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Abstract

Image interpolation is a key aspect of digital image processing. This paper presents a novel

interpolation method based on optimal recovery and adaptively determining the quadratic signal class

from the local image behavior. The advantages of the new interpolation method are the ability to

interpolate directly by any factor and to model properties of the data acquisition system into the algorithm

itself. Through comparisons with other algorithms it is shown that the new interpolation is not only

mathematically optimal with respect to the underlying image model, but visually it is very efficient at

reducing jagged edges, a place where most other interpolation algorithms fail.

Index Terms

image modeling, quadratic classes, interpolation

I. INTRODUCTION

With the advent and proliferation of low resolution digital cameras, such as those found in

today’s cell phones, there is a dire need for good image interpolation techniques. The main focus

of this paper is the introduction of a novel image interpolation technique that is based on optimal

recovery and adaptively determining the local quadratic signal class.

This paper is organized as follows. SectionII discusses several published image interpolation

algorithms. SectionIII details the adaptively quadratic (AQua) image interpolation algorithm.

SectionIV compares the performance of the adaptively quadratic interpolation against four other

interpolation techniques. SectionV concludes with final remarks and future research work in

this area. Finally, the appendix reviews the theory of optimal recovery [1], [2], which is key to

the problem of interpolating missing samples in a quadratic signal class.

II. REVIEW

In the area of image interpolation by far the most well known and widely used techniques are

those of polynomial or Lagrange interpolation and splines. These image models are based on the

assumption that locally each image behaves like annth degree polynomial. Whether separable or

non-separable, these methods can be efficiently implemented using an up-sampler followed by

a filter. Examples of such interpolation algorithms are cubic [3] and other spline based methods

[4]. These polynomial image models have the advantage of being fast but tend to introduce
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serious jaggedness (the staircase effect) and blur. They are the choice of image manipulation

programs such as Adobe Photoshop and GIMP.

There have been many attempts at improving the local polynomial image models in order

to enhance edges and the overall image sharpness. In [5] the author introduces the concept of

warped distances to adaptively adjust the bi-cubic interpolation filter. By assuming a different

relative location (a warped distance) of the four known samples with respect to the interpolated

sample, the filter coefficients can be changed in order to sharpen edges. It is not clear how, or

even if, this method removes the staircase affect in curved edges. The image models of [6], [7]

use splines for image resizing. Their methods are especially useful for down-sampling, while

up-sampling is similar to spline interpolation.

Other attempts at modifying the polynomial image model in order to reduce jaggedness

and sharpen edges are those of [8] and [9]. Around edges the authors of [8] map a 3 by 3

neighborhood about each pixel in the low-resolution image to a best-fit continuous space step

edge and then re-sample it at the higher density. Images interpolated with this method look

sharper than bi-cubic interpolation but often look too much like drawings, especially for zoom

factors of four or more. In [9] the authors use an iterative rendering and correction step for edge

directed interpolation and claim that this produces sharper images.

A second class of image interpolation algorithms are those based on multi-resolution analysis.

The authors of [10] model the wavelet coefficients of a dyadic (non-decimated) wavelet transform

using exponential decay. In particular, they show that the local maximum of the dyadic wavelet

coefficients decreases exponentially from coarse to fine scales. The authors of [11], [12] apply

the wavelet exponential decay model to image interpolation by posing the interpolation problem

as one of estimating the fine detail wavelet coefficients. Exponential decay is estimated from

the coarse scale coefficients. If an exponential decay is detected, an estimate of the fine scale

wavelet coefficient is made based on the estimated decay, otherwise the estimate is zero.

The super-resolution image models of [13], [14] can also be described as interpolation methods

based on adding image details in the wavelet domain, although the details are added based on

training data and not wavelet decay. Using high resolution training data, images are decimated and

table lookups of low-resolution/high-resolution patches are built. These methods produce sharper

images and can work well, given decent training data, but their main drawback is the potential

for introducing artifacts when the table lookup procedure chooses a wrong high resolution patch.
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In addition, the image models may not work as well for data containing artifacts, such as JPEG

compressed images, as the methods tend to consider artifacts as part of the image and may

enhance the artifacts more than the image itself. The image models of [15] are similar in nature.

The authors of [16] model the wavelet coefficients using Gaussian mixtures and apply their

models to image denoising [17]. In [18] the image model of [16] is extended to image inter-

polation. For this interpolation method the interpolation results are comparable with bi-cubic

interpolation. One particular feature of this approach is that the detail wavelet coefficients

are realizations of estimated Gaussian mixtures. Hence, every run of the algorithm produces

a different result. The weakness of this model, in image interpolation, lies primarily in the

determination of the Gaussian mixture parameters.

The authors of [19] propose a maximum a posteriori (MAP) pixel estimation technique which

results in the optimization of convex functionals. Their nonlinear image expansion technique

sharpens edges but the interpolation technique does not eliminate jagged edges. The work of

[20] also uses a MAP framework for estimating a high resolution image from a sequence of

under-sampled images. Their expansion method could be used for a single image by assuming

only one frame. Applying the algorithm to a single frame results in images very similar to those

of [19].

In [21] the authors present a least squares edge directed interpolation method. The method

assumes that each pixel is a linear combination of its neighboring pixels. Further, it is assumed

that locally the weights are constant. A linear system of equations is solved in order to find the

local weights. This method works for interpolation by factors of two and performs well around

edges, but performs poorly in high frequency regions, sometimes introducing undesired artifacts.

In [22] it is shown how this solution can be reformulated using optimal recovery which allows

for additional assumptions about the local derivatives in addition to the known local pixels to

be used in the interpolation process.

The work of [23] is related to our image interpolation approach. The authors pose the image

interpolation problem as one where the image belongs to a fixed quadratic image class. To solve

the interpolation problem the authors add some known linear partial differential constraints. The

solution to their interpolation problem is similar to the solution of our interpolation problem.

The difference is that this paper develops adaptive quadratic signal classes to better model the

local image behavior.
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This paper presents a novel approach to image interpolation based on optimal recovery (ap-

pendix) and the adaptive determination of the local quadratic signal class. The new interpolation

method generalizes well to interpolation by any factor, removes jagged edges, and can easily

incorporate a model for the camera lens in order to produce sharper results.

III. A DAPTIVELY QUADRATIC (AQUA) INTERPOLATION

The first challenge of using optimal recovery for image interpolation is determining the

quadratic signal classK:

K =
{
x ∈ R

n : xT Qx ≤ ε
}

from a set of training data. The training data is usually taken from the local features of the image

and selecting a proper training set is discussed at the end of this section. For now assume that a

training set of patchesS = {x1, . . . , xm} representative of the local data is given for estimating

the local quadratic signal class. TheQ for which the ellipsoid

xT Qx ≤ ε, (1)

for some constantε must be representative of the training setS. In other wordsQ must be a

matrix such that when an image patchy is similar to the vectors inS equation (1) holds fory.

Let matrix S be formed by arranging the image patches inS as columns:

S = (x1, . . . , xm) (2)

and consider the equation relating the image patchy to the training setS using a column ofm

weights,a:

Sa = y. (3)

Vector y is similar to the vectors inS when a has small energy. Using standard notation for

singular value decomposition ofS, equation (3) can be rewritten as:

UΛV T a = y

The weight vectora is given by

a = V Λ−1UT y

and the sum of the squares, or the energy ofa is:

aT a = yT UΛ−2UT y.
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Since

SST = UΛ2UT

it follows that

aT a = yT (SST )−1y

= yT Qy

whereQ is the pseudo inverse ofSST . If y is very similar to the training setS then

aT a ≤ ε,

and with the newQ it follows that

yT Qy ≤ ε.

This is the desired form for our ellipsoidal signal class. It results from an “Occam’s razor” type

of assumption that small weights are used to represent vectors that are similar to our training

setS.

Given the formulation of the quadratic signal class from a training setS, or equivalently the

formulation of Q, the next challenge is determining the training setS. One direct approach

of selecting the vectors inS is based on the proximity of their locations to the position of the

vector being modeled. In this case, patches are generated from the local neighborhood. A second

approach is to use patches from other high density images. This works well when interpolating

images that belong to a certain predetermined class. For example in [24] AQua interpolation is

applied to face interpolation and the training set is determined from other high resolution faces.

A third approach is to adaptively search for training patches in other high resolution images. This

paper uses the first approach where training patches are selected from the local neighborhood.

For example, in Fig.1 to model the quadratic signal class that the center patch

x = [x(2,2), x(2,3), x(2,4), x(2,5), x(3,2), . . . , x(5,5)]
T (4)

belongs to, let

S =







x(0,0)

x(0,1)

...

x(3,3)




, . . . ,




x(4,4)

x(4,5)

...

x(7,7)







, (5)
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Fig. 1

LOCAL HIGH DENSITY IMAGE USED FOR SELECTINGS TO ESTIMATE THE QUADRATIC CLASS FOR THE CENTER4× 4 PATCH

(DARK PIXELS ARE PART OF THE DECIMATED IMAGE). TO MODEL THE IMAGE ACQUISITION SYSTEM OUR ASSUMPTION IS

THAT THE HIGH DENSITY IMAGE HAS BEEN FILTERED BY A LOW PASS FILTER BEFORE DOWN-SAMPLING. FOR EXAMPLE,

THE PIXEL AT LOCATION (2, 2) IS THE AVERAGE OF THE FOUR HIGH DENSITY PIXELS SHOWN ON THE RIGHT.

whereS is formed by choosing all the possible4 × 4 image blocks in the8 × 8 region of Fig.

1.

A. Interpolation

Adaptively quadratic interpolation is performed in three steps. A block diagram is shown in

Fig. 2 and the detailed steps are described next.

1) Determine high density classK.

The training set used for determining the local quadratic signal class of the high density

image (i.e. the interpolated image) is obtained by taking image patches from the local

neighborhood. In the case of image interpolation the neighboring image patches contain

missing samples. There are several approaches to handle this situation. The first approach

is to use patches from the decimated image. For example, in Fig.1 where the interpolation

factor is 2×, instead of formingS as in equation (5), the set is formed using decimated
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Determine high density classK

Initial (rough)

interpolation
Q =

[
SST

]−1 Determine the

known representors

Optimal recovery

interpolation

Optional iterative step

Fig. 2

INTERPOLATION STEPS PERFORMED FOR EACH LOCAL REGION.

patches:

S =







x(0,0)

x(0,2)

...

x(6,6)




, . . .




. (6)

While this approach works well for small interpolation factors, the approach quickly

deteriorates when interpolating by larger factors. For larger interpolation factors the size of

training patches is larger and using decimated patches quickly takes away from the locality

of the method. Instead of using decimated training patches an alternative method is to

interpolate the training patches before formingS. Using interpolated patches in determining

the quadratic signal classK is almostas good as using original high density patches. This

can be explained as follows. Let matrixQo be formed using original high density patches,

and matrixQi be formed using interpolated patches. To compare the two quadratic classes

we must compare1 Q−1
o and Q−1

i . A direct way is to look at the norm2 of the difference

betweenQ−1
o /‖Q−1

o ‖ and Q−1
i /‖Q−1

i ‖. Table I shows the norms of the error matrix for

three different patches oflenawhen interpolation is pixel replication and the interpolation

factors are 2, 4, and 8. In all cases the norm of the error matrix is less than about two

1In optimal recoveryQ−1 is used for interpolation (see appendix). Alternatively, the quadratic classK is stretched in the

direction of the eigenvector corresponding to the largest eigenvalue ofQ−1. This can be understood by diagonalizing matrixQ.

That isxT Qx = ε becomesxT V ΛV T x = ε. Whenx is in the direction of eigenvectorvi (i.e. x = αivi) its squared norm is:

α2
i = ε/λi. Therefore, a smallλi (i.e. a large eigenvalue ofQ−1) causes a large stretch in the ellipsoidxT Qx = ε.

2The norm of a matrix is its largest singular value [25].
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‖ 1

‖Q−1
o ‖

Q−1
o − 1

‖Q−1
i ‖

Q−1
i ‖

High Density Patch Pix. Rep. Int. 2X Pix. Rep. Int. 4X Pix. Rep. Int. 8X

0.0013 0.0035 0.0087

0.0041 0.0111 0.0147

0.0062 0.0155 0.0267

TABLE I

THREE HIGH DENSITY PATCHES(36 × 36) FROM THE lena IMAGE DEPICT: AN EDGE, A STRIPE, AND A TEXTURED REGION.

THE HIGH DENSITY PATCH IS DECIMATED BY2, 4, AND 8 AND THEN INTERPOLATED USING PIXEL REPLICATION. USING

4 × 4 PATCHES, MATRICES Qi AND Qo ARE BUILT. SHOWN IS THE MATRIX NORM OF THE DIFFERENCE OF THE

NORMALIZED MATRICES: ‖ 1

‖Q−1
o ‖

Q−1
o − 1

‖Q−1
i ‖

Q−1
i ‖.

percent, suggesting a good fit between the quadratic signal classes generated byQo and

Qi.

A second method of comparing the quadratic classes generated byQo and Qi is to look

at the correlation coefficients between the eigenvectors corresponding to the smallest

eigenvalues ofQo and Qi (the largest eigenvalues ofQ−1
i and Q−1

o ). If the correlation

is close to one then the quadratic signal classes arealmostthe same. TableII depicts the

first three correlation coefficients for three different patches oflena. In all cases the first

eigenvector ofQi (the vector corresponding to the largest eigenvalue ofQ−1
i ) correlates

very strongly with the first eigenvector ofQo. Although the correlation coefficient is smaller

for the second and third eigenvectors, the second and third eigenvalues are two orders of

magnitude larger than the first. This suggests that the quadratic classes generated byQi
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High Density Patch Pix. Rep. Int. 2X Pix. Rep. Int. 4X Pix. Rep. Int. 8X

ρ e−1
i e−1

o

0.99 4.03 4.08

0.99 0.03 0.04

0.98 0.01 0.01

ρ e−1
i e−1

o

0.99 3.93 4.08

0.98 0.04 0.04

0.47 0.01 0.01

ρ e−1
i e−1

o

0.99 4.77 4.08

0.93 0.05 0.04

0.00 0.03 0.01

ρ e−1
i e−1

o

0.99 2.44 2.51

0.99 0.05 0.06

0.98 0.01 0.01

ρ e−1
i e−1

o

0.96 2.32 2.51

0.98 0.04 0.06

0.03 0.02 0.01

ρ e−1
i e−1

o

0.93 2.67 2.51

0.97 0.04 0.06

0.00 0.03 0.01

ρ e−1
i e−1

o

0.95 1.33 1.34

0.99 0.03 0.04

0.97 0.01 0.01

ρ e−1
i e−1

o

0.88 1.36 1.34

0.99 0.02 0.04

0.08 0.01 0.01

ρ e−1
i e−1

o

0.87 1.74 1.34

0.99 0.05 0.04

0.07 0.03 0.01

TABLE II

THREE HIGH DENSITY PATCHES(36 × 36) FROM THE lena IMAGE DEPICT: AN EDGE, A STRIPE, AND A TEXTURED REGION.

THE HIGH DENSITY PATCH IS DECIMATED BY2, 4, AND 8 AND THEN INTERPOLATED USING PIXEL REPLICATION. USING

4 × 4 PATCHES, MATRICES Qi AND Qo ARE BUILT. SHOWN IS THE CORRELATION COEFFICIENT(ρ) BETWEEN THE

EIGENVECTORS CORRESPONDING TO THE SMALLEST EIGENVALUES OFQi AND Qo, AND THE INVERSE OF THE SMALLEST

EIGENVALUES OFQi (DENOTED BY e−1
i ) AND Qo (DENOTED BY e−1

o ).

andQo are very similar.

Table II also depicts two other trends. First, as expected, the correlation coefficient de-

creases as the scaling factor increases. This behavior does not depend solely on scaling

factors but it also depends on the level of detail present in the decimated image. Starting

with the 512 × 512 image of lena and interpolating by factors of 8 (horizontally and

vertically) produces naturally good visual results. Decimating the512 × 512 image by 8

and then interpolating back to512 × 512 produces bad visual results, while the image

continues to maintain non-jagged edges. Second, the correlation coefficient is smaller for

textured regions than for well defined edge regions, suggesting that in textured regions

more error is introduced. On the other hand, textured regions are also more forgiving from

a visual score since human eyes are not as sensitive to errors made in these regions.

The correlation results shown in TableII are for the case when the initial interpolation

step of Fig.2 is pixel replication. The results are slightly better for cubic and linear
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interpolation. As it will be shown in the Results Section, if the iteration step of Fig.2 is

not used the interpolation output is dependent on the quality of the initial interpolation

step. However, using the iterative step two times (i.e. use the interpolated image to re-

determine the quadratic signal class and then re-apply optimal recovery twice) generates

visual results that are very similar regardless of the initial interpolation step.

2) Determine the known representors.

First, a decision must be taken about the known linear functionals of the patch that needs

to be interpolated. (A linear functional ofx, denoted byF (x), is any single valued linear

function of x, such as: samples, derivatives, integrals, etc.) In the large square of Fig.

1 assume that the center patch (x of equation (4)) belongs to a predetermined quadratic

signal classK. To estimate the samples of the center patchx a decision must be made

about what linear functionals ofx are known. One approach is to assume that the known

linear functionals ofx (the dark pixels) are the samples ofx. In that case:

F1(x) = x(2,2)

F2(x) = x(2,4)

F3(x) = x(4,2)

F4(x) = x(4,4)

Once linear functionals are known the representors are vectorsφi in R
n for which:

Fi(x) = (φi, x)Q .

The representors of the known functionals are products betweenQ−1 and vectors with 1

in the location of the known values and zero everywhere else (i.e. forF1 the vector would

have 1 at location(2, 2) ). A second alternative is to assume that the original high density

pixels have been averaged first, before decimation by two. (For example, this would be

the case in a digital camera where one pixel in a CCD sensor records the average light

energy detected in the area of the pixel.) In this second case the known linear functionals

are:

F1(x) = (x(2,2) + x(2,3) + x(3,2) + x(3,3))/4

F2(x) = (x(2,4) + x(2,5) + x(3,4) + x(3,5))/4
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F3(x) = (x(4,2) + x(4,3) + x(5,2) + x(5,3))/4

F4(x) = (x(4,4) + x(4,5) + x(5,4) + x(5,5))/4

The interpolation problem is estimatingx(2,2), x(2,3), x(3,2), andx(3,3) on the right of Fig.1

from knowingF1, F2, F3, andF4 which are the high density averages atx(2,2), x(2,4), x(4,2),

andx(4,2) in the big square of Fig.1. The representors of the known functionals are now

products betweenQ−1 and vectors that average the four samples (i.e. forF1 the vector

has1/4 at x(2,2), x(2,3), x(3,2), x(3,3) and zero everywhere else). As it will be shown in the

Results Section making the first assumption about the known functionals tends to produce

smoother images, while using average functionals images tend to look sharper.

3) Optimal recovery interpolation.

Once the quadratic signal class is determined from step 1 the optimal recovery solution

(reviewed in the appendix) is vectorū which is a linear combination of the representors

found in the previous step. The estimates of the missing samples are the samples ofū. The

optimal estimates for the samples ofx are weighted averages of the known functionalsFi

and depend on both the quadratic signal classK and the representors ofFi.

To clarify the details of the interpolation steps and to exemplify the extension of AQua

interpolation to any factor this paper goes through the mechanics of interpolating by a factor

of 1.5. In the large square of Fig.3 the dark pixels are the known samples from the decimated

image and the pixels marked with “X” are the pixels that need to be estimated when the

interpolation factor is 1.5. If the pixels of the decimated image are at indices0, 1, 2, . . . , m and

the interpolation factor isk > 1 then in the high density image the pixels of the decimated image

are at locations0, k, 2k, . . . , km and interpolation is done by estimating the missing samples at

the integer locations. In our case the decimated pixels are at locations0, 1.5, 3, 4.5, . . . , etc. and

the interpolation estimates the pixels at location0, 1, 2, 3, . . . , etc. The interpolation algorithm

for 1.5× is as follows:

1) Determine high density classK.

In Fig. 3 two different training patches are patch A and B. For a general interpolation

factor k the size of the training patches should be chosen such that each patch contains

at least four of the known decimated pixels. This is so that the estimation of any pixel is

based on at least four closest known functionals. The training patches are first estimated
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Fig. 3

LOCAL IMAGE AND TWO PATCHES OF6 × 6 (DARK PIXELS ARE PART OF THE DECIMATED IMAGE). TO MODEL THE IMAGE

ACQUISITION SYSTEM THE ASSUMPTION IS THAT THE HIGH DENSITY IMAGE HAS BEEN FILTERED BY A LOW PASS FILTER

BEFORE DOWN-SAMPLING. FOR EXAMPLE, THE PIXEL AT LOCATION (1.5, 1.5) IS A WEIGHTED AVERAGE OF THE NINE HIGH

DENSITY PIXELSx(1.5,1.5), . . . , x(2.5,2.5) , SHOWN ON THE RIGHT.

using cubic or other initial interpolation.

2) Determine the known representors.

As previously mentioned selecting the known functionals can be based on the assumption

that the decimated pixels are the same in the high density image as in the decimated

image, or that the pixels in the decimated image are some weighted average of the high

density pixels. For example, in the large square of Fig.3 the value of pixelx(1.5,1.5) can

be taken as the average of the pixels on the right side of Fig.3. The representors are

determined similarly to the2× interpolation example.

3) Optimal recovery interpolation .

Again, the optimal recovery solution is vectorū which is a linear combination of the

representors in step 2 and the estimated pixels are samples of vectorū. The samples of

ū can be estimated directly, without findinḡu first. For patch A of Fig.3 this means

that the estimated samples are the pixels at locationx(0,0), x(0,1), x(1,0), andx(1,1).
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Image Cubic Sub-Pix Bayesian Edge Dir AQua

(3,0) (3,2) (0,0) (0,2) (HD,0) (HD,2)

Rings 22.41 21.14 19.40 21.65 27.21 33.26 19.31 28.88 35.11 33.59

Barbra 30.86 30.29 29.11 27.12 30.39 29.58 31.03 30.20 35.27 34.72

Lena 39.69 36.18 35.48 38.13 39.34 39.45 37.46 39.47 39.70 39.56

Mandrill 30.21 29.28 29.18 29.55 30.16 30.34 29.59 30.25 30.62 30.52

Peppers 40.12 36.16 38.86 39.40 40.04 40.24 38.35 40.21 40.39 40.27

TABLE III

COMPARISON OF DIFFERENT2× INTERPOLATION ALGORITHMS USINGPSNRVALUES (10 log10(255
2/MSE)). THE

ORIGINAL IMAGE IS LOW-PASSED BEFORE DECIMATION. FOR AQUA INTERPOLATION THE FIRST NUMBER REPRESENTS THE

ORDER OF THE POLYNOMIAL USED FOR THE INITIAL INTERPOLATION AND THE SECOND NUMBER REPRESENTS THE

NUMBER OF ITERATIONS. NUMBER (3,2) MEANS A CUBIC INITIAL INTERPOLATION AND TWO ITERATIONS. THE LAST TWO

COLUMNS REPRESENT THE RESULTS OFAQUA WHEN USING THE HIGH DENSITY IMAGE AS THE INITIAL ESTIMATE.

IV. I NTERPOLATION RESULTS

AQua interpolation is compared against four other interpolation methods. These methods

are: sub-pixel edge localization [8], edge directed interpolation [21], bi-cubic, and Bayesian

interpolation [19]. The sub-pixel edge localization interpolation is our own implementation of the

algorithm described in [8], the edge directed interpolation was obtained directly from the author,

bi-cubic interpolation is Matlab’s “INTERP2” function, and the Bayesian interpolation algorithm

was obtained from Simon Baker [14]. Interpolation is applied to five different test images:rings,

barbra, lena, mandrill, and peppers. The rings image is256 × 256 and consists of concentric

circles that get closer and closer to each other as they move outward, away from the origin. The

rings image is suggested by [26] for visualizing the results of applying different interpolation

filters. Imagesbarbra, lena, mandrill, and peppersare 512 × 512 gray scale images available

from [27]. All images are gray scale images with 8 bits per pixel. In all cases interpolation is

performed by first filtering the original image using a2×2 averaging filter and then decimating

by two. The decimated images were then interpolated using the five different algorithms and

these results are presented next. The interested reader can view and download full copies of

these interpolated image from [28].
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Peak signal-to-noise-ratio (10 log10(2552/MSE)) between the2× interpolated images and

the high density filtered images (just before down-sampling by two) are presented in TableIII .

Without iterations the AQua algorithm performs slightly worse than cubic interpolation, and when

using two iterations the AQua algorithm slightly outperforms bi-cubic. TableIII shows a few

other interesting trends. First, for the more natural images oflena, mandrillandpeppersusing

AQua with 2 iterations produces similar results regardless of the initial interpolation image.

Down-samplingbarbra and rings introduces strong aliasing and for these two images PSNR

values are not as meaningful. None the less for therings image AQua performs much better.

This is due to the very structured nature of therings image. For therings image AQua is able to

lock in on the structure of the local edge and better reconstruct the local image. Second, using

the high density image as the initial interpolation estimate produces the best PSNR values. It is

interesting to note that in this case using two iterations deteriorates the PSNR values, as AQua

tries to make the edges smoother than in the original image.

Although PSNR methods are the most common methods for measuring the quality of images,

their inadequacies have long been recognized. For example, PSNR values do not take into

consideration edge integrity and reconstructed images with low PSNR values can still have a

very high visual quality score, as it is the case with AQua interpolation. For visual comparison

and a more subjective evaluation, our results are also presented using images of interpolated

results. The interpolation method uses cubic interpolation as the initial step and no iterations.

From a visual point of view this method produces results that are almost indistinguishable from

using any other initial interpolation and two or more iterations.

Our first image is a256 × 256 rings image, a 1-D chirp signal rotated around 360 degrees,

filtered with an averaging filter and down-sampled to128 × 128. The down-sampling process

introduces slight aliasing artifacts that manifest themselves as extra grayrings. In Fig. 4 the 2×
interpolation results using six different interpolation methods are presented. In this test image

AQua interpolation does the best job at removing the aliasing artifacts introduced by the down-

sampling process. Cubic interpolation tends to be the most blurry of all the images, while the

edge directed interpolation tends to introduce slight artifacts. Also notice the extra sharpness in

the AQua result that uses averages (instead of samples) for the known functionals.

The second image islena (Fig. 5). To show that AQua can be applied to any interpolation

factor this image has been increased3× in size using bi-cubic interpolation and AQua. (The
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(a) (b)

(c) (d)

(e) (f)

Fig. 4

RINGS 2× INTERPOLATION (FROM LEFT TO RIGHT, TOP TO BOTTOM): BI-CUBIC (A), BAYESIAN (B), SUB-PIXEL EDGE

LOCALIZATION (C), EDGE-DIRECTED(D), AQUA WITH SAMPLES AS FUNCTIONALS(E), AND AQUA WITH AVERAGES AS

FUNCTIONALS (F).
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(a) (b)

Fig. 5

LENA’ S HAT 3× INTERPOLATION (FROM LEFT TO RIGHT): BI-CUBIC (A), AQUA WITH SAMPLES AS FUNCTIONALS(B).

other interpolation methods are based on interpolation by factors of2× and therefore are not

compared here.) Notice how bi-cubic produces a more jagged edge inlena’s hat, while AQua

maintains a cleaner edge.

Our final image is4× interpolation ofmandrill’s eye. Using bi-cubic interpolation the edges

around the eye tend to be somewhat jagged. The edge-directed algorithm does a much better job

of maintaining edge integrity but the image tends to look a bit overly smooth. AQua interpolation

with samples as functionals maintains fairly straight edges around the eye while making the image

look somewhat more natural than the edge directed interpolation. Also notice the extra sharpness

added to the image when functionals for AQua interpolation are averages.

In conclusion bi-cubic’s main weaknesses are jagged and blurry edges. Bayesian interpolation

[19] generates sharper edges but retains jagged edges. Sub-pixel edge localization interpolation

[8] performs well at keeping sharp edges, but images tend to be less natural and flat. The

edge directed interpolation [21] performs well at maintaining edge integrity but it performs

less desirably in high frequency regions. AQua performs well compared to all the reviewed

algorithms.
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(a) (b)

(c) (d)

Fig. 6

MANDRILL EYE 4× INTERPOLATION (FROM LEFT TO RIGHT, TOP TO BOTTOM): BI-CUBIC (A), EDGE-DIRECTED(B), AQUA

WITH SAMPLES AS FUNCTIONALS(C), AQUA WITH AVERAGES AS FUNCTIONALS(D).
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V. CONCLUSION

This paper presented a novel method for adaptive image interpolation. The algorithm first

determines the local quadratic signal class from local image patches and then applies optimal

recovery to estimate the missing samples. Additionally, the new interpolation algorithm allows

for integrating knowledge about the lens acquisition system into the interpolation itself by using

weighted averages as functionals. This tends to produce somewhat sharper images. The general

theory of optimal recovery allows estimation ofany linear functional of the image. Arbitrary

interpolation factors can be used and samples on any lattice can be estimated directly. The

focus here has been the interpolation of images by arbitrary factors. Through visual examples

this paper has shown that AQua interpolation performs better than several other published

interpolation algorithms, especially in structured images and around edges where most other

algorithms introduce objectionable artifacts or jaggedness. An extension of AQua interpolation

is image rotation where the samples of the rotated image can be estimated directly on the rotated

grid.
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APPENDIX

OPTIMAL RECOVERY

The theory of optimal recovery is detailed in [1], [2]. Using the notation of [1] this appendix

reviews optimal recovery as it applies to the problem of image interpolation.

The basic problem of image interpolation is that of approximating an unknown functionx at

pixel x0 in terms of its known values at pixelsx1, . . . , xk, with the additional assumption that

x is an element of a known linear spaceV . More generally, the problem is to approximate a

linear functionalF (x) in terms of other known linear functionalsF1(x), . . . , Fk(x). (A linear
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ū

Cf

K

Fh = {x ∈ R
n : Fi(x) = fi, ∀i}

Fig. 7

INTERSECTION OFK WITH HYPER-PLANE Fh.

functional F (x) can be any linear function ofx, such as: samples, derivatives, integrals, etc.)

Further, there is the assumption thatFi are linearly independent.

The image is modeled as belonging to a certain ellipsoidal signal classK:

K =
{

x ∈ R
n : xT Qx ≤ ε

}
(7)

whereQ is a positive definite matrix. Noting the values of the functionalsFi by fi, the unknown

function x lies in the setCf :

Cf =
{
x ∈ R

n : xT Qx ≤ ε, Fi(x) = fi for i = 1, . . . , k
}

(8)

That is x lies in Cf , the hyper-circle defined by the intersection of the hyper-planeFh =

{x ∈ R
n : Fi(x) = fi, ∀i} with the ellipsoid signal classK, as shown in Fig.7. With Q-norm of

x defined as‖x‖Q = xT Qx, let ū be the minimumQ-norm signal inCf :

‖ū‖Q = inf
Fi(x)=fi

‖x‖Q (9)

andF be the subspaces parallel to the hyper-circleCf :

F = {x ∈ R
n : F1(x) = . . . = Fk(x) = 0} . (10)
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ThenF (ū) is the best approximation to the value ofF (x). That isF (ū) is the Chebyshev center

[29] of F (x) on Cf :

sup
x∈Cf

|F (ū) − F (x)| = inf
u∈Cf

sup
x∈Cf

|F (u) − F (x)| (11)

Next, let ȳ be the unit norm element inF for which the functionalF attains its least upper

bound:

F (ȳ) = sup
x∈F ,‖x‖Q=1

|F (x)|. (12)

Then, the bounds on the error ofF (x) are:

F (ū) − F (ȳ)
(
ε − ‖ū‖Q

)1/2 ≤ F (x) (13)

≤ F (ū) + F (ȳ)
(
ε − ‖ū‖Q

)1/2

and these bounds are attained for the functionsx ∈ Cf :

x = ū ±
(
ε − ‖ū‖Q

)1/2
ȳ (14)

which are vectors on the boundary of the hyper-circleCf .

Calculation ofū, F (ū), andȳ is done using representors. By the Riesz representation theorem

[30] there are elementsφ, φ1, . . . , φk in R
n such that

F (x) = (φ, x)Q , Fi(x) = (φi, x)Q , ∀i (15)

for all x ∈ K. Vectorsφ, φ1, . . . , φk are linearly independent sinceF, F1, . . . , Fk are assumed to

be linearly independent. FunctionalsFi(x) = (φi, x)Q remain constant for allx ∈ Cf . That means

subspaceF is the set of all vectors inRn orthogonal to the representorsφi, ∀i. Equivalently,

φ1, . . . , φk is a basis forF⊥. With ū ∈ F⊥ it follows that ū is a linear combination of the

representorsφi. Similarly, ȳ is a linear combination of the representorsφ, φ1, . . . , φk:

ū =
∑

i

ciφi and ȳ = dφ +
∑

i

diφi (16)

Constantsci are found by forcinḡu to satisfy the given functionals:

Fi(ū) = (φi, ū)Q (17)

=


φi,

∑
j

cjφj




Q
(18)
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In matrix form this is equivalent to solving



F1(ū)
...

Fk(ū)




=




(φ1, φ1)Q (φ1, φ2)Q . . . (φ1, φk)Q
(φ1, φ2)Q (φ2, φ2)Q . . . (φ2, φk)Q

...
...

...
...

(φ1, φk)Q
...

... (φk, φk)Q







c1

...

ck




(19)

for ci. Constantsd and di are found similarly. Using the fact that̄y ∈ F it follows that ȳ is

perpendicular to the representorsφi, ∀i:

d




(φ, φ1)Q
...

(φ, φk)Q




+




(φ1, φ1)Q (φ1, φ2)Q . . . (φ1, φk)Q
(φ1, φ2)Q (φ2, φ2)Q . . . (φ2, φk)Q

...
...

...
...

(φ1, φk)Q
...

... (φk, φk)Q







d1

...

dk




= 0 (20)

From equation (20) find di as a function ofd. Vector ȳ from equation (16) is now defined

as a function of only one unknown constantd. Constantd is found from the restriction that

‖ȳ‖Q = 1.
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