
Adaptively Sampled Distance Fields: A General Representation of Shape for
Computer Graphics

Sarah F. Frisken, Ronald N. Perry, Alyn P. Rockwood, and Thouis R. Jones
MERL – Mitsubishi Electric Research Laboratory

Figure 1. An ADF showing fine detail carved
on a rectangular slab with a flat-edged chisel.

Figure 2. Artistic carving of a high order surface
with a rounded chisel.

Figure 3. A semi-transparent electron probability
distribution of a cyclohexane molecule.

ABSTRACT
Adaptively Sampled Distance Fields (ADFs) are a unifying
representation of shape that integrate numerous concepts in
computer graphics including the representation of geometry and
volume data and a broad range of processing operations such as
rendering, sculpting, level-of-detail management, surface
offsetting, collision detection, and color gamut correction. Its
structure is uncomplicated and direct, but is especially effective
for quality reconstruction of complex shapes, e.g., artistic and
organic forms, precision parts, volumes, high order functions, and
fractals. We characterize one implementation of ADFs,
illustrating its utility on two diverse applications: 1) artistic
carving of fine detail, and 2) representing and rendering volume
data and volumetric effects. Other applications are briefly
presented.

CR Categories: I.3.6 [Computer Graphics]: Methodology and
techniques – Graphics data structures; I.3.5 Computational
Geometry and Object Modeling – Object modeling

Keywords: distance fields, carving, implicit surfaces, rendering,
volume rendering, volume modeling, level of detail, graphics.

{frisken,perry,rockwood,jones}@merl.com

1. INTRODUCTION
In this paper we propose adaptively sampled distance fields
(ADFs) as a fundamental graphical data structure. A distance field
is a scalar field that specifies the minimum distance to a shape,
where the distance may be signed to distinguish between the
inside and outside of the shape. In ADFs, distance fields are
adaptively sampled according to local detail and stored in a spatial
hierarchy for efficient processing. We recommend ADFs as a
simple, yet consolidating form that supports an extensive variety
of graphical shapes and a diverse set of processing operations.
Figures 1, 2, and 3 illustrate the quality of object representation
and rendering that can be achieved with ADFs as well as the
diversity of processing they permit. Figures 1 and 2 show fine
detail carved on a slab and an artistic carving on a high order
curved surface. Figure 3 depicts an electron probability
distribution of a molecule that has been volume rendered with a
glowing aura that was computed using a 3D noise function.

ADFs have advantages over several standard shape
representations because as well as representing a broad class of
forms, they can also be used for a number of important operations
such as locating surface points, performing inside/outside and
proximity tests, Boolean operations, blending and filleting,
determining the closest points on a surface, creating offset
surfaces, and morphing between shapes.

It is important to note that by shape we mean more than just
the 3D geometry of physical objects. We use it in a broad context
for any locus defined in a metric space. Shape can have arbitrary
dimension and can be derived from measured scientific data,
computer simulation, or object trajectories through time and
space. It may even be non-Euclidean.

2. BACKGROUND
Commonly used shape representations for geometric design
include parametric surfaces, subdivision surfaces, and implicit
surfaces. Parametric representations include polygons, spline
patches, and trimmed NURBs. Localizing (or generating) surface
points on parametric surfaces is generally simpler than with other

Permission to make digital or hard copies of part or all of this work or 
personal or classroom use is granted without fee provided that copies are not 
made or distributed for profit or commercial advantage and that copies bear 
this notice and the full citation on the first page.  To copy otherwise, to 
republish, to post on servers, or to redistribute to lists, requires prior specific 
permission and/or a fee.   
 SIGGRAPH 2000, New Orleans, LA  USA 
 © ACM 2000 1-58113-208-5/00/07 ...$5.00 

249



representations and hence they are easier to draw, tessellate,
subdivide, and bound [3]. Parametric surfaces typically need
associated data structures such as B-reps or space partitioning
structures for representing connectivity and for more efficient
localization of primitives in rendering, collision detection, and
other processing. Creating and maintaining such structures adds to
the computational and memory requirements of the
representation. Parametric surfaces also do not directly represent
object interiors or exteriors and are subsequently more difficult to
blend and use in Boolean operations. While subdivision surfaces
provide an enhanced design interface, e.g., shapes are
topologically unrestricted, they still suffer from many of the same
limitations as parametric representations, e.g., the need for
auxiliary data structures [8], the need to handle extraordinary
points, and the difficulty in controlling fine edits.

Implicit surfaces are defined by an implicit function f(x∈ Rn)
= c, where c is the constant value of the iso-surface. Implicit
functions naturally distinguish between interior and exterior and
can be used to blend objects together and to morph between
objects. Boolean operations defined for implicit functions provide
a natural sculpting interface for implicit surfaces [3, 18]; however,
when many operations are combined to generate a shape the
computational requirements for interactive rendering or other
processing become prohibitive. Furthermore, it is difficult to
define an implicit function for an arbitrary object, or to chart
points on its surface for rendering and other processing.

Volumetric data consists of a regular or irregular grid of
sampled data, frequently generated from 3D image data or
numerical simulation. Object surfaces can be represented as iso-
surfaces of the sampled values and data between sample points
can be reconstructed from local values for rendering or other
processing. Several systems have been developed for sculpting
volumetric data using Boolean operations on sample density
values [1, 2]. However, in these systems, iso-surfaces lack sharp
corners and edges because the density values are low-pass filtered
near object surfaces to avoid aliasing artifacts in rendering. In
addition, the need to pre-select volume size and the use of regular
sampling force these systems to limit the amount of detail
achievable. Sensable DevicesTM has recently introduced a
commercial volume sculpting system [21]. To create detailed
models, very large volumes are required (a minimum of 512
Mbytes of RAM) and the system is advertised for modeling only
“organic” forms, i.e. shapes with rounded edges and corners.

Additional representations of shape for computer graphics
include look-up tables, Fourier expansions, particle systems,
grammar-based models, and fractals (iterated function systems),
all of which tend to have focused applications [10].

The ADF representation, its applications, and the
implementation details presented in this paper are new. Sampled
distance fields have, however, been used previously in a number
of specific applications. They have been used in robotics for path
planning [12, 13] and to generate swept volumes [20]. In
computer graphics, sampled distance fields were proposed for
volume rendering [11], to generate offset surfaces [4, 17], and to
morph between surface models [7, 17]. Level sets can either be
generated from distance fields or they can be used to generate
sampled distance fields [15, 22]. As with regularly sampled
volumes, regularly sampled distance fields suffer from large
volume sizes and a resolution limited by the sampling rate. These
limitations are addressed by ADFs.

3. ADAPTIVE DISTANCE FIELDS
A distance field is a scalar field that specifies the minimum

distance to a shape, where the distance may be signed to
distinguish between the inside and outside of the shape. As simple
examples, consider the distance field of the unit sphere S in R3

given by h(x) = 1 – (x2 + y2 + z2) ½, in which h is the Euclidean
signed distance from S, or h(x) = 1 – (x2 + y2 + z2), in which h is
the algebraic signed distance from S, or h(x) = (1 – (x2 + y2 + z2))2,
in which h is an unsigned distance from S.

The distance field is an effective representation of shape.
However, regularly sampled distance fields have drawbacks
because of their size and limited resolution. Because fine detail
requires dense sampling, immense volumes are needed to
accurately represent classical distance fields with regular
sampling when any fine detail is present, even when the fine
detail occupies only a small fraction of the volume. To overcome
this limitation, ADFs use adaptive, detail-directed sampling, with
high sampling rates in regions where the distance field contains
fine detail and low sampling rates where the field varies smoothly.
Adaptive sampling permits arbitrary accuracy in the reconstructed
field together with efficient memory usage. In order to process the
adaptively sampled data more efficiently, ADFs store the sampled
data in a hierarchy for fast localization. The combination of detail-
directed sampling and the use of a spatial hierarchy for data
storage allows ADFs to represent complex shapes to arbitrary
precision while permitting efficient processing.

In summary, ADFs consist of adaptively sampled distance
values organized in a spatial data structure together with a method
for reconstructing the underlying distance field from the sampled
values. One can imagine a number of different instantiations of
ADFs using a variety of distance functions, reconstruction
methods, and spatial data structures. To provide a clear
elucidation of ADFs, we focus on one specific instance for the
remainder of this paper. This instance is simple, but results in
efficient rendering, editing, and other processing used by
applications developed in this paper. Specifically, we demonstrate
an ADF which stores distance values at cell vertices of an octree
data structure and uses trilinear interpolation for reconstruction
and gradient estimation. The wide range of research in adaptive
representations suggest several other ADF instantiations based on,
for example, wavelets [5] or multi-resolution Delaunay
tetrahedralizations [6].

3.1 Octree-based ADFs
Octree data structures are well known and we assume familiarity
(see [19]). For purposes of instruction, we demonstrate the
concepts in 2D (with quadtrees), which are easily generalized to
higher dimensions. In a quadtree-based ADF, each quadtree cell
contains the sampled distance values of the cell’s 4 corners and
pointers to parent and child cells.

Given a shape as in Figure 4a, subdivision of a cell in the
quadtree depends on the variation of the distance field (shown in
Figure 4c) over the parent cell. This differs from 3-color quadtrees
[19] which represent object boundaries by assigning one of three
types to each cell in the quadtree: interior, exterior, and boundary.
In 3-color quadtrees, all boundary cells are subdivided to a
predetermined highest resolution level. In contrast, boundary cells
of ADFs are only subdivided when the distance field within a cell
is not well approximated by bilinear interpolation of its corner
values. Hence, large cells can be used to represent edges in
regions where the shape is relatively smooth, resulting in
significantly more compression than 3-color quadtrees. This is
illustrated in Figures 4b and 4d where the ADF of 4d requires
only 1713 cells while the 3-color quadtree of 4b requires 23,573
cells. In the ADF quadtree, straight edges of the “R” are
represented by large cells; only corners provoke repeated

250



subdivision.
Figure 4d also shows that even highly curved edges can be

efficiently represented by ADFs. Because bilinear interpolation
represents curvature reasonably well, cells with smoothly curved
edges do not require many levels in the ADF hierarchy. Cells that
do require many levels in the hierarchy are concentrated at
corners and cusps.

These are typical statistics for 2D objects. As another
indication of ADF size, Table 1 compares the number of triangles
required to represent a sphere of radius 0.4 to the number of cells
and distance (sample) values of the corresponding ADF when
both the triangles and the interpolated distance values are within a
given error tolerance from the true sphere.

Higher order reconstruction methods and better predicates
for subdivision might be employed to further increase
compression, but the numbers already suggest a point of
diminishing returns for the extra effort.

3.2 Generating ADFs
The generation of an ADF requires a procedure or function to
produce the distance function, h(x) at x ∈  Rn, where distance is
interpreted very broadly as in Section 3. Continuity,
differentiability, and bounded growth of the distance function can
be used to advantage in rendering or other processing, but are not
required. Some of the images in this paper utilize distance
functions that are non-differentiable (Figure 8) and highly non-
Euclidean with rapid polynomial growth (Figures 2 and 3).

One example of a distance function is the implicit form of an
object, for which the distance function can correspond directly to
the implicit function. A second example includes procedures that
determine the Euclidean distance to a parametric surface. For

example, Figure 5 was rendered from the distance field computed
for a 32 bicubic Bezier patch model of the Utah Teapot. Distances
to Bezier patches were determined by solving 7th order Bezier
equations using the Bezier clipping algorithm described in [14].
To define an inside and outside for the teapot, the unsigned
distance from the Bezier surface is biased to produce the signed
distance field of an offset surface, resulting in a thin-walled
teapot. Other distance functions include Euclidean distances for a
triangle model that can be computed as the minimum of the
signed distances to each of the triangles in the model and distance
fields computed by applying Boolean operations to the distance
fields of primitive elements in a CSG representation.

Given a distance function, there are a number of ways to
generate an ADF. Two simple examples include a bottom-up and
a top-down approach which are described briefly here. The
bottom-up approach starts with a regularly sampled distance field
of finite resolution and constructs a fully populated octree for the
3D data. Starting with the smallest cells in the octree, a group of 8
neighboring cells is coalesced if and only if none of the cells have
any child cells and the sampled distances of all of the 8 cells can
be reconstructed from the sample values of their parent to a
specified error tolerance. After all cells are considered for
coalescing at a given level in the hierarchy, groups of cells at the
next level are considered. When no cells are coalesced at a given
level or the root node is reached, the ADF generation is complete.

In the top-down approach, first the distance values for the
root node of the ADF hierarchy are computed. ADF cells are then
recursively subdivided according to a subdivision rule. For
example, if the primary interest is the iso-surface represented in
the field, the recursive subdivision would stop if the given cell is
guaranteed not to contain the surface, if the cell contains the
surface but passes some predicate, or if a specified maximum
level in the hierarchy is reached. One can imagine many
predicates to control the subdivision. In examples presented in
this paper, we use a simple predicate that compares distances
within a cell computed using the distance function to distances
reconstructed from the cell’s sampled values. In this predicate, the
absolute differences between the computed and reconstructed
distances are determined at the center of the cell and the centers of
each of the cell’s faces and edges (i.e. 19 differences per cell). If
any of the differences are greater than a specified error tolerance,
the cell is subdivided.

3.3 Reconstructing ADFs
Each ADF cell has an associated method for reconstructing
distance values between sampled points. In the case of the 3D
octree, distance values within a cell are reconstructed from the 8
corner distance values stored per cell using standard trilinear
interpolation. In addition to distance values, many operations such
as rendering, collision detection, or closest point localization
require surface normals and hence, processing an ADF may also
require a method for estimating surface normals from the sampled
data. For distance fields, the surface normal is equal to the

Figures 4a “R” and 4b 3-color quadtree containing 23,573 cells.

Figures 4c Distance field of “R” and 4d ADF containing 1713 cells.

Figure 5. A thin walled version of the Utah Teapot rendered using
sampled ray casting and Phong lighting from an ADF computed from a
32 bicubic Bezier patch model.

Error
Tolerance

Triangle
Count

ADF Cell
Count

ADF Sample
Count

6.25 x 10-5 32,768 16,201 24,809
3.13 x 10-5 131,072 44,681 67,405
1.56 x 10-6 2,097,152 131,913 164,847

Table 1.  Comparison of  triangle count for a sphere (r = 0.4) to ADF size.

251



normalized gradient of the distance field at the surface. There are
several methods for estimating the gradient of sampled data. We
use the analytic gradient of the trilinear reconstruction within each
cell: grad(x,y,z) = (h(xr,y,z) - h (xl,y,z), h(x,yu,z) - h(x,yd,z), h(x,y,zf)
- h(x,y,zb)), where (xr,y,z), (xl,y,z), (x,yu,z), etc. are projections of
(x,y,z) onto the right, left, up, down, front, and back faces of the
cell, respectively. In theory, this cell-localized gradient estimation
can result in C1 discontinuities at cell boundaries but as can be
seen from the figures, these artifacts are not noticeable with
sufficient subdivision.

4. APPLICATIONS AND
IMPLEMENTATION DETAILS

ADFs have application in a broad range of computer graphics
problems. We present two examples below to illustrate the utility
of ADFs and to provide some useful implementation details on
processing methods such as rendering and sculpting ADF models.
This section ends with short descriptions of several other
applications to give the reader an idea of the diverse utility of
ADFs.

4.1 Precise carving
Figures 1, 2, and 6 show examples of objects represented and
carved as ADFs. Because objects are represented as distance
fields, the ADF can represent and reconstruct smooth surfaces
from sampled data. Because the ADF efficiently samples distance
fields with high local curvature, it can represent sharp surface
corners without requiring excessive memory. Carving is intuitive;
the object is edited simply by moving a tool across the surface. It
does not require control point manipulation, remeshing the
surface, or trimming. By storing sample points in an octree, both
localizing the surface for editing and determining ray-surface
intersections for rendering are efficient.

Like implicit surfaces, ADFs can be sculpted using simple
Boolean operations applied to the object and tool distance fields.
Figures 1, 2, and 6 show carving using the difference operator,
hcarved(x) = min(hobject(x), -htool(x)). Other operators include
addition, hcarved(x) = max(hobject(x), htool(x)), and intersection,
hcarved(x) = min(hobject(x), htool(x)). Blending or filleting can also
be defined for shaping or combining objects (as was done for the
molecules of Figures 3 and 7). While these Boolean operations
apply to the entire distance field, for systems where only surfaces
are important, application of the operations can be limited in
practice to a region within a slightly extended bounding box of the
tool.

The basic edit operation is much like a localized ADF
generation. The first step in the editing process is to determine the
smallest ADF cell, or set of cells, entirely containing the tool’s
extended bounding box (obvious consideration of the ADF
boundaries apply). The containing cell is then recursively
subdivided, applying the difference operator to the object and tool
values to obtain new values for the carved ADF. During the
recursive subdivision, cell values from the object are obtained
either from existing sampled values or by reconstruction if an
edited cell is subdivided beyond its original level. Subdivision
rules similar to those of top-down generation are applied, with the
exception that the containing cell must be subdivided to some
minimum level related to the tool size.

The carving examples were rendered using ray casting with
analytic surface intersection. In this method, a surface point is
determined by finding the intersection between a ray cast into the
ADF octree from the eye and the zero-value iso-surface of the
ADF. Local gradients are computed at surface points using the

gradient estimation described above (the figures were rendered
with simple Phong lighting). When the traversing ray passes
through a leaf node of the octree, intersection between the ray and
the surface reconstructed from the 8 cell sample values is tested.
We have used two different methods to find the ray-surface
intersection; a cubic root solver that finds the exact intersection of
the ray with the trilinear surface defined by the distance values at
the cell corners (as in [16]), and a linear approximation which
determines the distance values where the ray enters and exits the
cell and computes the linear zero-crossing if the two values have a
different sign. Both methods work well but the linear
approximation has proven to be faster and its rendered images are
not visibly different from those rendered with the cubic solver.
When solving for intersections, we set the distance at the entry
point of a cell to be equal to the distance at the exit from the
previous cell. This avoids the crack problem discussed in [24] for
rendering hierarchical volume data, preventing C0 discontinuities
in the surface where ADF cells of different size abut. Most of the
images shown in this paper were rendered using a supersampling
of 16 rays per pixel followed by the application of a Mitchell filter
of radius 2.0.

The octree promotes efficient ray traversal even for very
complicated scenes. Rendering the Menger Sponge (Figure 8)
takes approximately the same amount of time as rendering less
complex ADF models. As in most rendering methods based on
spatial decomposition, rendering time is determined more by
screen coverage than by model complexity. Current rendering
rates are fast enough for interactive updating of the carving region
during editing. Preliminary tests indicate that an order of
magnitude improvement in the rendering speed of the entire
image can be achieved by adaptive supersampling.

4.2 Volume data
ADFs are also amenable to volume rendering and can be used to
produce interesting effects. For example, offset surfaces can be
used to render thick, translucent surfaces. Adding volume texture
within the thick surface in the form of variations in color or
transparency is relatively easy. In addition, distance values farther
away from the zero-valued iso-surface can be used for special
effects. Figure 7 shows a cocaine molecule volume rendered in a
haze of turbulent mist. The mist was generated using a color
function based on distance from the molecule surface. To achieve
the turbulence the distance value input to the color function is
modulated by a noise function based on position [9].

We use a ray casting volume renderer to demonstrate some
of these effects. Colors and opacities are accumulated at equally
spaced samples along each ray using a back-to-front rendering
algorithm. Sample points that lie near the zero-value iso-surface
are shaded with Phong lighting.

Our sampled ray caster is not optimized for speed. However,
properties of the ADF data structure can be used to greatly
increase the rendering rate. For example, the octree allows us to
quickly skip regions of the volume that are far from the surface. In

Figure 6. A close up
of the carved slab in
Figure 1.

252



addition, because distances to the closest surface are available at
each sample point, space-leaping methods can be used to speed up
rendering [26].

4.3 Other application areas
4.3.1 Representing complexity
Complexity may be considered from several viewpoints. Firstly,
the visual complexity of an object might include factors such as
surface variation and topology. Secondly, the representation
complexity is determined by the size and intricacy of the data
structure needed to represent the object. The third measure of
complexity considers the algebraic complexity of the object,
which includes such factors as polynomial degree, transcendental
functions, and numerical routines required to define the object’s
shape. Such routines are pertinent especially when algebraic
distance is employed for the distance field.

Figure 8 shows a good example of the first two types of
complexity, the Menger Sponge, which is a fractal created
recursively by subtracting smaller and smaller crossing cuboids
from an initial cube. In the limit there is no neighborhood of the
surface that is not punctured regardless of how small the
neighborhood is chosen. It is an infinite perforation, a 3D version
of the famous Cantor set.

After each level of subtraction there are 20 self-similar
subcuboids generated. An artless approach to maintaining the data
structure would generate order O (20n) faces for n iterations. Even
if shared faces were combined and interior faces culled, an
approach that keeps a boundary representation (B-rep) without
troublesome T-junctions would have O (12n) faces. To be more
exact, after seven iterations there would be 26 million+ faces in a
B-rep data structure. Consider the difficulty of performing
proximity tests, collision detection, or inside/outside tests with
such a representation. In contrast, these tests are much simpler
using ADFs. Far from being a contrived case, the complexity of
the distance field of the Menger Sponge is representative of the
distance fields of many naturally occurring shapes which would
present similar problems for traditional methods.

Figures 2 and 7 both demonstrate ADFs’ ability to handle
algebraic complexity. While Figure 7 reconstructs an approximate
probability density field for a molecule of 43 atoms (C17H21NO4),
the vase in Figure 2 is defined first as a rotation of a quintic
Bezier curve. Mathematically, it is posed as a rational implicit
function with a square root of a (total) degree 16 over 2. Cubic
Bezier curves are then mapped onto the surface as paths for the
carving tool. In this case, the carver is a curved chisel, resulting in
a very high degree tubular surface on the vase. This carving path
and vase create an algebraically very complex distance field,
which is nevertheless cleanly reconstructed and rendered.

4.3.2 Level-of-detail models
There are at least two approaches for representing ADF models at
different levels of detail for rendering and progressive
transmission of models. The simplest approach is to truncate the
ADF at fixed levels in the octree. The truncation can either be
done during rendering or transmission, during generation, or to an
existing high resolution ADF. A second method uses the error
generated in the test for cell subdivision during top-down
generation of the ADF. By storing this error within the cell, an
LOD model can be generated by truncating ADF cells with errors
less than that specified for the given LOD. This provides a more
continuously varying parameter for selecting the LOD and
provides degradation of the object shape that is consistent for both
smooth and highly curved portions of the surface as the level of
the LOD model decreases. This second method is illustrated in
Figure 9 where four LOD models with varying amounts of error
are rendered from an ADF octree.

4.3.3 Collision detection
Distance fields have been used for collision avoidance in robotics
and for detecting collisions and computing penetration forces in
haptics [12, 13]. Octrees or other hierarchies of bounding boxes
have also been used successfully to accelerate collision detection
algorithms. The combination of these two representations in the
ADF as well as the ability to represent offset surfaces and surfaces
at different levels of detail suggest that ADFs have significant
potential for applications that require collision detection.

4.3.4 Color gamut representation
Devices such as color printers and monitors have unique color
characteristics. Each can represent colors within their own
particular color gamut, which is restricted, for example, by the
types of dyes used by the printer. When an image is acquired or
designed on one system and then displayed or printed on another,
it is often important to match colors as closely as possible. This

Figure 7. An ADF cocaine molecule volume rendered in a haze of
turbulent mist. The mist was generated using a color function dependent
on distance from the molecule surface.

Figure 8. An
ADF of the
Menger Sponge,
a fractal created
recursively by
subtracting
smaller and
smaller crossing
cuboids from an
initial cube.
Four levels of
recursion are
shown.

Figure 9. Four LOD models with varying amounts of error rendered
from an ADF octree.

253



involves correcting colors that fall outside of the device’s gamut
and sometimes requires a complicated mapping to warp the gamut
of one system onto that of another [23].

Most color devices represent their color gamuts in large
look-up-tables (LUTs). Usually, a binary table is used to test
colors against the device’s gamut to see if they fall in or out of
gamut. If a color falls out of gamut, a set of model coefficients
and look-up tables are used to map the color onto the ‘closest’
device color. Using ADFs to represent a device’s gamut has
several advantages over the LUT approach. First, out-of-gamut
tests are easily performed with ADFs and edge-sampling errors
that occur with the use of binary tables are avoided. Second, an
ADF out-of-gamut test provides more information than is
available with binary tables; the distance indicates how far out of
gamut a color lies and the gradient indicates the direction to the
nearest in-gamut color. Third, since ADFs use adaptive sampling,
they should provide significant compression over LUT
representations. Finally, since distance fields can be used to warp
between shapes, ADFs may prove to be a useful representation for
mapping between device gamuts.

4.3.5 Machining
ADFs provide powerful tools for computer aided machining. The
use of a distance function for representing surfaces allows the
representation of the surface, the interior of the object, and the
material that must be removed. Knowledge of the object interior
can be used for part testing (e.g., part thickness tests [25]). A
representation of the volume outside of the surface as well as
distances to the closest surface can be used for planning tool paths
and tool sizes for the machining process. Offset surfaces can be
used to plan rough cutting for coarse-to-fine machining or for
designing part molds for casting. The size of cells at the surface
and the object normal near the surface can be used to select tool
size and orientation. Finally, as illustrated in Figure 6, ADFs can
represent fine surfaces and sharp corners efficiently, making it
possible to represent machining precision in the ADF model.

5. CONCLUSIONS
Although distance fields have been used in certain specific
applications as mentioned above, the breadth and flexibility of
their application to problems in computer graphics has not been
appreciated, in part due to their large memory requirements.
ADFs address this issue by adaptively sampling the distance field
and storing sampled values in a spatial hierarchy. For 2D shapes,
we typically achieve better than 20:1 reductions over
straightforward boundary (3-color) quadtrees. Nevertheless, ADFs
maintain the reconstruction quality of the original distance field as
seen in the examples presented; shapes, even those with high
frequency components such as edges or corners, are reconstructed
accurately.

Distance fields can embody considerable information about a
shape, not just the critical zero-valued iso-surface, but also
information about the volume in which it sits, an indication of
inside vs. outside, and gradient and proximity information.

Operations on a shape can often be achieved by operations
on its distance field. For example, Boolean set operations become
simple max/min operations on the field; edges and corners can be
rounded by low-pass filtering; and so forth.

ADFs tend to separate generation of shapes into a preprocess
step that may require complex and time-consuming methods, and
a process for graphical operations that is fast and tolerant of
various types of complexity. Indeed, fractals and mathematically
sophisticated or carved shapes can be processed as quickly as

much simpler shapes. The wide diversity of such manipulations
include, for example, proximity testing (for collision detection,
haptics, color gamut correction, milling), efficient ray-surface
intersection for rendering, localized reconstruction, surface and
volume texturing, blending, filleting, offset surfaces, and shape
warping.

6. FUTURE WORK
The introduction of ADFs opens up a wide range of future
directions. Considerable research is left to investigate the possible
transformations between shape and its distance field. Different
hierarchical structures and reconstruction methods await testing
and experience. For example, wavelets show particular promise
[5], and Delaunay tetrahedralizations have been successfully used
for multiresolution representation of volume data [6]. The relative
compactness for very complex shapes has implications for level of
detail management and progressive transmission. Efficient
conversion between ADFs and standard (e.g. triangle and NURB)
models is a valuable undertaking. Finally, we look forward to
combining ADFs with more powerful rendering methods; for
example, we envision hierarchical radiosity using form factors
based on the ADF cells.

7. ACKNOWLEDGEMENTS
We gratefully acknowledge the help of Mars Brimhall, John Ford,
and Stephan Roth in generating some of the images in this paper.

8. REFERENCES
[1] R. Avila and L. Sobierajski, “A haptic interaction method for volume visualization”, Proc.

IEEE Visualization’96, pp. 197-204, 1996.
[2] J. Baerentzen, “Octree-based volume sculpting”, Proc. Late Breaking Hot Topics, IEEE

Visualization’98, pp. 9-12, 1998.
[3] J. Bloomenthal, Introduction to Implicit Surfaces, Morgan Kaufman Publishers, 1997.
[4] D. Breen, S. Mauch and R. Whitaker, “3D scan conversion of CSG models into distance

volumes”, Proc. 1998 IEEE Symposium on Volume Visualization, pp. 7-14, 1998.
[5] M. Chow and M. Teichmann, “A Wavelet-Based Multiresolution Polyhedral Object

Representation”, Visual Proc. SIGGRAPH ’97, p. 175, 1997.
[6] P. Cignoni, L. De Floriani, C. Montani, E. Puppo, R. Scopigno, “Multiresolution Modeling

and Rendering of Volume Data based on Simplicial Complexes”, 1994 ACM Volume
Visualization Conference Proceedings, 1994, pp.19-26.

[7] D. Cohen-Or, D. Levin, and A. Solomovici, “Three-dimensional distance field
metamorphosis”, ACM Transactions on Graphics, 1997.

[8] T. DeRose, M. Kass, T. Truong, “Subdivision surfaces in character animation”, Proc.
SIGGRAPH ’98, pp. 85-94, 1998.

[9] D. Ebert, F.K. Musgrave, D. Peachy, K. Perlin, S. Worley, Texturing and Modeling a
Procedural Approach, Academic Press, 1998.

[10] J. Foley, A. van Dam, S. Feiner, and J. Hughes, Computer Graphics: Principles and
Practice, Addison-Wesley, 1992.

[11] S. Gibson, “Using DistanceMaps for smooth surface representation in sampled volumes”,
Proc. 1998 IEEE Volume Visualization Symposium, pp. 23-30, 1998.

[12] R. Kimmel, N. Kiryati and A. Bruckstein, “Multi-valued distance maps for motion planning
on surfaces with moving obstacles”, IEEE Trans. on Robotics & Automation, 14, pp. 427-
436, 1998.

[13] J. Lengyel, M. Reichert, B. Donald and D. Greenberg, “Real-time robot motion planning
using rasterizing computer graphics hardware”, Proc. SIGGRAPH ’90, pp. 327-335, 1990.

[14] T. Nishita, T.W. Sederberg and M. Kakimoto, “Ray tracing trimmed rational surface
patches”, Proc. SIGGRAPH ’90, pp. 337-345, 1990.

[15] S. Osher and J. Sethian, “Fronts propagating with curvature-dependent speed: algorithms
based on Hamilton-Jacobi formulation”, J. Computational Physics, 79, pp. 12-49, 1988.

[16] S. Parker, M. Parker, Y. Livnat, P. Sloan, C. Hansen, and P. Shirley, “Interactive ray tracing
for volume visualization” IEEE Transactions On Visualization and Computer Graphics,
Vol. 5 (3), pp. 238-250, 1999.

[17] B. Payne and A. Toga, “Distance field manipulation of surface models”, IEEE Computer
Graphics and Applications, pp. 65-71, 1992.

[18] A. Ricci, “A constructive geometry for computer graphics”, Computer Journal, Vol. 16, No.
2, pp. 157-160, 1973.

[19] H. Samet, The Design and Analysis of Spatial Data Structures, Addison-Wesley, 1989.
[20] W. Schroeder, W. Lorensen, and S. Linthicum, "Implicit modeling of swept surfaces and

volumes," Proc. Visualization '94, pp. 40-45, 1994.
[21] Sensable Devices’ FreeForm modeling software. http://www.sensable.com/freeform.
[22] J. Sethian, Level Set Methods: Evolving Interfaces in Geometry, Fluid Mechanics,

Computer Vision, and Material Science, Cambridge University Press, 1996.
[23] M. Stone, W. Cowan, J. Beatty, “Color gamut mappings and the printing of digital color

images”, ACM Transaction on Graphics, Vol. 7, pp. 249-292, 1988.
[24] R. Westermann, O. Sommer, T. Ertl, “Decoupling polygon rendering from geometry using

rasterization hardware”, in Proc. Eurographics Rendering Workshop '99, pp. 45-56, 1999.
[25] R. Yagel, S. Lu, A. Rubello, R. Miller, “Volume-based reasoning and visualization of

dicastability” In Proc. IEEE Visualization ‘95, pp. 359-362, 1995.
[26] K. Zuiderveld, A. Koning, and M. Viergever, “Acceleration of ray-casting using 3D

distance transforms”, in Proc. Visualization in Biomedical Computing ’92, pp. 324-335,
1992.

254


