutations. We remark that all
of our results for oblivious transfer are proven for semi-honest adversaries (and thus
hold also for malicious adversaries).

Our proof makes no explicit use of the fact that the functionality being computed
is oblivious transfer and holds for any functionality. We conclude that either a given
function can be securely computed statically assuming only the existence of one-way
functions (or to be more exact, only given a “symmetric” random oracle), or enhanced
trapdoor permutations do not suffice for computing it with adaptive security.

Related Work Instance-dependent commitment schemes were first implicitly used
in [4] to construct a constant round zero-knowledge proof for the language of Graph
Isomorphism. In [28], they follow these ideas and explicitly define instance-dependent
commitment schemes4 as commitment schemes where both the sender and the receiver
receive an instance x ∈ {0,1}∗ and the binding and the hiding properties depend on
whether x ∈ L or not. Since then, a great deal of work has been carried out to investi-
gate the relationship between zero-knowledge proofs and instance-dependent commit-
ment schemes (see [12,13,29,33,36,41]) and finally in the recent work of [37] it was
shown that instance-dependent commitment schemes are necessary and sufficient for
constructing zero-knowledge proofs. It is interesting to note that in contrast to regular
commitment schemes, where the commitment cannot be both statistically hiding and
statistically binding, instance-dependent commitment schemes that are statistically hid-
ing when x ∈ L and statistically binding when x �∈ L exist for certain languages (such
as Graph Isomorphism).

The method of proving black-box separations between cryptographic primitives, as a
way to conclude that it is not likely that the existence of a certain cryptographic primi-
tive implies the existence of another primitive, was first introduced in the seminal work
of Impagliazzo and Rudich [27]. In their work, they consider a world where all parties
have access to a random permutation oracle, which is provably one-way in the strongest
sense. On the other hand, they show that if P = N P , there doesn’t exist a secure key
agreement protocol (even relative to such a random oracle). This result has the follow-
ing consequence: There is an oracle relative to which one-way permutation exists but
key agreement does not exist (This oracle is constructed from the random oracle and a
P S P A C E -complete problem). This method of proving black-box separation was sub-
sequently used in many other works (see [10,17,18,20,21,30,31,38,40]).

Adaptive zero-knowledge arguments were constructed in [1] and later adaptively
secure universally composable zero-knowledge arguments were constructed in [7,9].
Adaptively secure oblivious transfer was constructed in [3] using trapdoor permutations
with the additional property that it is possible to select a permutation without knowing
its trapdoor, and in [9] from non-committing encryptions (see [2,8,14]). All construc-
tions of adaptively secure oblivious transfer (and non-committing encryptions) require
the possibility to sample a permutation without its trapdoor. In this sense, our result is a

4 Actually, in [28], they use the term “language-dependent cryptographic primitives”.
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complementary result to these construction as we prove that enhanced trapdoor permu-
tations alone are not sufficient for constructing an adaptively secure oblivious transfer
in a black-box manner.

In [11], it is shown that the random oracle and the ideal cipher models are equivalent.
Our techniques imply a new application for this result: all black-box separations that
have been proven relative to a random oracle also hold relative to an ideal cipher (or a
symmetric encryption oracle).

2. Preliminaries and Definitions

2.1. Preliminaries and Notations

We let n denote the security parameter. We say that a function μ : N → N is negligible
if for every positive polynomial p(·) and all sufficiently large n it holds that μ(n) <

1
p(n)

. We use the abbreviation PPT to denote probabilistic polynomial-time. For an N P
relation R, we denote by Rx the set of witnesses of x and by LR its associated language.
That is, Rx = {w| (x,w) ∈ R} and LR = {x| ∃w (x,w) ∈ R}.

Let 〈A,B〉 be an interactive protocol. 〈A(xA; rA),B(xB; rB)〉 denotes the joint output
of A and B , where the input of A is xA and its random tape is rA and the input of B is
xB and its random tape is rB . 〈A(xA),B(xB)〉 denotes the random variable describing
〈A(xA; rA),B(xB; rB)〉 where the random tapes of the parties are chosen uniformly.
The view here contains the oracle replies as well.

VIEW�
A(xA,xB) is a random variable describing the view of A in an execution of

protocol � on inputs xA and xB , where the random tapes are chosen uniformly. The
view of a party includes its input, random tape and the messages the party received. For
an oracle O , VIEW�,O

A (xA, xB) describes the view of A in an execution of protocol
� on inputs xA and xB with oracle access to O , where the random tapes are chosen
uniformly. For a distribution D on oracles, VIEW�,D

A (xA, xB) describes the view of A

in an execution of protocol � on inputs xA and xB where the random tapes are chosen
uniformly and the parties have access to an oracle that was chosen according to D.

Definition 2.1. Let X = {X(a,n)}a∈{0,1}∗,n∈N and Y = {Y(a,n)}a∈{0,1}∗,n∈N be two
distribution ensembles. We say that X and Y are computationally indistinguishable, de-

noted X
c≡ Y , if for every PPT machine D, every a ∈ {0,1}∗, every positive polynomial

p(·) and all sufficiently large n:

∣
∣Pr

[

D
(

X(a,n),1n
) = 1

] − Pr
[

D
(

Y(a,n),1n
) = 1

]∣
∣ <

1

p(n)
.

Definition 2.2. Let X = {X(a,n)}a∈{0,1}∗,n∈N and Y = {Y(a,n)}a∈{0,1}∗,n∈N be two
distribution ensembles. We say that X and Y are computationally indistinguishable

relative to an oracle O , denoted X
cO≡ Y , if for every PPT oracle machine D, every

a ∈ {0,1}∗, every positive polynomial p(·) and all sufficiently large n:

∣
∣Pr

[

DO
(

X(a,n),1n
) = 1

] − Pr
[

DO
(

Y(a,n),1n
) = 1

]∣
∣ <

1

p(n)
.
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We sometimes use the same notation when we refer to a distribution D over oracles
rather than a single oracle O . We now present definitions for semi-honest security for
static adversaries. This will be needed in our proof in Sect. 4.

Definition 2.3. Let 〈S,R〉 be an interactive protocol, where the input of S is a pair of
strings s0, s1 ∈ {0,1}k (where k = poly(n)) and the input of R is a bit σ , and let n be the
security parameter. We say that 〈S,R〉 computes the OT2

1 functionality5 if there exists a
negligible function neg(·) such that for all n, for every s0, s1 ∈ {0,1}k, σ ∈ {0,1},

Pr
[〈

S
(

1n, s0, s1
)

,R
(

1n, σ
)〉 = (λ, sσ )

] ≥ 1 − neg(n).

We say that 〈SO,RO〉 computes the OT2
1 functionality relative to an oracle O if there

exists a negligible function neg(·) such that for every n and every s0, s1, σ ,

Pr
[〈

SO
(

1n, s0, s1
)

,RO
(

1n, σ
)〉 = (λ, sσ )

] ≥ 1 − neg(n).

Definition 2.4. Let � = 〈S,R〉 be a protocol for computing the OT2
1 functionality. We

say that � securely computes the OT2
1 functionality in the presence of static semi-honest

adversaries if there exist two probabilistic polynomial-time algorithms SS and SR such
that

{

SS

(

1n, s0, s1
)}

s0,s1∈{0,1}k,σ∈{0,1}
c≡ {

VIEW�
S

(

1n, s0, s1, σ
)}

s0,s1∈{0,1}k,σ∈{0,1},

{

SR

(

1n, σ, sσ
)}

s0,s1∈{0,1}k,σ∈{0,1}
c≡ {

VIEW�
R

(

1n, s0, s1, σ
)}

s0,s1∈{0,1}k,σ∈{0,1}.

Let � = 〈SO,RO〉 be a protocol for computing the OT2
1 functionality relative to an

oracle O . We say that � securely computes the OT2
1 functionality relative to an oracle O

in the presence of static semi-honest adversaries if there exist two PPT oracle machines
SS and SR such that

{

S O
S

(

1n, s0, s1
)}

s0,s1∈{0,1}k,σ∈{0,1}
cO≡ {

VIEW�,O
S

(

1n, s0, s1, σ
)}

s0,s1∈{0,1}k,σ∈{0,1},

{

S O
R

(

1n, σ, sσ
)}

s0,s1∈{0,1}k,σ∈{0,1}
cO≡ {

VIEW�,O
R

(

1n, s0, s1, σ
)}

s0,s1∈{0,1}k,σ∈{0,1}.

2.2. Adaptive Security—Definitions

In this section, we provide a definition for adaptive security of two party protocols
(for a deterministic functionality f ). The definition is taken from [6]. Adjustments of
the definition for the special cases of adaptive zero-knowledge proofs (for malicious
adversaries) and adaptively secure oblivious transfer (for semi-honest adversaries) will
be described afterwards.

5 For s0, s1 ∈ {0,1}k and σ ∈ {0,1}, the functionality 1-out-of-2 Oblivious Transfer, denoted OT2
1, is

defined as OT2
1((s0, s1), σ ) = (λ, sσ ).
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The Real-Life Model Each party Pi begins with an input xi ∈ {0,1}∗, a random tape
ri and the security parameter n. An adaptive real-life adversary A is a probabilistic
polynomial-time interactive Turing machine that starts with a random tape rA and se-
curity parameter n. The environment Z is another probabilistic polynomial-time inter-
active Turing machine that starts with an input z, a random tape rZ and the security
parameter n.

At the outset of the protocol, A receives some initial information from Z . Next the
computation continues in rounds. Before each round, if there exists an uncorrupted
party, the adversary A might choose to corrupt one of the parties or both. Next, A
activates the party that is supposed to be active in this round according to the protocol.
At each round, A sees all messages sent by the parties (that is, the conversation between
the parties is visible to the adversary).

Upon corrupting a party, the adversary learns its input and its random tape. In addi-
tion, Z learns the identity of the corrupted party and hands some auxiliary information
to A. If the adversary is malicious, once a party is corrupted, it follows the adversary’s
instructions from this point. If the adversary is semi-honest, the corrupted party contin-
ues following the protocol.

At the end of the computation, the parties locally generate their outputs. Uncorrupted
parties output their output as specified by the protocol and corrupted parties output a
special symbol ⊥. In addition, the adversary outputs an arbitrary function of its internal
state. (Without loss of generality, this output consists of all the information seen in the
execution: the random tape rA, the information received from the environment and the
corrupted parties’ views of the execution.)

Next, a postexecution corruption process begins. Z learns the outputs. Next, Z and
A interact in at most two rounds, where in each round Z can generate a “corrupt P1” or
“corrupt P2” message and hand it to A. Upon receipt of this message, A hands Z the
internal state of the party. At the end of this process, Z outputs its entire view of the
interaction with the parties and A.

Let REAL�,A,Z (n, x1, x2, z,
−→
r ), where −→

r = (rZ, rA, r1, r2), denote Z ’s output on
input z, random tape rZ and security parameter n after interacting with adversary A
and parties P1 and P2 running protocol � on inputs x1, x2, random input −→

r and se-
curity parameter n. Let REAL�,A,Z (n, x1, x2, z) denote the random variable describing
REAL�,A,Z (n, x1, x2, z,

−→
r ) when the random tapes of the parties rZ, rA, r1, r2 are cho-

sen uniformly. Let REAL�,A,Z denote the distribution ensemble
{

REAL�,A,Z (n, x1, x2, z)
}

x1,x2,z∈{0,1}∗,n∈N
.

The Ideal Process-Adaptive Model Each party Pi has input xi and no random tape
is needed. An adaptive ideal-process adversary S I M is a probabilistic polynomial-
time interactive Turing machine that starts with a random tape rS I M and the security
parameter n. The environment Z is another probabilistic polynomial-time interactive
Turing machine that starts with an input z, a random tape rZ and the security parame-
ter n. In addition, there is an incorruptible trusted party T . The ideal process proceeds
as follows:

First corruption stage: First, S I M receives some auxiliary information from Z .
Next, S I M proceeds in at most two iterations, where in each iteration S I M may
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decide to corrupt one of the parties. Once a party is corrupted, its input becomes
known to S I M. In addition, Z learns the identity of the corrupted party and hands
some auxiliary information to S I M.

Computation stage: Uncorrupted parties hand the inputs to T . In the malicious set-
tings, corrupted parties hand values chosen by S I M to T . In the semi-honest set-
ting, corrupted parties hand their inputs to T . Let y1, y2 be the values handed to T .
T computes f (y1, y2) and hands P1 the value f (y1, y1)1 and P2 the value f (y1, y2)2.

Second corruption stage: S I M continues in another sequence of at most two itera-
tions, where in each iteration, S I M might choose to corrupt one of the parties based
on its random tape and the information gathered so far. Once a party is corrupted,
S I M learns its input, Z learns the identity of the corrupted party and hands S I M
some auxiliary information.

Output: Each uncorrupted party Pi outputs f (y1, y2)i . Corrupted parties output a spe-
cial symbol ⊥. The adversary S I M outputs an arbitrary function of its internal state.
Z learns all outputs.

Postexecution corruption: After the outputs are generated, S I M proceeds in at most
two rounds with Z , where in each round, Z can generate a “corrupt Pi” message and
hand it to S I M. For any such request, S I M generates some arbitrary answer and
it might choose to corrupt any of the parties. The interaction continues until Z halts
with an output.

Let IDEALf,S I M,Z (n, x1, x2, z,
−→
r ), where −→

r = (rZ, rS I M), denote the out-
put of Z on input z, random input rZ and security parameter n after interact-
ing with an ideal-process adversary S I M with random input rS I M , with par-
ties having inputs (x1, x2) and with a trusted party T for evaluating the func-
tionality f . Let IDEALf,S I M,Z (n, x1, x2, z) denote the random variable describing
IDEALf,S I M,Z (n, x1, x2, z,

−→
r ) where rZ, rS I M are chosen uniformly. Let

IDEALf,S I M,Z denote the distribution ensemble

{

IDEALf,S I M,Z (n, x1, x2, z)
}

x1,x2,z∈{0,1}∗,n∈N
.

Definition 2.5. Let � be a protocol for computing a functionality f . We say that �

securely computes the functionality f in the presence of adaptive adversaries if for
every probabilistic polynomial-time adaptive real-life adversary A and every environ-
ment Z , there exists a probabilistic polynomial-time adaptive ideal-process adversary
S I M such that

REAL�,A,Z
c≡ IDEALf,S I M,Z .

If the adversary A and the simulator S I M are restricted to semi-honest behavior, then
we say that � securely computes the functionality f in the presence of semi-honest
adaptive adversaries.

A Special Case—Adaptive Zero-Knowledge When considering zero-knowledge as a
special case of secure computation, it is most natural to define an adaptive zero knowl-
edge proof of knowledge functionality of the form fR((x,w),λ) = (λ, (x, b)) where
b = 1 if R(x,w) = 1 and b = 0 if R(x,w) = 0. However, since the goal of our work is
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to deal with the fundamental question of the feasibility or infeasibility of adaptive zero-
knowledge proofs (as asked by Beaver [1]), we present an alternative definition that is
more in line with the standard setting of zero-knowledge proof systems (that are not
necessarily proofs of knowledge). The advantage of this approach is that it simplifies
the proof and allows us to focus on the main issue of constructing an adaptive proof
(rather than an argument), without dealing with knowledge extraction.

Recall that in the standard setting of zero-knowledge, indistinguishability of the real
world from the ideal world is only required for instances x ∈ L. For these instances, the
trusted party always returns 1, and we can therefore omit the trusted party altogether
from the ideal world.

In this case, the real-life model is as defined above where the input of the verifier is
an instance x ∈ {0,1}n (where n is the security parameter) and the input of the prover is
a pair (x,w) ∈ {0,1}n ×{0,1}p(n) for a polynomial p(·). The output of the uncorrupted
prover is the empty string λ and the output of the uncorrupted verifier is a bit specified
by the protocol.

In the ideal process, the ideal process adversary S I M receives the instance x that
is guaranteed to be in the language as input and interacts with the environment and
corrupted parties. Thus, we only need 3 stages: first corruption stage, output stage and
postexecution corruption stage (since there is no computation stage, there is also no
need for a second corruption stage). We also allow the simulator to run in expected
polynomial time rather than strict polynomial time (we do not know how to construct a
strict polynomial-time simulator for our protocol even though it has a constant number
of rounds).

The distribution REAL�,A,Z denotes the distribution ensemble
{

REAL�,A,Z (x,w, z)
}

x∈L,w∈Rx,z∈{0,1}∗ ,

and IDEALZK
L,S I M,Z denotes the distribution ensemble

{

IDEALZK
L,S I M,Z (x,w, z)

}

x∈L,w∈Rx,z∈{0,1}∗ .

Definition 2.6. Let L be a language. We say that 〈P,V 〉 is an adaptive zero-knowledge
proof system (AZK) for L if 〈P,V 〉 is an interactive proof system for L and for any PPT
real-life adversary A and any PPT environment Z , there exists an expected polynomial-
time probabilistic adaptive ideal-process adversary S I M such that

REAL�,A,Z
c≡ IDEALZK

L,S I M,Z .

Adaptive Security Relative to Oracles In this work, we consider security relative to
oracles. We therefore consider two distributions describing the real-life and the ideal-
life process relative to an oracle. In this case, all parties as well as the adversary A and
the environment Z are PPT oracle machines with access to the oracle O . Note that in
the ideal-process the environment Z has access to the oracle O as well (otherwise, it is
easy to distinguish the real-life model from the ideal-process) and therefore S I M must
as well have access to the oracle O . While considering security relative to oracles, an
oracle O is added to all notations (random variables, distributions, etc.).
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We present the definition of security only for the semi-honest case as this suffices for
our separation.

Definition 2.7. Let � be a protocol for computing a functionality f . We say that �

securely computes the functionality f in the presence of adaptive semi-honest adver-
saries relative to an oracle O if for every PPT real-life adversary A and every PPT
environment Z , there exists a PPT adaptive ideal-process adversary S I M, where all
are given oracle access to O such that

REALO
�,A,Z

cO≡ IDEALO
f,S I M,Z .

3. Adaptive Zero-Knowledge Proofs

In this section, we prove the following theorem:

Theorem 3.1. Assuming the existence of one-way functions that are hard to invert for
non-uniform adversaries, there exist adaptive zero-knowledge proofs for all of N P .

Specifically, we show how to construct an adaptive zero-knowledge proof for the lan-
guage of Hamiltonicity (HC). Our construction is based on Blum’s zero-knowledge
proof for Hamiltonicity [5]. In this protocol, the prover first commits to a random per-
mutation of the input graph G, and the verifier then chooses randomly whether to verify
that the committed graph is indeed a permutation of G or that the committed graph con-
tains a Hamiltonian cycle. Soundness holds because a non-Hamiltonian graph cannot
simultaneously be a permutation of G and contain a Hamiltonian cycle. The simulator
for this proof system does not know the witness and so cannot decommit to a Hamil-
tonian cycle after committing to a permutation of G. Therefore, it works by randomly
choosing whether to send commitments to a permutation of G or to a graph containing
only a random cycle of length n.

Observe that in the latter case, the commitments generated by the simulator are to
different values than those generated by the real prover. This is not a problem when
considering static corruptions because the hiding property of the commitments means
that this cannot be distinguished. However, in the setting of adaptive corruptions, the
prover can be corrupted after the simulation ends. In this case, the simulator must be able
to provide random coins that demonstrate that the commitments sent initially are those
that an honest prover would have sent. However, when the simulator commits to a graph
containing only a Hamiltonian cycle, it cannot do this (because an honest prover never
sends such a commitment). Thus, the commitment scheme used must be such that the
simulator can explain commitments to 0 as commitments to 1 and vice versa (actually, it
suffices that commitments to 0 be explainable as commitments to 1). One way of solving
this problem is to use equivocal or trapdoor commitments. Loosely speaking, these are
commitments that can be decommitted to both 0 and 1 given an appropriate trapdoor.
As we have discussed, however, if we use this type of commitment scheme, then we can
no longer achieve statistical soundness (since an all-powerful cheating prover can find
the trapdoor and use the equivocality of the commitment scheme to fool the verifier).



772 Y. Lindell and H. Zarosim

We bypass this problem by constructing a new type of instance-dependent commit-
ment scheme [4,28]. Roughly speaking, these are commitments whose properties de-
pend on whether the instance in question is in the language or not. Typically, they are
defined for a language L as follows. Let x be a statement. If x ∈ L then the commitment
associated with x is computationally hiding, and if x /∈ L then the commitment asso-
ciated with x is perfectly binding. In order to achieve adaptive security, we extend this
to an adaptive instance-dependent commitment scheme, where for x ∈ L we have the
additional property that commitments are equivocal (but for x �∈ L the commitments are
still perfectly binding). Note that this type of commitment scheme is enough for con-
structing zero-knowledge proofs because the hiding and the adaptivity are essential only
for proving zero-knowledge (which is needed only for x ∈ L) and the binding property
is only essential for proving soundness (in the case of x �∈ L). In Sect. 3.1, we provide
a formal definition of adaptive instance-dependent commitment schemes along with a
construction and a proof of security. In Sect. 3.2, we prove Theorem 3.1 by constructing
an adaptive zero-knowledge proof system for Hamiltonicity and proving its security.

3.1. Adaptive Instance-Dependent Commitment Schemes

3.1.1. Definition

Syntax Let R be an N P relation and L be the language associated with R. A (non-
interactive) adaptive instance dependent commitment scheme (AIDCS) for L is a tuple
of probabilistic polynomial-time algorithms (Com, Com′, Adapt) where:

• Com is the bit commitment algorithm: For a bit b ∈ {0,1}, an instance x ∈ {0,1}∗
and a random string r ∈ {0,1}p(|x|) (where p(·) is a polynomial), Com(x, b; r)
returns a commitment value c.

• Com′ is a “fake” commitment algorithm: For an instance x ∈ {0,1}∗ and a random
string r ∈ {0,1}p(|x|), Com′(x; r) returns a commitment value c.

• Adapt is an adaptive opening algorithm: Let x ∈ L and w ∈ Rx . For all c and
r ∈ {0,1}p(|x|) such that Com′(x; r) = c, and for all b ∈ {0,1}, Adapt(x,w, c, b, r)

returns a pair (b, r ′) such that c = Com(x, b; r ′). (In other worlds, Adapt receives
a “fake” commitment c and a bit b, and provides an explanation for c as a commit-
ment to the bit b.)

A decommitment to a commitment c is a pair (b, r) such that c = Com(x, b; r).
Note the difference between Com and Com′: Com is an ordinary committing algo-

rithm (creating a commitment value for a given bit), while for x ∈ L algorithm Com′
creates commitment values that are not associated to any specific bit. However, given
a witness attesting to the fact that x ∈ L, these commitments can later be claimed to
be commitments to 0 or to 1 by using algorithm Adapt. We stress that without such a
witness, a commitment generated by Com′ cannot necessarily be decommitted to any
bit.

Security We now define the notion of security for our commitment scheme. Recall that
our goal is eventually designing an adaptive zero-knowledge proof and our definition of
security is oriented towards this goal.
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Let Cx
0 = {c | ∃ r s.t. c = Com(x,0; r)} and Cx

1 = {c | ∃ r s.t. c = Com(x,1; r)}. That
is, Cx

0 is the set of commitment values that can be decommitted to 0 and Cx
1 the set of

commitment values that can be decommitted to 1.

Definition 3.2. Let R be an N P relation and L = LR . We say that (Com,Com′,Adapt)
is a secure AIDCS for L if the following hold:

1. Computational hiding: The ensembles {Com(x,0)}x∈L, {Com(x,1)}x∈L and
{Com′(x)}x∈L are computationally indistinguishable.

2. Adaptivity: For all b ∈ {0,1}, the distributions

{(Com(x, b;Up(|x|)), b,Up(|x|))}x∈L,w∈Rx

and

{(Com′(x;Up(|x|)),Adapt(x,w,Com′(x;Up(|x|)), b,Up(|x|)))}x∈L,w∈Rx

are computationally indistinguishable (that is, the random coins that are generated
by Adapt are indistinguishable from real random coins used by the committing
algorithm Com).

3. Perfect binding: For all x �∈ L, The sets Cx
0 and Cx

1 are disjoint.

3.1.2. String Commitments

We now argue that an adaptive instance-dependent commitment scheme remains secure
even when we concatenate bit commitments. First, it is easy to see that the binding and
the hiding properties are preserved when concatenating bit commitments. To prove that
adaptivity is preserved as well we consider the following experiment between an adver-
sary and a commitment oracle. In this experiment, the adversary outputs a message m

(a sequence of bits) and the commitment oracle chooses either to use the committing
algorithm Com to commit to each of the bits of the message and output the sequence
of the commitments together with the random coins used by Com or to generate fake
commitments using algorithm Com′, use algorithm Adapt to get random coins that are
consistent with the message m and output the fake commitments together with the ran-
dom coins generated by Adapt. The adversary succeeds in the game if it can distinguish
between the choices of the commitment oracle with non-negligible probability. For-
mally, for a commitment scheme C = (Com,Com′,Adapt), an adversary A, an instance
x ∈ L, a witness w ∈ Rx and a value b ∈ {0,1}, consider the following experiment:

The string commitment adaptivity experiment StrExpAdaptbA,C
(x,w).

1. Upon input x ∈ L and w ∈ Rx , where |x| = n, the adversary A outputs
a message m ∈ {0,1}q(n).

2. Let q = q(n). If b = 0 the commitment c = Com(x,m1; r1), . . . ,

Com(x,mq, rq) is computed where r = r1, . . . , rq is uniformly cho-
sen and (c,m, r) is given to A.

If b = 1, the commitment c = Com′(x; r1), . . . ,Com′(x; rq) is
computed where r = r1, . . . , rq is uniformly chosen. Then for all
1 ≤ i ≤ q , (mi, r

′
i ) = Adapt(x,w,Com′(x; ri),mi, ri) is computed.

Finally (c,m, r ′) is given to A, where r ′ = r ′
1, . . . , r

′
q .

3. A outputs a value b′ and this is the output of the experiment.
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The following proposition follows from the adaptivity of the bit commitment scheme
and can be proved by a simple hybrid argument:

Proposition 3.3. Let C = (Com,Com′,Adapt) be an AIDCS. For every PPT machine
A, every positive polynomial p(·) and all sufficiently large x ∈ L and w ∈ Rx ,

∣
∣Pr

[

StrExpAdapt0A,C(x,w) = 1
] − Pr

[

StrExpAdapt1A,C(x,w) = 1
]∣
∣ <

1

p(|x|) .

3.1.3. The Construction

Our construction is almost identical to the trapdoor commitment of [16] (as adapted
by [9]), with one small, but crucial difference. We begin by describing the construction
of [9]. Let C be a perfectly binding commitment scheme with pseudorandom range
and let G be a graph (in [16], G is a Hamiltonian graph generated by the receiver,
whereas in [9] it is a Hamiltonian graph that is placed in the common reference string).
Then, in order to commit to 0, the committer chooses a random permutation π of the
vertices of G and commits to the adjacency matrix of π(G) using C. To decommit,
it opens all entries and sends π . To commit to 1, the committer chooses a random
n-cycle and for all entries in the adjacency matrix corresponding to the edges of the
n-cycle, it uses C to commit to 1. In contrast, all other entries are set to a random string
(recall that the commitment scheme has a pseudorandom range and thus these values are
indistinguishable from commitments using C). To decommit, it opens only the entries
corresponding to the edges of the n-cycle. As stated, this scheme is computationally
hiding due to the underlying commitment scheme C. In addition, it is computational
binding as long as the sender does not know the Hamiltonian cycle in G. We stress that
the scheme is not perfectly binding because an all-powerful corrupted committer can
find the Hamiltonian cycle in G and send commitments that it can later open to both 0
and 1.

Our key observation is that in the setting of zero-knowledge we can use the graph G,

that is, the statement being proven, as the graph in the above commitment scheme. This
implies that if G ∈ HC, then the commitment scheme is computationally hiding, and if
G /∈ HC then it is perfectly binding, as required. (As an added bonus, the graph need
not be generated by the protocol.) Regarding adaptivity, when G ∈ HC a commitment
to 0 can be opened as a 0 or 1 given a cycle in G.

Formally, we define the commitment scheme (Com, Com′, Adapt) as follows:

• Com(G,0) chooses a random permutation π of the vertices of G, and sets H =
π(G). The output of the algorithm is a series of commitments (using the commit-
ment scheme C) to the adjacency matrix of H . Namely, a matrix of size n × n,
where the entry (i, j) contains a commitment to 1 if (i, j) ∈ E(H) and to 0 if
(i, j) �∈ E(H), where E(H) denotes the set of edges in H .
Com(G,1) chooses a random cycle of size n. The algorithm outputs a matrix of
size n × n, where the entries corresponding to the cycle contain a commitment to
1 (using commitment scheme C). All other entries are set to random strings of the
same length as the output length of C.

• Com′(G) acts exactly as Com(G,0); that is, Com′(G; r) = Com(G,0; r).
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• Adapt(G,w, c,0, r): If Com′(G; r) �= c, then it returns ⊥. Otherwise, it out-
puts the bit 0 and r (recall that Com′(G; r) = Com(G,0; r), and therefore
Com(G,0; r) = c).

• Adapt(G,w, c,1, r): If Com′(G; r) �= c, then it returns ⊥. Otherwise, it outputs
the bit 1, the cycle of length n obtained by applying the permutation π (that is
a part of r) on the Hamiltonian cycle w, and n2 strings {ri,j }ni,j=1 where if the
edge (i, j) ∈ π(w), then ri,j is the randomness used by C to commit to 1 and if
(i, j) �∈ π(w), then ri,j is the commitment value that appears in the corresponding
entry in c (recall that C has pseudorandom range; therefore these values “look”
random).

Proposition 3.4. Assuming the existence of one way permutations, (Com,Com′,Adapt)
is a secure non-interactive adaptive instance-dependent commitment scheme for the lan-
guage of Hamiltonicity.

Proof. We show that (Com,Com′,Adapt) fulfills Definition 3.2.

Computational Hiding: The computational hiding of the scheme has been proven in [9],
and therefore we omit the proof.

Perfect Binding: Let G �∈ HC. By the definition, the set CG
0 contains commitments to

isomorphic graphs to G and the set CG
1 contains commitments to Hamiltonian cycles. If

G �∈ HC then a graph cannot be simultaneously isomorphic to G and contain a Hamil-
tonian cycle, and therefore the sets CG

0 and CG
1 are disjoint.

Adaptivity: We begin by arguing that for all graphs G ∈ HC and all w ∈ RG, the distri-
butions {(Com(G,0;Up(n)),0,Up(n))} and {(Com′(G;Up(n)),Adapt(G,w,Com′(x);
Up(n)),0,Up(n)))} are computationally indistinguishable. This is easy to verify since,
as we have mentioned in the construction of our AIDCS, Com′(G;Up(n)) is, in fact, an
execution of Com(G,0;Up(n)) and in this case Adapt(G,w,Com′(x;Up(n)),0,Up(n))

returns a bit 0 and the random coins used by Com′(G). We conclude that {(Com(G,0;
Up(n)),0,Up(n))} and {(Com′(G;Up(n)),Adapt(G,w,Com′(x;Up(n)),0,Up(n)))} are
identically distributed.

Now, we argue that for all G ∈ HC and w ∈ RG, the distributions {(Com(G,1;Up(n)),

1,Up(n))} and {(Com′(G;Up(n)),Adapt(G,w,Com′(x;Up(n)),1,Up(n)))} are com-
putationally indistinguishable. Consider the following experiment: A random r ∈
{0,1}p(n) is chosen and c = Com′(G; r) is computed. Then, (1, r ′) = Adapt(G,w, c,1, r)

is computed and the output of the experiment is (Com(G,1; r ′),1, r ′). We denote the
distribution induced by this experiment by HCom. It is not difficult to see that the
distributions {(Com′(G;Up(n)),Adapt(G,w,Com′(x;Up(n)),1,Up(n)))} and HCom are
identically distributed. We will show that {(Com(G,1;Up(n)),1,Up(n))} and HCom are
computationally indistinguishable. Recall that Adapt(G,w, c,1, r) outputs n2 strings
{ri,j }ni,j=1 where if the edge (i, j) ∈ π(w), then ri,j is the random string used by C to
commit to 1 and if (i, j) �∈ π(w), then ri,j is the value that appears in the corresponding
entry in c. That is, if (i, j) ∈ π(w), the corresponding string ri,j is a truly random string
and if (i, j) �∈ π(w), then the corresponding string ri,j is an output of the commitment
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scheme C. We have taken C to have a pseudorandom range, and this implies that the dis-
tribution {Adapt(G,w,Com′(x;Up(n)),1,Up(n))} is computationally indistinguishable
from {Up(n)}.

Now, assume that {(Com(G,1;Up(n)),1,Up(n))} and HCom are not computationally
indistinguishable. Informally speaking, there exists a PPT machine D that can distin-
guish between {(Com(G,1;Up(n)),1,Up(n))} and HCom with a non-negligible probabil-
ity. We construct a distinguisher D′ that can distinguish {Adapt(G,w,Com′(x;Up(n)),1,

Up(n))} and {Up(n)}. D′ gets an input an r that is distributed according to {Up(n)} or
{Adapt(G,w,Com′(x;Up(n)),1,Up(n))}. D′ then computes c = Com(G,1, r), hands
(c,1, r) to D and outputs the output of D. Now, if r is distributed according to {Up(n)},
then the input of D is distributed according to {(Com(G,1;Up(n)),1,Up(n))}. On the
other hand, if r is distributed according to {Adapt(G,w,Com′(x;Up(n)),1,Up(n))},
then the input of D is distributed as HCom, and therefore D′ distinguishes {Adapt(G,w,

Com′(x;Up(n)),1,Up(n))} and {Up(n)} with a non-negligible probability, contradicting
the computational indistinguishability of {Adapt(G,w,Com′(x;Up(n)),1,Up(n))} and
{Up(n)}. �

Remark (One-way functions). Note that we can reduce our computational assumptions
to the existence of one-way functions (rather than one-way permutations) by replacing
the commitment scheme C by the scheme of [35] (which has a pseudorandom range as
well). The resulting scheme will be an interactive Adaptive Instance Dependent Com-
mitment Scheme with computational hiding and statistical binding. Also note that all
proofs can be extended to the case of non-uniform adversaries assuming the existence
of one-way functions that are hard to invert for non-uniform adversaries.

3.2. Adaptive Zero Knowledge Proofs for All N P
In this section, we show that the proof system for Hamiltonicity presented in [5] is
an adaptive zero-knowledge proof system when the ordinary commitment scheme is
replaced by an adaptive instance-dependent commitment scheme.

Theorem 3.5. If there exists an AIDCS for an N P -complete problem with computa-
tional hiding and adaptivity against non-uniform adversaries, then every NP language
has an adaptive zero knowledge proof.

Proof. We present an adaptive zero knowledge proof for Hamiltonicity; the general-
ization to any language in N P is achieved by reducing the language to Hamiltonicity.
Let C = (Com,Com′,Adapt) be an AIDCS for Hamiltonicity.

Protocol 1 (Adaptive zero-knowledge proof for HC).

• The verifier’s input: A graph G = (V ,E) where |V | = n.
• The prover’s input: A graph G = (V ,E) where |V | = n and a Hamiltonian cycle

w in G.
• The protocol:

1. The prover chooses a random permutation π of the vertices and commits to
the adjacency matrix of π(G) using algorithm Com.



Adaptive Zero-Knowledge Proofs and Adaptively Secure Oblivious Transfer 777

2. The verifier sends a random bit σ to the prover.
3. If σ = 0 the prover sends π to the verifier and decommits to all entries of the

adjacency matrix.
If σ = 1, the prover decommits to the entries of the Hamiltonian cycle in
π(G).

4. If σ = 0 the verifier checks that the decommitted graph is indeed π(G).
If σ = 1 the verifier checks that the decommitted entries form a Hamiltonian
cycle of size n.

Claim 3.6. Protocol 1 is an efficient-prover interactive proof for the language of
Hamiltonicity.

Proof. It is easy to see that the strategy of the verifier can be implemented in prob-
abilistic polynomial-time and that, given a Hamiltonian cycle in G, the strategy of the
prover can be implemented in probabilistic polynomial-time as well.

Proving the completeness property of the protocol is straightforward. We will prove
soundness of 1

2 . Let G �∈ HC, and assume there exists a prover strategy P ∗ such that
Pr[〈P ∗,V 〉(G) = 1] > 1

2 . Let pi be P ∗ ith message to V . Assuming P ∗ convinces V

with probability that is greater than 1
2 , there exist messages p′

1 and p0
2 and p1

2 such that
both V (p′

1,0,p0
2) and V (p′

1,1,p1
2) accept. Namely, p0

2 is a decommitment of p′
1 to

an isomorphic graph of G and p1
2 is a decommitment of some entries in the adjacency

matrix that is represented by p′
1 that form a Hamiltonian cycle. Since the commitment

scheme C is perfectly binding when G �∈ HC, this implies that G contains a Hamil-
tonian cycle, and that is a contradiction to G �∈ HC. �

Claim 3.7. Protocol 1 is secure against adaptive adversaries.

Proof. Let A be a PPT adaptive adversary that interacts with the prover and the verifier
in the real-life run of the protocol and let Z be a PPT environment. We construct an
ideal-process adversary (simulator) S I M such that

REAL�,A,Z
c≡ IDEALZK

L,S I M,Z .

For the sake of simplicity, we begin by describing a simulator S I M whose running
time might not be expected polynomial time and then we show how this simulator can
be modified, using ideas from [22], to an expected polynomial time simulator S I M′
such that

REAL�,A,Z
c≡ IDEALZK

L,S I M′,Z .

S I M starts with an input G and a random tape rS I M. S I M invokes a simulated copy
of A on a uniform random tape. S I M simulates the interaction of A with the environ-
ment Z as follows: Every input S I M receives from the environment Z is written on
the input tape of A, as if it came from A’s environment. Every output written by A on
its output tape is written by S I M on its own output tape. If S I M receives some aux-
iliary input from Z at the outset, then S I M hands it to A. To simplify our analysis, we
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divide our protocol into 3 rounds: The prover’s first message, the verifier’s first message
and the prover’s second message, where the adversary might corrupt any of the parties
at the onset of each round or in the postexecution corruption phase.

Our description of S I M consists of 2 parts: simulating corruptions of the parties and
simulating the run of the protocol.

• Simulating the run of the protocol: We divide the description of the simulation into
cases as following.

1. The prover is uncorrupted in the first round. S I M generates the prover’s
first message as follows. S I M chooses a random bit b ∈ {0,1}. If b = 0, it
chooses a random permutation π and uses algorithm Com to commit to the
adjacency matrix of π(G).
If b = 1, S I M creates an adjacency matrix of a graph containing only a
random cycle of length n (all other entries are set to 0). It then uses Com
to commit to all 1’s in the adjacency matrix. All other entries are filled with
commitment values created by algorithm Com′.
We proceed to the second round.
(a) The verifier is corrupted in the second round. If A aborts, S I M aborts

as well. Otherwise, A generates a bit σ and S I M sets σ as the verifier’s
message. We move to the third round.
(i) The prover is uncorrupted in the third round. S I M generates the

prover’s second message as follows: If b = σ = 0 then S I M sets
the prover’s second message to be decommitments to all entries at
the adjacency matrix and π . If b = σ = 1, S I M decommits to all
1’s in the adjacency matrix (and since these entries were created us-
ing Com, S I M can decommit). In both cases, the run of the proto-
col terminates. The corrupted verifier’s output is a special symbol ⊥
and the output of the prover is the empty string λ. S I M outputs the
simulated adversary’s internal state. A postexecution corruption step
starts and at the end Z halts with an output.
If b �= σ , S I M rewinds to the beginning of the first corruption stage
(that is, the outset of the first round) and proceeds as above. In this
case, if the corruptions made by A do not lead S I M to the same sce-
nario (that is, the verifier is corrupted before the second round and
the prover is uncorrupted in the third round), S I M keeps rewinding
to the outset of the first round until S I M ends up in the same sce-
nario as the current one. We also note that if A aborts before sending
the verifier’s message or if again b �= σ , S I M has to rewind again.

(ii) The prover is corrupted in the third round. If the simulated copy of
A aborts, then S I M aborts. Otherwise, A generates the prover’s
second message. The output of the corrupted parties is the special
symbol ⊥ and S I M outputs the simulated adversary’s internal state.
Since both parties are corrupted, no postexecution corruption step
takes place and Z halts with an output.

(b) The verifier is uncorrupted in the second round. In this case, S I M sets
σ = b to be the verifier’s first message (where b is as chosen by S I M
above).
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(i) The prover is uncorrupted in the third round. Since σ = b, the simu-
lator simply decommits appropriately to the commitment it sent, and
the third round terminates. At the end of the protocol, S I M outputs
the simulated adversary’s internal state. A postexecution corruption
stage starts and at the end Z halts with an output.

(ii) The prover is corrupted in the third round. If the simulated copy of
A aborts, S I M aborts. Otherwise, A generates the prover’s second
message and the protocol ends. S I M outputs the simulated adver-
sary’s internal state. If the verifier is uncorrupted, a postexecution
corruption stage starts and at the end Z halts with an output.

2. The prover is corrupted in the first round. If the simulated copy of A aborts,
then S I M aborts. Otherwise, A generates the prover’s first message and the
first round ends.
(a) The verifier is corrupted in the second round. If the simulated copy of A

aborts, then S I M aborts. Otherwise, A generates the verifier’s first mes-
sage and the prover’s second message. At the end, both parties output the
special symbol ⊥ and S I M outputs the simulated adversary’s internal
state. Since both parties are corrupted, no postexecution corruption stage
has taken place and Z halts with an output.

(b) The verifier is uncorrupted in the second round. S I M chooses a random
bit σ and sets it as the verifier’s first message. The simulated copy of A
generates the prover’s second message (or aborts) and the protocol ends.
S I M outputs the simulated adversary’s internal state. If the verifier is
uncorrupted, a postexecution corruption stage starts and at the end Z
halts with an output.

• Simulating Corruptions:

1. A corrupts the verifier at the outset of the first or second rounds: S I M
corrupts the verifier and hands a truly random string to A as the verifier’s
random tape rV .

2. A corrupts the verifier at the outset of the third round or in the postexecution
corruption step: In this case, the verifier’s first message has been set by S I M
to a random bit σ . S I M corrupts the verifier and provides A with a random
tape rV that is consistent with σ .

3. A corrupts the prover at the outset of the first round: S I M corrupts the
prover, learns its input tape that includes the witness w, sets rP to be a truly
random string and provides A with w and rP .

4. A corrupts the prover at the outset of the second or third round or at the
postexecution corruption step: S I M corrupts the prover in the ideal-process
run of the protocol and learns the witness w which is a part of its input tape.
At this stage, A expects to learn the input and the random tape of P , and
S I M has to generate a random tape for P that is consistent with the prover’s
first message. If b = 0, the prover’s first message has been created exactly as
in a real run of the protocol and the simulator can provide A with the random
coins used to create the commitment. If b = 1, the prover’s first message is a
commitment to a graph that contains a single cycle of length n; we denote this
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graph by Cn. The simulator finds an isomorphism π between the Hamiltonian
cycle w in G and between Cn. It then computes H = π(G). For every edge
(u, v) ∈ Cn, S I M provides A with the randomness used by Com to commit
to 1. For every edge (u, v) ∈ H and (u, v) �∈ Cn, S I M uses algorithm Adapt
to obtain random coins such that the appropriate commitment value in the
adjacency matrix is a commitment to 1. For every (u, v) �∈ H , S I M uses
algorithm Adapt to get random coins such that the commitment value in the
adjacency matrix is a commitment to 0. S I M provides the simulated copy
of A with the input w and the set of random coins described above as well as
with π .

To see that the running time of S I M might not be expected polynomial time, consider
the case that with probability α the simulator S I M reaches case 1a, and yet b �= σ . If
this happens, then S I M must rewind until it reaches case 1a again, but this time with
b = σ . Letting β be the probability that this happens, we have that the expected run-
ning time of S I M is α · 1

β
. Now, it is not difficult to show that α and β are negligibly

close; otherwise, we can use A and S I M to break the hiding property of the commit-
ments (observe that the commitments sent by S I M when b = 0 differ from those when
sent by S I M when b = 1). However, even though α and β are negligibly close, this
does not guarantee that α/β is polynomial; in particular, if α = 2−n and β = 2−2n then
α/β = 2n. We use the methodology of [22] in order to solve this problem and ensure
that the expected running-time of the simulator is polynomial. Specifically, we mod-
ify the simulator S I M to a simulator S I M′ so that, whenever the simulation reaches
case 1a, it first computes an estimate α̃ of α by repeating the simulation steps 1 and 2
until this case (1a and b �= σ ) occurs a fixed polynomial number of times; denote this
number by q(n). By taking a sufficiently large polynomial q(·), we can make sure that
with probability 1 − 2−n2

the estimate α̃ is within a constant factor of α (a full proof
of this fact appears in [25, Sect. 6.5.3]). Following this, the modified simulator S I M′
rewinds the adversary to the outset of the first corruption stage and makes at most n/α̃

attempts to reach case 1a with b = σ . If S I M′ does not reach this scenario within n/α̃

tries, then it outputs Time-Out and halts. In addition to the above, S I M counts the
number of executions of A and halts outputting Time-Out if this number exceeds 2n.

We now show that the expected running time of S I M′ is polynomial. We use the
enumeration of the cases above (in the simulation of the run of the protocol) to indicate
which parties have been corrupted and when in a specific run of the simulation. For
example, when we refer to case 2, we refer to the case where the prover is corrupted at
the outset of the first run. Similarly, when we refer to case 1a, we refer to the case where
the prover is uncorrupted at the outset of the first round and the verifier is corrupted at
the outset of the second round and when we refer to case 1a, we refer to the case where
the prover is uncorrupted at the outset of the first round, the verifier is corrupted at the
outset of the second round and the prover is corrupted at the outset of the third round. It
is easy to see that a single iteration of S I M′ (where no rewinding is carried out) takes
a polynomial number of steps (recall that the real-life adversary A is a PPT machine
and therefore invoking a simulated copy of A takes polynomial time) and that S I M′
rewinds only if it reaches case 1a in the simulation (when the prover is uncorrupted at
the third round and the verifier is corrupted before the second round) and its random bit
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b does not equal the verifier’s first message σ . We denote by b̂ the random bit of S I M′
in its first iteration and by σ̂ the verifier’s message in the first iteration. Denoting by
TIME the random variable of S I M′’s running time, we have:

E[TIME] = E[TIME | case 1a ∧ b̂ �= σ̂ ] · Pr[case 1a ∧ b̂ �= σ̂ ]
+ E

[

TIME | ¬(case 1a ∧ b̂ �= σ̂ )
] · Pr

[¬(case 1a ∧ b̂ �= σ̂ )
]

≤ E[TIME | case 1a ∧ b̂ �= σ̂ ] · Pr[case 1a ∧ b̂ �= σ̂ ] + poly(n).

We now show that

E[TIME | case 1a ∧ b̂ �= σ̂ ] · Pr[case 1a ∧ b̂ �= σ̂ ]
is polynomial.

Let α = Pr[case 1a ∧ b̂ �= σ̂ ]. Recall that whenever S I M′ reaches case 1a and
b �= σ , it repeats the simulation until q(n) occurrences of this case occurs, obtains an
estimate α̃ of α, and then rewinds the adversary for an expected n/α̃ number of times.
If during these n/α̃ rewindings, the adversary reaches case 1a with b = σ , then it can
complete the simulation, and otherwise it outputs ⊥. We distinguish between two cases.
In the first case, α̃ is not within a constant factor of α. When this happens, we do not
know anything about the value α̃ and so the only thing that we can say is that the running
time of S I M′ is strictly bounded by 2n · poly(n) (since S I M′ does not carry out more
that 2n executions of A). However, this case happens with probability at most 2−n2

,
and so this adds only a negligible factor to the expected running time of S I M′. In the
second case, α̃ is within a constant factor of α and so α̃ = c · α for some constant c.
Thus, S I M′’s expected running-time in this case is q(n)

α
· poly(n) steps (to find α̃) plus

n
α̃

· poly(n) = n
c·α · poly(n) steps (rewinding A). We conclude that

E[TIME | case 1a ∧ b̂ �= σ̂ ] · Pr[case 1a ∧ b̂ �= σ̂ ]

≤ poly(n) ·
(

2−n2 · 2n + q(n)

α
+ n

c · α
)

· α ≤ poly(n) ·
(

1 + q(n) + n

c

)

,

which is polynomial. We have therefore proven the following proposition:

Proposition 3.8. The expected running time of S I M′ is polynomial in n.

We now need to show that the output distribution of Z in the real-process is compu-
tationally indistinguishable from the output of Z in the ideal-process:

REAL�,A,Z
c≡ IDEALZK

L,S I M′,Z .

The proof here is identical to that of [22], and we therefore just repeat the main ideas
and omit the full proof. As in [22], we can reduce the analysis to analyzing the output
distribution of the original simulator S I M. The only difference between S I M and
S I M′ is in the cases where S I M′ outputs Time-Out. However, similarly to [22], it
can be shown that the probability that S I M′ outputs Time-Out is negligible.
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Claim 3.9. The probability that S I M′ outputs Time-Out is a negligible function of n.

Proof. Let �(x, r) denote the event that S I M′ on input x and random tape r outputs
Time-Out. S I M′ outputs Time-Out in the following cases:

1. It invokes A more than 2n times: We have already shown that the expected running
time of S I M′ is polynomial, and thus by Markov’s inequality, this event happens
with at most negligible probability; we bound this probability by 2−n/2.

2. After n/α̃ attempts to rewind, S I M′ does not obtain an execution in which
case 1a occurs with b = σ : Let β denote the probability that S I M′ reaches
case 1a and b = σ . S I M′ outputs Time-Out if in all n/α̃ tries, this event does
not happen.

We therefore bound the probability that �(x, r) occurs as follows:

Pr [�(x, r)] = 2−n/2 + α · Pr

[
n

α̃
failures

]

= 2−n/2 + α ·
∑

i≥1

Pr
[�1/α̃� = i

] · (1 − β)i·n

< 2−n/2 + α ·
(

Pr

[
α

α̃
= 	(1)

]

· (1 − β)n
2/α + Pr

[
α

α̃
�= 	(1)

])

.

Recall that Pr[α
α̃

�= 	(1)] is negligible in n. We bound this probability with 2−n/2 and
obtain that

Pr [�(x, r)] < 2−n/2 + α ·
(

Pr

[
α

α̃
= 	(1)

]

· (1 − β)n
2/α + 2−n/2

)

< 2 · 2−n/2 + α · (1 − β)n
2/α.

We now show that α · (1 − β)n
2/α is negligible. Assume by contradiction that there

exist a polynomial p(·) and an infinite sequence of {xn} (with |x| = n) and an infinite
sequence of random tapes {rn} such that α · (1−β)n

2/α > 1
p(n)

. It holds that for all these

n’s, α > 1
p(n)

. Similarly as in [22], we divide our analysis into two cases:

1. For infinitely many of these n’s, β ≥ α
2 . For these n’s, it holds that

α · (1 − β)n
2/α ≤ (1 − β)n

2/α ≤
(

1 − α

2

)n2/α

=
((

1 − α

2

)2/α)n2/2

< e−n2/2,

which contradicts our assumption that α · (1 − β)n
2/α > 1

p(n)
.

2. For infinitely many of these n’s, β < α
2 . For these n’s, it holds that |α − β| > α

2 >
1

2p(n)
. Recall that α = Pr[case 1a∧b �= σ ] and β = Pr[case 1a∧b = σ ]. Therefore,

∣
∣Pr[case 1a ∧ b �= σ ] − Pr[case 1a ∧ b = σ ]∣∣ >

1

2p(n)
.
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However,
∣
∣Pr[case 1a ∧ b �= σ ] − Pr[case 1a ∧ b = σ ]∣∣

= ∣
∣Pr[case 1a] · Pr[b �= σ | case 1a] − Pr[case 1a] · Pr[b = σ | case 1a]∣∣

= Pr[case 1a] · ∣∣Pr[b �= σ | case 1a] − Pr[b = σ | case 1a]∣∣ >
1

2p(n)
.

This implies that for these n’s both

Pr[case 1a] >
1

2p(n)

and
∣
∣Pr[b �= σ | case 1a] − Pr[b = σ | case 1a]∣∣ >

1

2p(n)
,

and now we can use standard arguments to show that this contradicts the compu-
tational hiding of the commitment scheme. �

Since S I M and S I M′ output the same distribution when S I M′ does not output
Time-Out, we have that it suffices to consider the original simulator S I M and show
that

REAL�,A,Z
c≡ IDEALZK

L,S I M,Z .

The standard way for showing that the two ensembles are computationally indistin-
guishable is to show that if the ensembles can be distinguished, then we can break the
hiding property of the commitment scheme. This is demonstrated by using the simulator
algorithm to construct a PPT machine that can distinguish commitments to different val-
ues. However, when trying to apply this argument to our case, we encounter a difficulty
because the running time of S I M is not strictly polynomial. In fact, since we consider
S I M here and not S I M′, it is not even guaranteed to be expected polynomial-time.
Therefore, a distinguisher for the commitment scheme cannot use S I M as a subrou-
tine. In [22], this problem is solved by truncating the executions of S I M that are too
long. Specifically, assume that the distributions are distinguished by a PPT distinguisher
D with probability ε(n) where ε ≥ 1

p(n)
for a polynomial p(·) and infinitely many n’s.

Let S be set of n’s for which this holds. We consider two cases:

1. For infinitely many n’s in S, it holds that the probability that the corruptions are
made as in case 1a is at least ε(n)/3 = 1

3p(n)
. Using standard arguments, we can

show that if Pr[case 1a] ≥ 1
3p(n)

, then it must hold that Pr[b = σ | case 1a] ≥ 1
4 ,

and therefore Pr[case 1a ∧ b = σ ] ≥ 1
12p(n)

. In this case, the expected number of
times that S I M has to rewind the adversary until it reaches case 1a and b = σ is
12p(n), and therefore the probability that more than 24p2(n) rewindings are made
is at most 1

2p(n)
= ε(n)/2. Thus, if we truncate the run of S I M after 24p2(n)

rewindings, the output is at most ε(n)/2 from the output of S I M. Therefore,
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D can distinguish the output of the truncated S I M from the real execution with
gap at least ε/2, in contradiction to the computational hiding of the commitment
scheme.

2. For infinitely many n’s in S, it holds that the probability that the corruptions in
the real world are made as in case 1a is less than ε(n)/3 = 1

3p(n)
. We consider two

subcases:
(a) In the ideal world, the probability that corruptions are made as in case 1a

is at least ε(n)/2. In this case, there is a gap of at least ε(n)/6 between the
probability that the adversary’s corruptions strategy is as in case 1a in the real
world and the ideal world. In this case, we use the adversary to distinguish
commitments made in the real world and commitments made by S I M in
contradiction to the computational hiding of the commitment scheme.

(b) In the ideal world, the probability that corruptions are made as in case 1a is
at most ε(n)/2. This means that both in the real and the ideal worlds, with
probability at least 1 − ε(n)/2, the adversary’s corruptions strategy does not
lead it to case 1a. D must distinguish between executions in the real word
where corruptions are not made as in case 1a and executions in the ideal world
where corruptions are not made as in case 1a with gap at least ε(n)/2. We
note that in these executions the running time of S I M is polynomial, and
therefore we can use D and S I M to distinguish between commitments made
in the real world and commitments made by the simulator, contradicting the
computational hiding of the commitment scheme. �

This concludes the proof of Theorem 3.5. �

4. Adaptive Oblivious Transfer

In this section, we prove a black-box separation of adaptively secure oblivious transfer
from enhanced trapdoor permutations. We prove our black-box separation in the follow-
ing steps. First, in Sect. 4.1 we define �- and �-oracles, where a �-oracle essentially
represents an enhanced trapdoor permutation and a �-oracle represents a type of sym-
metric encryption scheme. In Sect. 4.2, we show that enhanced trapdoor permutations
exist relative to most �-oracles. Then, in Sect. 4.3 we show that if there exists a pro-
tocol for securely computing any functionality in the presence of adaptive adversaries
relative to �-oracles, then there exists a protocol for securely computing the same func-
tionality in the presence of static adversaries relative to �-oracles. The next step of the
proof is to then show that if P = N P , then for measure 1 of random �-oracles no sta-
tically secure OT2

1 exists (we use OT2
1 as a shorthand for 1-out-of-2 oblivious transfer).

This is done by using the original black-box separation of key agreement from one-way
functions [27], and the fact that key agreement can be obtained from statically secure
oblivious transfer; see Sect. 4.4. We conclude that if P = N P , then for measure 1 of
random �-oracles no adaptively secure OT2

1 exists (see Sect. 4.5).

4.1. Oracle Definitions

We begin by defining (asymmetric) �- and (symmetric) �-oracles which are used in
our proof.
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�-Oracles Informally speaking, a �-oracle is supposed to model an enhanced trap-
door permutation. Thus, it has an oracle for specifying a function and its trapdoor,
and an oracle for computing the function (given the function identifier) and inverting
it (given the trapdoor). The functions themselves are over all of {0,1}n and thus it is
trivial to sample an element without knowing its inverse (as is required for enhanced
trapdoor permutations). Formally, we define a �-oracle to be an oracle containing the
following functions:

• G�(·) is an injective function that for every tid ∈ {0,1}n returns an fid ∈ {0,1}2n.
• A function F(·, ·), such that for every fid ∈ Range(G�), F(fid, ·) is a permutation

over {0,1}n and for every fid �∈ Range(G�) and every x ∈ {0,1}n, F(fid, x) = ⊥.
• A function F−1 satisfying F−1(tid,F (fid, x)) = x for every x ∈ {0,1}n and every

fid, tid such that G�(tid) = fid.

Uniform Distribution over Oracles—Notation We denote by U� the uniform distribu-
tion over �-oracles. Namely, an oracle O� = (G�,F,F−1) is distributed according to
U� if G� is a uniformly distributed injective function from {0,1}n to {0,1}2n and for
every fid ∈ Range(G�), F(fid, ·) is a uniformly distributed permutation over {0,1}n. We
write “O� is a random �-oracle” as shorthand for “O� is distributed according to U�”.

�-Oracles Informally, a �-oracle is a symmetric oracle, meaning that anyone with the
ability to compute the function also has the ability to invert it. Specifically, we define a
function P and its inverse that is analogous to F and F−1 in a �-oracle. Formally, we
define a “�-oracle” to be an oracle containing the following functions:

• G� is an injective function from {0,1}n to {0,1}2n.
• A function P(·, ·) such that for every fid ∈ Range(G�), P(fid, ·) is a permutation

over {0,1}n. For fid �∈ Range(G�) and every x ∈ {0,1}n, P(fid, x) = ⊥.
• P −1 is the inversion algorithm of P . Namely for every fid ∈ Range(G�) and

x ∈ {0,1}n, P −1(fid,P (fid, x)) = x. For fid �∈ Range(G�) and every x ∈ {0,1}n,
P −1(fid, x) = ⊥.

We denote by U� the uniform distribution over �-oracles: The oracle O� =
(G�,P,P −1) is distributed according to U�, if G� is a uniformly distributed injective
function from {0,1}n to {0,1}2n and for every fid ∈ Range(G�), P(fid, ·) is a uniformly
distributed permutation over {0,1}n . We sometimes write “O� is a random �-oracle”
instead of “O� is distributed according to U�”.

Note the difference between �-oracles and �-oracles. �-oracles have an asymmetric
nature: F and its inversion oracle F−1 use different keys. On the contrary, �-oracles
have a symmetric nature: identical keys are used by P and its inversion oracle P −1.
(For this reason, we used a “symmetric” character � for �-oracles and an “asymmetric”
character � for �-oracles.)

�-Oracles Versus �-Oracles We now show a bijection mapping φ that maps every
�-oracle to a corresponding �-oracle. Let O� = (G�,F,F−1) be a �-oracle. φ(O�)

is the tuple of functions (G�,P,P −1) satisfying:

• For every tid ∈ {0,1}n, we define G�(tid) = G�(tid).
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• For every fid ∈ {0,1}2n and x ∈ {0,1}n, we define P(fid, x) = F(fid, x).
• P −1 is the inversion algorithm of P .

Claim 4.1. The mapping φ is a bijection from the set of �-oracles to the set of
�-oracles.

Proof. We first show that for every O� , φ(O�) = (G�,P,P −1) is indeed a �-oracle:

• G� is an injective function because G� is an injective function.
• For fid ∈ Range(G�) it holds that fid ∈ Range(G�) and since F(fid, ·) is a permu-

tation over {0,1}n, P(fid, ·) is a permutation over {0,1}n as well.
• For fid �∈ Range(G�) it holds that fid �∈ Range(G�). For every x ∈ {0,1}n, it holds

that F(fid, x) = ⊥ and thus P(fid, x) = ⊥ as desired.

We show that the mapping is injective. Let (G�,F,F−1) and (Ĝ�, F̂ , F̂−1) be
two different �-oracles. That is, there exists a tid such G�(tid) �= Ĝ�(tid) or a
pair fid, x such that F(fid, x) �= F̂ (fid, x). Let (G�,P,P −1) = φ(G,F,F−1) and
(Ĝ�, P̂ , P̂ −1) = φ(Ĝ, F̂ , F̂−1). If there exists a tid such G�(tid) �= Ĝ�(tid), then
G�(tid) �= Ĝ�(tid). Next, if there exist a pair fid, x such that F(fid, x) �= F̂ (fid, x),
then P(fid, x) �= P̂ (fid, x). Thus φ(G,F,F−1) �= φ(Ĝ, F̂ , F̂−1) and the mapping is
injective.

It remains to show that the mapping is onto. Let O� = (G�,P,P −1) be a �-oracle.
We show there exists a �-oracle O� that fulfills φ(O�) = O�. Let O� be the following
oracle:

• For every tid ∈ {0,1}n, it holds that G�(tid) = G�(tid).
• For every fid ∈ {0,1}2n and x ∈ {0,1}n, it holds that F(fid, x) = P(fid, x).
• For every tid ∈ {0,1}n and y ∈ {0,1}n, it holds that F−1(tid, y) = P −1(G�(tid), y).

First, observe that O� is indeed a �-oracle:

• Since G� is injective, it holds that G� is injective.
• For every fid ∈ Range(G�), since fid ∈ Range(G�) and P(fid, ·) is a permutation

over {0,1}n, F(fid, ·) is a permutation over {0,1}n.
• For every fid �∈ Range(G�), it holds that fid �∈ Range(G�) and for every x ∈

{0,1}n, P(fid, x) = ⊥ and thus F(fid, x) = ⊥ as desired.
• For every fid, tid such that fid = G�(tid) and for every x ∈ {0,1}n,

F−1(tid,F (fid, x)) = P −1(G�(tid),P (fid, x)) = P −1(fid,P (fid, x)) = x as de-
sired.

Verifying that φ(O�) = O� is easy. �

The above claim immediately implies the following:

Corollary 4.2. The random variables U� and φ(U�) are identically distributed.
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4.2. Enhanced TDP Relative to �-Oracles

In this section, we prove that enhanced trapdoor permutations exist relative to �-oracles.
With every �-oracle O� = (G�,F,F−1), we associate the following tuple of algo-
rithms (I, S′,F,B)6:

• On input 1n, I selects a random tid ∈ {0,1}n and sets (α, τ ) = (G�(tid), tid).
• On input α and a random r ∈ {0,1}n, S′ returns r (which is a uniformly distributed

element in the domain of fα).
• For a given α and x, algorithm F returns fα(x) = F(α,x).
• For a given τ and y ∈ {0,1}n, algorithm B returns F−1(τ, y). Note that if (α, τ ) is

in the range of I (1n), then B(τ, y) = f −1
α (y).

We prove that for almost all �-oracles, the tuple of algorithms defined above is an
enhanced trapdoor permutation. We first show that fα is hard to invert.

Claim 4.3 (Adapted from [27]). Let M be an oracle PPT machine. Then, there exists
a negligible function neg(·) such that for any n and any input y of length n, and for
every α in the range of I1(1n):

Pr
[

fα

(

MU� (α, y)
) = y

]

< neg(n),

where the probability is taken over random �-oracles and over the random tape of M .

Proof. Machine M gets as input α and y and tries to invert fα on y. Fix any random
tape for M . First, we note that if M never queries G� on a τ such that G�(τ) = α, then
it can guess the corresponding τ with probability at most 1

2n (since τ is distributed uni-
formly on {0,1}n). Now, note that every time M makes a query to G�(τ), the probability
that G�(τ) = α is equal to 1

2n . M makes only a polynomial number of queries to G� ,
and therefore M can find the corresponding τ for α with only a negligible probability.

Now, we argue that if M does not possess the corresponding τ for α, then it can invert
fα on y with only a negligible probability. First, note that if M never queries F(α, ·) on
an x such that F(α,x) = y, then the probability that it outputs such an x is bounded by
1
2n (since x is distributed uniformly on {0,1}n). Every time M makes a query F(α,x),

the probability that F(α,x) = y is equal to 1
2n . M makes only a polynomial number of

queries to its oracle, and therefore the probability that fα(M(α,y)) = y is a negligible
function of n. �

The following lemma is proven in [27, Sect. 4.2] using Markov’s inequality and the
Borel–Cantelli lemma.

Lemma 4.4 ([27]). Let R be a set of oracles. If for every PPT oracle machine M there
exists a negligible function neg(·) such that for every n and every input corresponding

6 We use the definition of enhanced TDP that appears in [23], where I is a function that generates a random
permutation index with a corresponding trapdoor, S is a function that given a permutation index samples a
random element in its domain, F is a function that given a permutation index computes it on a given element
in its domain, and B is the function that given a permutation trapdoor, returns the preimage of a given element
in its domain.
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to n, M succeeds in a given task with probability less than neg(n) (when the probability
is taken over random oracles in R and the random tape of M), then for measure 1 of
oracles in R, for every PPT machine M there exists a negligible function neg(·) such
that for all sufficiently large n’s, M succeeds in the given task with probability no more
than neg(n).

Combining Claim 4.3 and Lemma 4.4, we obtain the following theorem:

Theorem 4.5. With probability 1 over random �-oracles, the algorithms (I, S′,F,B)

associated with the oracle form an enhanced trapdoor permutation. In particular, for
every PPT machine M , every positive polynomial p(·) and for all sufficiently large n’s,

Pr
[

fI1(1n)

(

M
(

I1
(

1n
)

, Un

)) = Un

]

<
1

p(n)
.

We remark also that statically secure semi-honest oblivious transfer can be con-
structed from any enhanced trapdoor permutation [15] and thus exists relative to �-
oracles.

4.3. Static OT2
1 Relative to �-Oracles from Adaptive OT2

1

In this section, we prove that if there exists an adaptively secure OT2
1 relative to random

�-oracles, then there exists a statically secure OT2
1 relative to random �-oracles. We

actually prove a more general theorem that if there exists a protocol for securely com-
puting any functionality f in the presence of adaptive adversaries relative to a random
�-oracle, then there exists a protocol for securely computing f in the presence of static
adversaries relative to a random �-oracle. We restrict our proof to two-party protocols
only, but stress that the claim can be proved similarly for multiparty protocols as well.

Let �1 = 〈Alice1,Bob1〉 be a protocol for securely computing a functionality f in
the presence of adaptive adversaries relative to a �-oracle. We use �1 to construct a
new protocol �2 = 〈Alice2,Bob2〉 for securely computing f in the presence of static
adversaries relative to a �-oracle, where �2 is essentially the same as �1 with some
minor changes because the parties in �2 have oracle access to a �-oracle (rather to a
�-oracle in �1).

Recall that the parties Alice2 and Bob2 have access to a �-oracle, while in the original
protocol, Alice1 and Bob1 have access to a �-oracle. There is a fundamental difference
between these two cases because a �-oracle is inherently asymmetric (it is possible to
send a party fid while keeping tid secret, thereby enabling them to compute the permu-
tation but not invert it), while a �-oracle is inherently symmetric (the same fid is used
to compute and invert the permutation). The idea behind our proof is to eliminate the
asymmetric nature of the �-oracle by using the fact that in the adaptive setting (e.g., in
the post-execution corruption phase), the distinguisher can ultimately corrupt all parties
(for example, if Bob is corrupted in an execution of the statically secure protocol, then
in the adaptive setting, we corrupt Bob at the beginning of the protocol and corrupt Al-
ice in the post-execution phase). If it does so, it obtains the entire view of all parties and
in particular the view of any party who samples a permutation using G� . The critical
observation is that since the range of G� is sparse, the probability of a party finding an
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fid in the range of G� without explicitly querying it is negligible.7 However, if it does
make such a query, then its view contains both fid and tid and this will be obtained by
the distinguisher upon corrupting the parties. Thus, the distinguisher is able to compute
and invert the permutation, just like in the case of a �-oracle. The fact that the adaptive
simulator must simulate well even when the distinguisher works in this way (learning
all fid, tid pairs) is the basis for constructing a simulator for the static case when using
a �-oracle.

We begin by defining �2 = 〈Alice2,Bob2〉 which is constructed from �1 by replacing
the �-oracle with a �-oracle:

Protocol �2. On input xA, Alice2 invokes Alice1 on xA. On input xB , Bob2 invokes
Bob1 on xB . The execution is described below for a party P2 emulating P1, and is the
same for both Alice2 and Bob2. In each round,

• When P2 gets the message sent by the other party in the previous round, it hands
it to P1.

• If P1 makes a query tid to the oracle G� , P2 queries G�(tid) and gets an output
fid and hands fid to P1.

• If P1 makes a query (fid, x) to F , P2 queries P(fid, x), receives an output y and
hands y to P1 (note that y may equal ⊥).

• If P1 makes a query (tid, y) to F−1, P2 first queries its oracle G� on tid and
receives an output fid. P2 then queries P −1(fid, y), obtains an output x and hands
x to P1.

• If P1 writes a string m on its outgoing communication tape, P2 sends m to the
other party.

• At the end of the simulation, P2 outputs the output of P1.

We now prove that �2 securely computes the functionality f in the presence of semi-
honest static adversaries.

Theorem 4.6. If �1 securely computes a functionality f in the presence of adaptive
adversaries relative to a random �-oracle O� , then �2 securely computes f in the
presence of static semi-honest adversaries relative to the �-oracle φ(O�).

Proof. The intuition has already been described above and we therefore proceed di-
rectly to the proof. Let O� be an oracle that is distributed according to U� . We show
that if �1 is a secure adaptive protocol for computing f relative to O� , then �2 is a
secure static semi-honest protocol for computing f relative to O� = φ(O�). It is easy
to see that �2 computes f relative to O� because an execution of �2 is, in fact, an
execution of �1 with a simulated �-oracle which is exactly φ−1(O�) = O� .

Next we turn to the security of �2. We show that �2 = 〈Alice2,Bob2〉 securely com-
putes the functionality f in the presence of static semi-honest adversaries relative to a
O� = φ(O�). We use the ideal-process simulator S I M of �1 for the adaptive setting

7 Note that we know how to construct adaptively secure OT from enhanced trapdoor permutations if the
functions are dense. The construction follows from [14] and [9].
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to construct two probabilistic polynomial-time simulators SAlice2 and SBob2 for �2 in
the static setting, such that

{

S O�

Alice2

(

1n, xA, yA

)}

xA,xB∈{0,1}∗
cO≡ {

VIEW�2,O�

Alice2

(

1n, xA, xB

)}

xA,xB∈{0,1}∗ ,

{

S O�

Bob2

(

1n, xB, yB

)}

xA,xB∈{0,1}∗
cO≡ {

VIEW�2,O�

Bob2

(

1n, xA, xB

)}

xA,xB∈{0,1}∗ .

We use the ideal-process simulator S I M of �1 for the adaptive setting (see Sect. 2.2)
to construct two probabilistic polynomial-time simulators SAlice2 and SBob2 . Since the
constructions of SAlice2 and SBob2 and the proofs of indistinguishability are very similar,
we present only a construction and a proof for SBob2 .

Let A and Z be the following adversary strategy and environment: Z starts with an
input z ∈ {0,1}. At the onset of the run of �1, A corrupts Bob1 and at the end of the
computation outputs the entire view of Bob1. In the postexecution phase, if z = 0, no
corruptions are made and if z = 1, Z creates a “corrupt Alice1” message, hands it to A
who corrupts Alice. Eventually Z outputs the entire view of the corrupted parties (that
is, if z = 0, the view of Bob alone and if z = 1, the view of both parties). No auxiliary
information is sent by Z to A. Let S I M be the ideal-process adversary guaranteed
to exist for A and Z by the adaptive security of �1. We now use A, Z and S I M
to define SBob2 (the static simulator for the case that Bob is corrupted). SBob2 receives
the input xB and output yB of Bob as defined by the functionality f and emulates the
run of S I M in the adaptive ideal model with environment Z with input z = 0. Note
that S I M must corrupt only Bob, because in the real world only Bob is corrupted when
z = 0. We also can assume w.l.o.g. that S I M corrupts Bob in the first corruption phase.

SBob2 receives input (xB, yB) and works as follows, simulating a �-oracle for S I M
using its �-oracle:

• If S I M makes a query r to the oracle G� , SBob2 queries its oracle G�(r), receives
an output fid and hands it to S I M.

• If S I M makes a query (fid, x) to F , SBob2 queries it oracle P(fid, x), gets an
output y and hands it to S I M.

• If S I M makes a query (tid, y) to F−1, SBob2 first queries its oracle G� on tid,
gets an output fid. SBob2 then queries P −1(fid, y), gets an output x and hands x to
S I M.

• When S I M decides to corrupt Bob1, SBob2 plays the role of Z by sending xB to
S I M.

• In the computation phase, SBob2 plays the role of the trusted party and sends yB to
S I M (recall that SBob2 gets yB as input).

• At the end of the simulation, SBob2 outputs the output of S I M.

Informally speaking, we show that a distinguisher D2 for �2 and SBob2 (relative to O�)
implies the existence of a distinguisher D1 for �1 and S I M (relative to O�). The
idea is to have D1 simulate the run of D2 on the view of Bob. However, D2 has oracle
access to a �-oracle O�, while D1 has oracle access to a �-oracle O� . This might be
problematic, for example, if D2 wishes to compute P −1(fid, y) but D1 doesn’t know the
corresponding tid (recall that D1 can only invert y in the �-oracle world if it holds the
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trapdoor tid whereas D2 can invert y given fid only). Despite the above, we use the fact
that the range of G� is a negligible fraction of {0,1}2n, and therefore any fid used in the
protocol (except with negligible probability) must have been generated via a query to
G� , as described in the intuition above. More specifically, we show that if there exists
a distinguisher D2 that distinguishes the output of SBob2 from the output of a corrupted
Bob2 in a real execution of �2, then there exists a distinguisher D1 that distinguishes
the result of an ideal execution with S I M from a real execution of �1 with adversary
A and environment Z with input z = 1, meaning that Alice is also corrupted at the
end. (Note that we set z = 0 in order to define SBob2 , but now set z = 1 to construct
the distinguisher. Since S I M has to work for all inputs z to Z , this suffices.) Since
both Alice and Bob are corrupted in this execution, D1 obtains all of the (fid, tid) pairs
generated by queries to G� and so it can invert always, enabling it to run D2 and use its
�-oracle to answer all of D2’s � queries.

Formally, assume that there exist a PPT machine D2 and a positive polynomial p(·)
such that for infinitely many n’s, there exist xA,xB ∈ {0,1}∗ such that

∣
∣Pr

[

D
O�

2

(

1n, xA, xB,VIEW�2,O�

Bob2

(

1n, xA, xB

)) = 1
]

−Pr
[

D
O�

2

(

1n, xA, xB, S O�

Bob2

(

1n, xB, yB

)) = 1
]∣
∣ ≥ 1

p(n)
. (1)

We use D2 to construct a PPT machine D1 and a positive polynomial q(·) such that
for infinitely many n’s, there exist xA,xB ∈ {0,1}∗, z ∈ {0,1} such that

∣
∣Pr

[

D
O�

1

(

1n, xA, xB, z, REAL
O�

�1,A,Z (n, xA, xB, z)
) = 1

]

− Pr
[

D
O�

1

(

1n, xA, xB, z, IDEAL
O�

OT2
1,S I M,Z (n, xA, xB, z)

) = 1
]∣
∣ ≥ 1

q(n)
.

The distinguisher D1 receives as input xA,xB, z and the output of Z . If z = 0, D1
returns 0 and halts. Otherwise, the output of Z consists of both parties’ views, including
Alice’s input xA and random tape rA and Bob’s input xB and random tape rB . D1 begins
by initializing a table T that will hold all pairs (fid, tid) generated by queries to the
oracle. D1 invokes 〈AliceO�

1 ,BobO�

1 〉 on the appropriate input and random tapes (recall
that they are a part of D1’s input because A outputs the views of both parties when
z = 1) and for every access of one of the parties to G� , namely a query G�(tid) = fid,
D1 records the entry (fid, tid) in T . When it finishes the execution of 〈AliceO�

1 ,BobO�

1 〉,
D1 starts simulating D2 on the view of Bob and proceeds as follows:

• If D2 makes a query G�(tid), D1 makes a query G�(tid), gets an fid, records the
entry (fid, tid) in T and hands fid to D2.

• If D2 tries to compute P(fid, x), D1 queries its oracle F(fid, x) and returns its
answer.

• If D2 tries to compute P −1(fid, y), D1 checks whether an entry (fid, tid) exists
in T . If not, it returns ⊥. If yes, it queries F−1(tid, y) and returns its answer.

Note that if z = 1, a run of D1 on input xA,xB, z and the views of both parties with
access to an oracle O� is a simulation of the run of D2 on input xB and the view of Bob
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with a simulated �-oracle obtained from O� . It’s easy to see that the only differences
between the simulated �-oracle obtained from O� by D1 and φ(O�) are queries to
P −1 on an fid in the range of G� that was not created via a query to G�: For such
queries, the simulated �-oracle replies with ⊥ since a pair (fid, tid) doesn’t exist in T ,
while φ(O�)’s answer is different from ⊥. We define the event FIND to be true if and
only if D2 makes a query to its P −1 oracle involving an fid that was not created via a
query to G�. Note that finding an fid in the range of G� without making a query to G�

can happen with only a negligible probability (recall that the range of G�is a negligible
fraction of {0,1}2n), and therefore

Pr [FIND] <
1

p2(n)
.

We now examine the behavior of D1 in case FIND = false and z = 1 and show that
there exists a polynomial q(·) such that for infinitely many n’s, there exist xA,xB ∈
{0,1}∗ such that

∣
∣Pr

[

D
O�

1

(

1n, xA, xB,1, REAL
O�

�1,A,Z (n, xA, xB,1)
) = 1

]

− Pr
[

D
O�

1

(

1n, xA, xB,1, IDEAL
O�

OT2
1,S I M,Z (n, xA, xB,1)

) = 1
]∣
∣ ≥ 1

q(n)
.

Recall that for infinitely many n’s, there exist xA,xB ∈ {0,1}∗ for which (1) holds.
Fix such an n and the corresponding xA,xB ∈ {0,1}∗.

First, assume that the input of D1 is the random variable REAL
O�

�1,A,Z (n, xA, xB,1):

Pr
[

D
O�

1

(

1n, xA, xB, REAL
O�

�1,A,Z (n, xA, xB,1)
) = 1

]

= Pr
[

D
O�

1

(

1n, xA, xB, REAL
O�

�1,A,Z (n, xA, xB,1)
) = 1|¬FIND

] · Pr[¬FIND]
+ Pr

[

D
O�

1

(

1n, xA, xB, REAL
O�

�1,A,Z (n, xA, xB,1)
) = 1|FIND

] · Pr[FIND]
≥ Pr

[

D
O�

1

(

1n, xA, xB, REAL
O�

�1,A,Z (n, xA, xB,1)
) = 1|¬FIND

] · Pr[¬FIND].

In this case, the view of Bob1 that is contained in the input of D1 is also a view
of Bob2 in a real-world run of �2(1n, xA, xB) with oracle access to O� = φ(O�),
since a run of �2 with oracle access to a �-oracle O� is, in fact, a simulation of
a run of �1 with oracle access to a �-oracle φ−1(O�). Recall that when z = 1, D1

with oracle access to a �-oracle O� invokes a run of D2 with a simulated �-oracle. If
FIND = false, D1 returns 1 on REAL

O�

�1,A,Z (n, xA, xB,1) if and only if D2 returns 1 on

VIEW�2,O�

Bob2
(1n, xA, xB), and therefore

Pr
[

D
O�

1

(

1n, xA, xB, REAL
O�

�1,A,Z (n, xA, xB,1)
) = 1|¬FIND

]

= Pr
[

D
O�

2

(

1n, xA, xB,VIEW�2,O�

Bob2

(

1n, xA, xB

)) = 1|¬FIND
]

.
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Now,

Pr
[

D
O�

2

(

1n, xA, xB,VIEW�2,O�

Bob2

(

1n, xA, xB

)) = 1|¬FIND
] · Pr[¬FIND]

= Pr
[

D
O�

2

(

1n, xA, xB,VIEW�2,O�

Bob2

(

1n, xA, xB

)) = 1
]

− Pr
[

D
O�

2

(

1n, xA, xB,VIEW�2,O�

Bob2

(

1n, xA, xB

)) = 1|FIND
] · Pr[FIND]

≥ Pr
[

D
O�

2

(

1n, xA, xB,VIEW�2,O�

Bob2

(

1n, xA, xB

)) = 1
] − Pr[FIND].

We obtain that

Pr
[

D
O�

1

(

1n, xA, xB, REAL
O�

�1,A,Z (n, xA, xB,1)
) = 1

]

≥ Pr
[

D
O�

2

(

1n, xA, xB,VIEW�2,O�

Bob2

(

1n, xA, xB

)) = 1
] − Pr[FIND].

Now, assume that the input of D1 is the value of the random variable
IDEAL

O�

OT2
1,S I M,Z (n, xA, xB, z):

Pr
[

D
O�

1

(

1n, xA, xB, IDEAL
O�

OT2
1,S I M,Z (n, xA, xB,1)

) = 1
]

= Pr
[

D
O�

1

(

1n, xA, xB, IDEAL
O�

OT2
1,S I M,Z (n, xA, xB,1)

) = 1|¬FIND
] · Pr[¬FIND]

+ Pr
[

D
O�

1

(

1n, xA, xB, IDEAL
O�

OT2
1,S I M,Z (n, xA, xB,1)

) = 1|FIND
] · Pr[FIND]

≤ Pr
[

D
O�

1

(

1n, xA, xB, IDEAL
O�

OT2
1,S I M,Z (n, xA, xB,1)

) = 1|¬FIND
] · Pr[¬FIND]

+ Pr[FIND].

In this case, the view of Bob1 that is contained in the input of D1 is also a view of
Bob2 created by SBob2 with oracle access to O� = φ(O�). This claim is true because
SBob2 emulates a run of S I M with Z and z = 0 and trusted party T with a simu-
lated �-oracle that is equal to φ−1(O�) = O� and outputs the view of Bob created by
S I M. Since the view of Bob depends only on the execution phase, the view of Bob that
is contained in the output of IDEAL

O�

OT2
1,S I M,Z (n, xA, xB, z) is equal to the output of

S O�

Bob2
(1n, xB, sxB

) regardless of the value of z. Therefore, if FIND = false, D1 outputs 1

on IDEAL
O�

OT2
1,S I M,Z (n, xA, xB,1) if and only if D2 returns 1 on S O�

Bob2
(1n, xB, sxB

),

and therefore

Pr
[

D
O�

1

(

1n, xA, xB, IDEAL
O�

OT2
1,S I M,Z (n, xA, xB,1)

) = 1|¬FIND
]

= Pr
[

D
O�

2

(

1n, xA, xB, S O�

Bob2

(

1n, xB, sxB

)) = 1|¬FIND
]

.
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Now,

Pr
[

D
O�

2

(

1n, xA, xB, S O�

Bob2

(

1n, xB, sxB

)) = 1|¬FIND
] · Pr[¬FIND]

= Pr
[

D
O�

2

(

1n, xA, xB, S O�

Bob2

(

1n, xB, sxB

)) = 1
]

− Pr
[

D
O�

2

(

1n, xA, xB, S O�

Bob2

(

1n, xB, sxB

)) = 1|FIND
] · Pr[FIND]

≤ Pr
[

D
O�

2

(

1n, xA, xB, S O�

Bob2

(

1n, xB, sxB

)) = 1
]

.

We obtain

Pr
[

D
O�

1

(

1n, xA, xB, IDEAL
O�

OT2
1,S I M,Z (n, xA, xB,1)

) = 1
]

≤ Pr
[

D
O�

2

(

1n, xA, xB, S O�

Bob2

(

1n, xB, sxB

)) = 1
] + Pr[FIND].

We conclude that
∣
∣Pr

[

D
O�

1

(

1n, xA, xB, REAL
O�

�1,A,Z (n, xA, xB, z)
) = 1

]

− Pr
[

D
O�

1

(

1n, xA, xB, IDEAL
O�

OT2
1,S I M,Z (n, xA, xB, z)

) = 1
]∣
∣

≥ ∣
∣Pr

[

D
O�

2

(

1n, xA, xB,VIEW�2,O�

Bob2

(

1n, xA, xB

)) = 1
] − Pr[FIND]

−Pr
[

D
O�

2

(

1n, xA, xB, S O�

Bob2

(

1n, xB, sxB

)) = 1
] − Pr[FIND]∣∣

>
1

p(n)
− 2

p2(n)
≥ 1

q(n)

for some positive polynomial q(·). We conclude that �2 = 〈Alice2,Bob2〉 is statically
secure relative to O�, and this completes the proof of Theorem 4.6. �

Remark 4.7. Theorem 4.6 is true only for random �-oracles. Specifically, if O� is not
a random �-oracle, then the claim that finding an fid in the range of G� without making
a query to it can happen only with negligible probability does not necessarily hold, and
therefore the theorem is not necessarily true for an arbitrary �-oracle.

The following corollary is obtained from Theorem 4.6 by taking oblivious transfer as
a special case:

Corollary 4.8. If there exists a protocol �1 that securely computes the OT2
1 function-

ality in the presence of adaptive semi-honest adversaries relative to a random �-oracle
O� , then the protocol �2 defined above securely computes the OT2

1 functionality in the
presence of static semi-honest adversaries relative to φ(O�).

4.4. No Static OT2
1 Relative to �-Oracles

For the next step of our proof, we show that static OT2
1 does not exist relative to most �-

oracles. In order to do this, we show that key agreement does not exist relative to most
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�-oracles, and then derive the result from the fact that secure OT2
1 implies key agree-

ment. In order to show that key agreement does not exist relative to most �-oracles,
we show that a �-oracle can be replaced with a “plain random oracle”, with at most
a negligible difference. Thus, the results of [27] for key agreement relative to a plain
random oracle hold also relative to a �-oracle. We begin by formally defining a random
oracle type, denoted ρ, and show its relationship to �-oracles.

ρ-Oracles We define a ρ-oracle to be an oracle with the following functions:

• Gρ is an injective function from {0,1}n to {0,1}2n.
• FP is a function that on a triple (I, k, x) ∈ {0, . . . ,5}× {0,1}2n ×{0,1} n

2 such that
k ∈ Range(Gρ) returns a string y ∈ {0,1} n

2 . If k �∈ Range(Gρ), FP returns ⊥. Note
that for a given I and k ∈ Range(Gρ), FP (I, k, ·) is a function from {0,1} n

2 to
{0,1} n

2 .

Note that the output of Gρ is an fid—or symmetric key k—of length 2n which defines
6 random functions FP (0, k, ·), . . . ,FP (5, k, ·). The reason for this is that to show that
key-agreement does not exist relative to �-oracles, we use the result of [11] who show
that using 6 rounds of the Luby–Rackoff construction, the random oracle model and
the ideal cipher model are equivalent. Hence FP (0, k, ·), . . . ,FP (5, k, ·) are used to
simulate the P permutation of a �-oracle, using 6 different functions for Luby–Rackoff.

We denote by Uρ the uniform distribution on ρ-oracles. Namely, we say that a ρ-
oracle Oρ = (Gρ,FP ) is distributed according to Uρ if Gρ is a uniformly distributed
injective function from {0,1}n to {0,1}2n and FP is a uniformly distributed function

from {0, . . . ,5} × Range(Gρ) × {0,1} n
2 to {0,1} n

2 (and for k not in the range of Gρ , it
returns ⊥). We sometimes use the phrase “Oρ is a random ρ-oracle” as an abbreviation
for “Oρ is distributed according to Uρ”.

We now prove the following theorem:

Theorem 4.9. If P = N P , then relative to measure 1 of �-oracles, there does not
exist any statically secure protocol for computing the OT2

1 functionality.

In order to prove Theorem 4.9, we recall the original black-box separation of key
agreement from a random oracle, as proven in [27]. In [27], the black-box separation
was proved by showing that if P = N P , then relative to a random oracle, for every
key-agreement there exists a PPT machine Eve that can find a polynomial size list that
contains all intersection queries with a good probability (where an “intersection query”
is a query made by both Alice and Bob). Now, we can assume that at the end of the
protocol, both Alice and Bob query their oracle on the key they are about to output.
Therefore, if Eve can find all intersection queries, she can guess the key with a high
probability. The same proof can be extended to oracles containing random Gρ and FP

as defined above (see Footnote 9 in [19]).

Theorem 4.10 ([19,27]). If P = N P , then given any key-agreement protocol relative
to a random ρ-oracle, for every polynomial poly(·), there exists a polynomial time Eve
such that Eve finds all intersection queries with probability 1 − 1

poly(n)
.
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We first show that a similar argument holds relative to �-oracles (which essentially
represent symmetric encryption). That is, we show that every key agreement protocol
relative to a random �-oracle can be broken with probability 1 − 1

poly(n)
. To do this, we

use the result of [11] that shows an equivalence between the random oracle model (rep-
resented by ρ-oracles in our work) and the ideal cipher model (represented by �-oracles
in our work).

Theorem 4.11 ([11]). There exists a Turing machine C such that CUρ is equivalent to
U�. That is, for every polynomial q there exists a probabilistic polynomial-time simula-
tor S and a negligible function μ, such that for every (possibly unbounded) machine D

making at most q(n) queries,

∣
∣Pr

[

DUρ,CUρ (

1n
) = 1

] − Pr
[

DS U�,U�
(

1n
) = 1

]∣
∣ < μ(n).

We show that Theorem 4.11 implies the following:

Proposition 4.12. If P = N P , then given any key-agreement protocol relative to a
random �-oracle, for every polynomial poly(·), there exists a polynomial time Eve such
that Eve finds all intersection queries with probability 1 − 1

2poly(n)
.

Proof Sketch: Let 〈A1, B1〉 be a key-agreement protocol relative to random �-oracles.
We use 〈A1, B1〉 to construct a key-agreement protocol 〈A2, B2〉 relative to random ρ-
oracles. Recall that A2 and B2 have oracle access to a ρ-oracle while A1 and B1 have
oracle access to a �-oracle. The idea is to use the ρ-oracle in order to simulate a �-
oracle using the Turing machine C that is guaranteed to exist by Theorem 4.11. Now,
assume P = N P . Let poly(·) be some polynomial and let Eve2 be as in Theorem 4.10.
We use Eve2 to construct an adversary Eve1 for 〈A1, B1〉. Eve1 simply invokes Eve2 and
simulates the ρ-oracle using the simulator S guaranteed to exist by Theorem 4.11. Note
that if Eve1 outputs a list of intersection queries with probability less than 1 − 1

2poly(n)
,

then it is possible to distinguish oracles (Uρ,CUρ ) from (S U�, U�) with non-negligible
probability. Specifically, given a pair of oracles (O1, O2) that are distributed according
to (Uρ,CUρ ) or (S U�, U�), distinguisher D first invokes a run of 〈A O2

1 , B O2
1 〉 and then

invokes EveO1
2 on the transcript. D outputs 1 if and only if Eve2 outputs all intersection

queries. Now, if (O1, O2) are distributed according to (Uρ,CUρ ) then Eve2 outputs all
intersection queries with probability at least 1 − 1

poly(n)
, and if (O1, O2) are distributed

according to (S U�,U�) then Eve2 outputs all intersection queries with probability less
than 1 − 1

2poly(n)
. Thus D distinguishes with non-negligible probability. �

Remark 4.13. Theorem 4.11 holds even when P = N P since the running time of D

is unbounded.

Now we can use the same methods as in [27] to show that relative to measure 1 of �-
oracles, any key-agreement can be broken in polynomial time. As described in [19], it is
possible to construct a secure key agreement from any static oblivious transfer protocol
and it is easy to verify that this construction relativizes. Therefore, we conclude that
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relative to measure 1 of �-oracles, there does not exist any statically secure protocol for
computing the OT2

1 functionality.
The following corollary can be proven using the same methods as in [27] (the

only difference between it and what was proven in [27] is the type of oracle used
and this is irrelevant for the proof because this corollary only shows that if any key-
agreement protocol relative to a random oracle can be broken with probability as high as
1 − 1/poly(n), then this is true for measure 1 of oracles):

Corollary 4.14. If P = N P , then for measure 1 of �-oracles, any key-agreement
protocol can be broken in polynomial time.

Recalling that the existence of a secure OT2
1 relative to an oracle O implies the exis-

tence of a secure key agreement relative to O, we obtain:

Corollary 4.15. If P = N P , then for measure 1 of �-oracles, there does not exist any
statically secure protocol for computing the OT2

1 functionality.

4.5. Concluding the Proof

Corollary 4.8 states that if there exists an adaptively secure protocol for OT2
1 relative

to a given �-oracle O, then there exists a statically secure protocol for OT2
1 relative

to the oracle φ(O). Now, by Theorem 4.9, for measure 1 of �-oracles, there exists no
statically secure OT2

1. Using the fact that φ is a bijection (Claim 4.1), we conclude that
for measure 1 of �-oracles, there exists no adaptively secure OT2

1. That is, we have the
following:

Theorem 4.16. If P = N P , then for measure 1 of �-oracles, there does not exist any
adaptively secure protocol for computing the OT2

1 functionality.

Similarly as in [27], we derive an oracle separation of enhanced trapdoor permuta-
tions from adaptively secure OT2

1 (even for semi-honest adversaries):

Corollary 4.17. There exists an oracle relative to which enhanced trapdoor permuta-
tions exist, but not adaptively secure OT2

1.

Proof. Let O be a P S P A C E -complete oracle combined with a random �-oracle.
Enhanced trapdoor permutations exist relative to O, whereas adaptively secure OT2

1
does not, as we have shown. �
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