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Abstract. Standard constructions of garbled circuits provide only static
security, meaning the input x is not allowed to depend on the garbled cir-
cuit F . But some applications—notably one-time programs (Goldwasser,
Kalai, and Rothblum 2008) and secure outsourcing (Gennaro, Gentry,
Parno 2010)—need adaptive security, where x may depend on F . We
identify gaps in proofs from these papers with regard to adaptive secu-
rity and suggest the need of a better abstraction boundary. To this end
we investigate the adaptive security of garbling schemes, an abstraction
of Yao’s garbled-circuit technique that we recently introduced (Bellare,
Hoang, Rogaway 2012). Building on that framework, we give definitions
encompassing privacy, authenticity, and obliviousness, with either coarse-
grained or fine-grained adaptivity. We show how adaptively secure gar-
bling schemes support simple solutions for one-time programs and secure
outsourcing, with privacy being the goal in the first case and oblivious-
ness and authenticity the goal in the second.We give transforms that pro-
mote static-secure garbling schemes to adaptive-secure ones. Our work
advances the thesis that conceptualizing garbling schemes as a first-class
cryptographic primitive can simplify, unify, or improve treatments for
higher-level protocols.

1 Introduction

Overview. Yao’s garbled-circuit technique [10, 11, 18, 20, 21] has been extremely
influential, engendering an enormous number of applications. Yet, at least in its
conventional form, the technique provides only static security. Some applications,
notably one-time programs [13] and secure outsourcing [9], require adaptive se-
curity.3 In such cases Yao’s technique can be enhanced in ad hoc ways, and the
enhanced protocol incorporated into the higher-level application.

This paper provides a different approach. We create an abstraction for the
goal of adaptively secure garbling. Via a single abstraction, we support a variety
of applications in a simple and modular way. Let’s look at two of the applications
that motivate our work.

Two applications. One-time programs are due to Goldwasser, Kalai, and
Rothblum (GKR) [13]. The authors aim to compile a program into one that

3 In speaking of adversaries or security, non-adaptive and dynamic are common syn-
onyms for what we are here calling static and adaptive.
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can be executed just once, on an input of the user’s choice. Unachievable in
any “standard” model of computation, GKR assume what they call one-time
memory. Their solution makes crucial use of Yao’s garbled-circuit technique.
Recognizing that this does not support adaptive queries, GKR embellish the
method by a technique involving output-masking and n-out-of-n secret sharing.

In a different direction, secure outsourcing was formalized and investigated
by Gennaro, Gentry, and Parno (GGP) [9]. Here a client transforms a function f
into a function F that is handed to a worker. When, later, the client would like
to evaluate f at x, he should be able to quickly map x to a garbled input X
and give this to the worker, who will compute and return Y = F (X). The client
must be able to quickly reconstruct from this y = f(x). He should be sure that
the correct value was computed—the computation is verifiable—while the server
shouldn’t learn anything significant about x, including f(x). GGP again make
use of circuit garbling, and they again realize that they need something from
it—its authenticity—that is a novum for this domain.

Issues. Assuming the existence of a one-way function, GKR [13] claim that their
construction turns a (statically-secure) garbled circuit into a secure one-time
program. We point to a gap in their proof, namely, the absence of a reduction
showing that their simulator works based on the one-way function assumption.
By presenting an example of a statically-secure garbled circuit that, under their
transform, yields a program that is not one-time, we also show that the gap
cannot be filled without changing either the construction or the assumption.
The problem is that the GKR transform fails to ensure adaptive security of
garbled circuits under the stated assumption.

Lindell and Pinkas (LP) [17] prove static security of a version of Yao’s pro-
tocol assuming a semantically secure encryption scheme satisfying some extra
properties (an elusive and efficiently verifiable range). GGP [9] build a one-time
outsourcing scheme from the LP protocol, claiming to prove its security based
on the same assumption as used in LP. We point to a gap in this proof arising
from an implicit assumption of adaptive security of the LP construction.

We do not believe these are major problems for either work. In both cases, al-
ternative ways to establish the the authors’ main results already existed. Goyal,
Ishai, Sahai, Venkatesan and Wadia [14] present an unconditional one-time com-
piler (no complexity-theoretic assumption is used at all), while Chung, Kalai
and Vadhan [7] present secure outsourcing schemes based solely on FHE (gar-
bled circuits are not employed). Our interpretation of the stated gaps is that they
are symptoms of something else—a missing abstraction boundary. As recently
argued by Bellare, Hoang and Rogaway (BHR) [4], it is useful and simplifying
to see garbling not just as a technique, but as a first-class primitive. To do so,
our earlier work defines syntax and security notions for garbling schemes, pro-
vides proven-correct solutions, then solves some example higher-level problems
by employing a garbling scheme that satisfies the appropriate definition. But
the security notions of BHR do not go far enough to handle what GKR or GGP
need, since BHR deal only with static notions of security. The applications we
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point to motivate the study of adaptive security for garbling schemes, while the
gaps indicate that the issues may be more subtle than recognized.

Of course we communicated our findings to the GKR and GGP authors.
GKR responded after a few weeks with an updated manuscript [12]. It modifies
the claim from their original paper [13] to now claim that their transform works
under the stronger assumption of a sub-exponentially hard one-way function.
(This allows “complexity-leveraging,” where a static adversary can guess the in-
put that will be used by an adaptive adversary with a probability that, although
exponentially-small, is enough under the stronger assumption.) GGP responded
to acknowledge the gap and suggest that they would address it by assuming
the LP construction, or some related realization of Yao’s idea, already provides
adaptive security.

Definitions. We now discuss our contributions in more depth. We start from
the abstraction of a garbling scheme—the raw syntax—introduced by BHR [4].
That work gave multiple definitions sitting on top of this syntax, but all were for
static adversaries, in the sense that the function f to garble and its input x are
selected at the same time. We extend the definitions to adaptive ones, consider-
ing two flavors of adaptive security. With coarse-grained adaptive security the
input x can depend on the garbled function F but x itself is atomic, provided
all at once. With fine-grained adaptive security not only may x depend on the
garbled function F , but individual bits of x can depend on the “tokens” the
adversary has so-far learned.4 We will see that coarse-grained adaptive security
is what’s needed for GGP’s approach to secure outsourcing, while fine-grained
adaptive security is what’s needed for GKR’s approach to one-time programs.

Orthogonal to adaptive security’s granularity are the security aims them-
selves. Following BHR, we consider three different notions: privacy, oblivious-
ness, and authenticity. This gives rise to nine different security notions: {prv,
obv, aut} × {static, coarse, fine}. We compactly denote these prv, prv1, prv2,
obv, obv1, obv2, aut, aut1, aut2. Informally, when a function f gets transformed
into a garbled function F , an encoding function e, and a decoding function d,
privacy ensures that F , d, and X = e(x) don’t reveal anything beyond y = f(x)
that shouldn’t be revealed; obliviousness ensures that F and X don’t reveal
even y; and authenticity ensures that F and X don’t enable the computation of
a valid Y �= F (X). Privacy is the classical requirement, while obliviousness and
authenticity are motivated by the application to secure outsourcing.

Our primary definitions for adaptive secrecy (prv1, prv2, obv1, obv2) are
simulation-based. In the full version of this paper [3] we give indistinguishability-
based counterparts as well. For static security this was already done by BHR,
but it was not clear how to lift those definitions to the adaptive setting.

Relations. We explore the provable-security relationships among our defini-
tions. As expected, the simulation-based definitions imply indistinguishability-

4 Fine-grained adaptive security requires the garbling scheme be projective: the garbled
version of each x = x1 · · ·xn ∈ {0, 1}n must be (Xx1

1 , . . . , Xxn
n ) for some vector of

2n strings (X0
1 , X

1
1 , . . . , X

0
n, X

1
n). Typical garbling schemes have this structure.
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based ones (namely, prv1 ⇒ prv1.ind, prv2 ⇒ prv2.ind, obv1 ⇒ obv1.ind, and
obv2 ⇒ obv2.ind). But none of the converse statements hold. BHR had earlier
shown that, for the static setting, the converse statements do hold as long as
the associated side-information function5 is efficiently invertible. In contrast, we
show that, for adaptive privacy, this condition still won’t guarantee equivalence
of simulation-based and indistinguishability-based notions. (For obliviousness, it
is true that obv1.ind⇒ obv1 and obv2.ind⇒ obv2 if Φ is efficiently invertible.)
The results are our main reason to focus on simulation-based definitions for adap-
tive privacy. The full version [3] paints a complete picture of the relations among
our basic definitions. Apart from the trivial relations (prv2 ⇒ prv1 ⇒ prv,
obv2⇒ obv1⇒ obv, and aut2⇒ aut1 ⇒ aut) nothing implies anything else.

Achieving adaptive security. Basic garbling-scheme constructions [4, 10,
11, 18] either do not achieve adaptive security or present difficulties in proving
adaptive security that we do not know how to overcome. One could give new con-
structions and directly prove them xxx1 or xxx2 secure, for xxx ∈ {prv, obv, aut}.
An alternative is to provide generic ways to transform statically secure garbling
schemes to adaptively secure ones. Combined with results in BHR [4], this would
yield adaptively-secure garbling schemes.

The aim of the GKR construction was exactly to add adaptive security to
statically-secure garbled circuit constructions. We reformulate it as a transform,
OMSS (Output Masking and Secret Sharing), aiming to turn a prv-secure gar-
bling scheme to a prv2-secure one. We show, by counterexample, that OMSS
does not achieve this goal.

To give transforms that work we make two steps, first passing from static
security to coarse-grained adaptive security, and thence to fine-grained adaptive
security. We design these transformations first for privacy (prv-to-prv1, prv1-to-
prv2) and then for simultaneously achieving all three goals (all-to-all1 and all1-
to-all2). Our prv-to-prv1 transform uses a one-time-padding technique from [14],
while our prv1-to-prv2 transform uses the secret-sharing component of OMSS.

Applications. We treat the two applications that motivated this work, one-
time programs and secure outsourcing. We show that adaptive garbling schemes
yield these applications easily and directly. Specifically, we show that a prv2
projective garbling scheme can be turned into a secure one-time program by
simply putting the garbled inputs into the one-time memory. We also show
how to easily turn an obv1+aut1-secure garbling scheme into a secure one-time
outsourcing scheme. (GGP [9] show how to lift one-time outsourcing schemes to
many-time ones using FHE.) The simplicity of these transformations underscores
our tenet that abstracting garbling schemes and treating adaptive security for
them enables modular and rigorous applications of the garbled-circuit technique.
Basing the applications on garbling schemes also allows instantiations to inherit
efficiency features of future schemes.

5 The side-information function Φ captures that about f one allows to be revealed in
its garbled counterpart F .
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Transform Model Cost See

prv-to-prv1 standard model |F |+ |d|+ |X| Theorem 2

prv1-to-prv2 standard model (n+ 1) |X| Theorem 3

all-to-all1 standard model |F |+ |d|+ |X|+ k Theorem 5

all1-to-all2 standard model (n+ 1) |X| Theorem 6

rom-prv-to-prv1 random-oracle model |X|+ k Full paper [3]

rom-prv1-to-prv2 random-oracle model |X|+ nk Full paper [3]

rom-all-to-all1 random-oracle model |X|+ 2k Full paper [3]

rom-all1-to-all2 random-oracle model |X|+ nk Full paper [3]

Fig. 1. Achieving adaptive security. The name of each transform specifies its rel-
evant property. The word all means that prv, obv, and aut are all upgraded. Column
“Cost” specifies the length of the garbled input in the constructed scheme in terms
of the lengths of the input scheme’s garbled function F , decoding function d, garbled
input X, number input bits n, and security parameter k.

Applying our prv-to-prv1 and then prv1-to-prv2 transforms to the prv-secure
garbling scheme of BHR [4] yields a prv2-secure scheme based on any one-way
function. Combining this with the above yields one-time programs based on one-
way functions, recovering the claim of GKR [13]. Similarly, applying our all-to-
all1 transform to the obv+aut-secure scheme of BHR yields an obv1+aut1-secure
garbling scheme based on a one-way function, and combining this with the above
yields a secure one-time outsourcing scheme based on one-way functions.

Efficiency. Let us say a garbling scheme has short garbled inputs if their
length depends only on the security parameter k, the length n of f ’s input, and
the length m of f ’s output. It does not depend on the length of f . The statically-
secure schemes of BHR, as with all classical garbled-circuit constructions, have
short garbled inputs. But our prv-to-prv1 and all-to-all1 transforms result in
long garbled inputs. In the ROM (random-oracle model) we are able to provide
schemes producing short garbled inputs, as illustrated in Fig. 1. Constructing
an adaptively secure garbling scheme with short garbled inputs under standard
assumptions remains open.

Short garbled inputs are particularly important for the application to secure
outsourcing, for in their absence the outsourcing scheme may fail to be non-
trivial. (Non-trivial means that the client effort is less than the effort needed
to directly compute the function [9].) In particular, the one-time outsourcing
scheme we noted above, derived by applying all-to-all1 to BHR, fails to be non-
trivial. ROM schemes do not fill the gap because of the use of FHE in upgrading
one-time schemes to many-time ones [9]. Thus, a secure and non-trivial instan-
tiation of the GGP method is still lacking. (However, as we have noted before,
non-trivial secure outsourcing may be achieved by entirely different means [7].)

Further related work. Applebaum, Ishai, and Kushilevitz [1] investigate
ideas similar to obliviousness and authenticity. Their approach to obtaining these
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ends from privacy can be lifted and formalized in our settings; one could spec-
ify transforms prv1-to-all1 and prv2-to-all2, effectively handling the constructive
story “horizontally” instead of “vertically.” The line of work on randomized en-
codings that the same authors have been at the center of provides an alternative
to garbling schemes [15] but lacks the granularity to speak of adaptive security.

Concurrent work by Kamara and Wei (KW) investigates the garbling what
they call structured circuits [16] and, in the process, give definitions somewhat
resembling prv1, obv1, and aut1, although circuit-based, not function-hiding,
and not allowing the adversary to specify the initial function. KW likewise draw
motivation from GKR and GGP, indicating that, in these two setting, the ad-
versary can choose the inputs to the computation as a function of the garbled
circuit, motivating adaptive notions of privacy and unforgeability.

2 Framework

We now review the syntactic framework of garbling schemes from our earlier
work [4]. See the full version for [3] basic notation, including conventions for
randomized algorithms, code-based games, and circuits.

Garbling schemes. A garbling scheme [4] is a five-tuple of algorithms G =
(Gb,En,De,Ev, ev).The first of these is probabilistic; the rest are deterministic. A
string f , the original function, describes the function ev(f, ·) :{0, 1}n → {0, 1}m
that we want to garble. The values n = f.n and m = f.m are efficiently com-
putable from f . On input f and a security parameter k ∈ N, algorithm Gb
returns a triple of strings (F, e, d) ← Gb(1k, f). String e describes an encod-
ing function, En(e, ·), that maps an initial input x ∈ {0, 1}n to a garbled input
X = En(e, x). String F describes a garbled function, Ev(F, ·), that maps a gar-
bled input X to a garbled output Y = Ev(F,X). String d describes a decoding
function, De(d, ·), that maps a garbled output Y to a final output y = De(d, Y ).
The correctness requirement is that if f ∈ {0, 1}∗, k ∈ N, x ∈ {0, 1}f.n, and
(F, e, d) ∈ [Gb(1k, f)], then De(d,Ev(F,En(e, x))) = ev(f, x). We also require
that e and d depend only on k, f.n, f.m, |f | and the random coins r of Gb. This
non-degeneracy requirement excludes trivial solutions.

A common design in existing garbling schemes is for e to encode a list of
tokens, one pair for each bit in x ∈ {0, 1}n. Encoding function En(e, ·) then uses
the bits of x = x1 · · ·xn to select from e = (X0

1 , X
1
1 , . . . , X

0
n, X

1
n) the subvector

X = (Xx1
1 , . . . , Xxn

n ). Formally, we say that garbling scheme G = (Gb,En,De,
Ev, ev) is projective if for all f , x, x′ ∈ {0, 1}f.n, k ∈ N, and i ∈ [1..n], when
(F, e, d) ∈ [Gb(1k, f)], X = En(e, x) and X ′ = En(e, x′), then X = (X1, . . . , Xn)
and X ′ = (X ′

1, . . . , X
′
n) are n vectors, |Xi| = |X ′

i|, and Xi = X ′
i if x and x′ have

the same ith bit. Let GS(proj) denote the set of all projective garbling schemes.
Boolean circuits arise often in this work. We say that G = (Gb,En,De,Ev, ev)

is a circuit-garbling scheme if ev is the canonical circuit evaluation function.

Side-information functions. A garbled circuit might reveal the size of the
circuit that is being garbled, its topology, the original circuit itself, or some-
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thing else. The information that we allow to be revealed is captured by a side-
information function, Φ, which deterministically maps f to a string φ = Φ(f).
We parameterize our advantage notions by Φ. We require that f.n, f.m and |f |
be easily determined from φ = Φ(f). Side-information function Φsize maps a cir-
cuit f = (n,m, q,A,B,G) to (n,m, q), while Φtopo maps f to f− = Topo(f) =
(n,m, q,A,B) and Φcirc is the identity, Φcirc(f) = f .

Sizes. We say that garbling scheme G = (Gb,En,De,Ev, ev) has short garbled
inputs if there is a polynomial s such that |En(e, x)| ≤ s(k, f.n, f.m) for all k ∈ N,
f ∈ {0, 1}∗, (F, e, d) ∈ [Gb(1k, f)], and x ∈ {0, 1}f.n. Let T be a transform that
maps a garbling scheme G to a garbling scheme T[G]. We say that T preserves
short garbled inputs if T[G] has short garbled inputs when G does.

Typical Yao-style constructions, including Garble1 and Garble2 [4], have
short garbled inputs. But they are only statically-secure. Keeping garbled in-
puts short seems challenging for adaptive security in the standard model.

3 Privacy and One-Time Programs

In this section we define coarse and fine-grained adaptive privacy for garbling
schemes. We show that some natural approaches to achieve these aims fail. We
provide alternatives that work. In [3], we provide more efficient ones in the ROM.
We apply this to get secure one-time programs.

Definitions for adaptive privacy. On the top of Fig. 2 we review the
defining game for the privacy notion from BHR [4]. The adversary is static, in
the sense it must commit to its initial function f and its input x at the same
time. Thus the latter is independent of the garbled function F (and the decoding
function d) derived from f . It is natural to consider stronger privacy notions,
ones where the adversary obtains F and then selects x. Two formulations for this
are specified in Fig. 2. We call these adaptive security. The notion in the mid-
dle panel, denoted by prv1, this paper, is coarse-grained adaptive security. The
notion in the bottom panel, denoted by prv2, is fine-grained adaptive security.
This notion is only applicable for projective garbling schemes.

In detail, let G = (Gb,En,De,Ev, ev) be a garbling scheme and let Φ be a
side-information function. We define three simulation-based notions of privacy
via the games PrvG,Φ,S , Prv1G,Φ,S , and Prv2G,Φ,S of Fig. 2. Here S, the simulator,
is an always-terminating algorithm that maintains state across invocations. An
adversary A interacting with any of these games must make exactly one Garble

query. For game Prv1 it is followed by a single Input query. For game Prv2
it is followed by multiple Input queries. There, the garbling scheme must be
projective. The advantage the adversary gets is defined by

Advprv, Φ,S
G (A, k) = 2Pr[PrvAG,Φ,S(k)]− 1

Advprv1, Φ,S
G (A, k) = 2Pr[Prv1AG,Φ,S(k)]− 1

Advprv2, Φ,S
G (A, k) = 2Pr[Prv2AG,Φ,S(k)]− 1 .



8 Bellare, Hoang, and Rogaway

proc Garble(f, x) PrvG,Φ,S
b� {0, 1}
if x �∈ {0, 1}f.n then return ⊥
if b = 1 then (F, e, d)← Gb(1k, f), X ← En(e, x)
else y ← ev(f, x), (F,X, d)← S(1k, y, Φ(f))
return (F,X, d)

proc Garble(f)
b� {0, 1}
if b = 1 then (F, e, d)← Gb(1k, f)
else (F, d)← S(1k, Φ(f), 0)
return (F, d)

proc Input(x) Prv1G,Φ,S
if x �∈ {0, 1}f.n then return ⊥
if b = 1 then X ← En(e, x)
else y ← ev(f, x), X ← S(y, 1)
return X

proc Garble(f)
b� {0, 1}; n← f.n; Q← ∅; τ ← ε
if b = 1 then

(F, (X0
1 , X

1
1 , . . . , X

0
n, X

1
n), d)←Gb(1k, f)

else

(F, d)← S(1k, Φ(f), 0)
return (F, d)

proc Input(i, c) Prv2G,Φ,S
if i �∈ {1, . . . , n} \Q then return ⊥
xi ← c; Q← Q ∪ {i}
if |Q|=n then

x← x1 · · ·xn; y←ev(f, x); τ ← y
if b = 1 then Xi ← Xxi

i

else Xi ← S(τ, i, |Q|)
return Xi

Fig. 2. Three kinds of privacy: prv, prv1, prv2.Games to define the static, coarse-
grained, and fine-grained privacy of G = (Gb,En,De,Ev, ev). Finalize(b′) returns the
predicate (b = b′). Notation s�S denotes uniform sampling from a finite set.

For xxx ∈ {prv, prv1, prv2} we say that G is xxx-secure with respect to (or
over) Φ if for every PT adversary A there exists a PT simulator S such that

Advxxx, Φ,S
G (A, ·) is negligible. We let GS(xxx, Φ) be the set of all garbling

schemes that are xxx-secure over Φ.

Let us now explain the three games, beginning with static privacy. Here
we let the adversary select f and x and we do one of two things: garble f
to make (F, e, d) and encode x to make X, giving the adversary (F,X, d); or,
alternatively, we ask the simulator produce a “fake” (F,X, d) based only on
the security parameter k, the partial information Φ(f) about f , and the output
y = ev(f, x). The adversary will have to guess if the garbling was real or fake.

For coarse-grained adaptive privacy, we begin by letting the adversary pick f .
Either we garble it to (F, e, d)← Gb(1k, f) and give the adversary (F, d); or else
we ask the simulator to devise a fake (F, d) based solely on k and φ = Φ(f).
Only after the adversary has received (F, d) do we ask it to provide an input x.
Corresponding to the two choices we either encode x to X = En(e, x) or ask the
simulator to produce a fake X, assisting it only by providing ev(f, x).

Coarse-grained adaptive privacy is arguably not all that adaptive, as the ad-
versary specifies its input x all in one shot. This is unavoidable as long as the
encoding function e operates on x atomically. But if the encoding function e is
projective, then we can dole out the garbled input component-by-component.
Only after the adversary specifies all n bits, one by one, is the input fully de-
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termined. At that point the simulator is handed y, which might be needed for
constructing the final token Xxi

i .

The OMSS transform. In the process of constructing one-time programs
from garbled circuits, GKR [13] recognize the need for adaptive privacy of the
garbled circuits. Their construction incorporates a technique to provide it. This
technique is easily abstracted to provide, in our terminology, a transform that
aims to convert a projective, prv garbling scheme into a projective, prv2 garbling
scheme. Instead of garbling f we pick r� {0, 1}m and garble the circuit g defined
by g(x) = f(x) ⊕ r for every x ∈ {0, 1}n where n = f.n and m = f.m. Then
we secret share r as r = r1 ⊕ · · · ⊕ rn and include ri in the i-th token, so that
evaluation reconstructs r and it can be xored back at decoding time to recover
ev(f, x) as ev(g, x) ⊕ r. Intuitively, this should work because the simulator can
garble a dummy constant function with random output s and does not have to
commit to r until it gets the target output value y of f and needs to provide
the last token, at which point it can pick r = s ⊕ y so that y as desired [13].
Just the same, we show by counterexample that the OMSS does not in work, in
general, to convert a prv-secure scheme to a prv2-secure one: we present a prv
secure G such that OMSS[G] is not prv2 secure. While this does not show that
OMSS fails in the context in which GMR use it, our counterexample extends to
that setting as well; see the full paper [3].

Now proceeding formally, we associate to circuit-garbling scheme G = (Gb,
En,De,Ev, ev) ∈ GS(proj) the circuit-garbling scheme OMSS[G] = (Gb2,En2,De2,
Ev2, ev) ∈ GS(proj) defined at the top of Fig. 3. For simplicity we are assuming
that the decoding rule d in G is always vacuous, meaning d = ε. (We do not need
non-trivial d to achieve privacy [4], and this lets us stay closer to GKR [13],
whose garbled circuits have no analogue of our decoding rule.) In the code,
g(·)← f(·)⊕r means that we construct from f, r a circuit g such that ev(g, x) =
ev(f, x) ⊕ r for all x ∈ {0, 1}f.n. (Note we can do this in such a way that
Φtopo(g) = Φtopo(f).)

The claim under consideration is that if G is prv-secure relative to Φ =
Φtopo then G2 is prv2-secure relative to Φ = Φtopo. To prove this, we would
need to let A2 be an arbitrary PT adversary and build a PT simulator S2
such that Advprv2, Φ,S2

G2
(A2, ·) is negligible. GKR suggest a plausible strategy

for the simulator that, in particular, explains the intuition for the transform.
We present here our understanding of this strategy adapted to our setting. In
its first phase the simulator S2 has input 1k, φ, 0 where φ = Φ(f), with f being
the query made by the adversary to Garble. Simulator S2 picks s� {0, 1}n
and lets fs be the circuit that has output s on all inputs and Φtopo(fs) = φ.
It also picks random m-bit strings s1, . . . , sn and a random input w� {0, 1}n.
It lets (G, (X0

1 , X
1
1 , . . . , X

0
n, X

1
n), ε)�Gb(1k, fs) and returns G to the adversary,

saving σ = (s, s1, . . . , sn) as state information. In the second phase, when given
input τ, i, j, for j ≤ n − 1, the simulator lets Ti ← (Xwi

i , si) and returns Ti

to the adversary as the token for bit i of the input. In the case that j = n,
the simulator obtains (from τ as per our game) the output y = ev(f, x) of the
function on input x, the latter defined by the adversary’s queries to Input. It
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proc Gb2(1
k, f)

n← f.n, r1, . . . , rn � {0, 1}f.m
r ← r1 ⊕ · · · ⊕ rn, g(·)← f(·)⊕ r

(G, (X0
1 , X

1
1 , . . . , X

0
n, X

1
n), ε)�Gb(1k, g)

for i ∈ {1, . . . , n} do
T 0
i ← (X0

i , ri), T
1
i ← (X1

i , ri)
return (G, (T 0

1 , T
1
1 , . . . , T

0
n , T

1
n), ε)

proc En2((T
0
1 , T

1
1 , . . . , T

0
n , T

1
n), x)

x1 · · ·xn ← x
return (T x1

1 , . . . , T xn
n )

proc Ev2(G, (T1, . . . , Tn))
for i ∈ {1, . . . , n} do (Xi, ri)← Ti

Y ← Ev(G, (X1, . . . , Xn))
r ← r1 ⊕ · · · ⊕ rn
return (Y, r)

proc De2(ε, (Y, r))
return De(ε, Y )⊕ r

proc Gb(1k, g)

(n,m)← (g.n, g.m)

(G′, (Z0
1 , Z

1
1 , . . . , Z

0
n, Z

1
n), ε)�Gb′(1k, g)

for i ∈ {1, . . . , n} do V 0
i , V

1
i � {0, 1}m

v1 · · · vn ← v� {0, 1}n, V � {0, 1}m
if n ≥ k then

V ← ev(g, v)⊕ V v1
1 ⊕ · · · ⊕ V vn

n

for i ∈ {1, . . . , n} do
X0

i ← (Z0
i , V

0
i ), X1

i ← (Z1
i , V

1
i )

G← (G′, v, V )
return (G, (X0

1 , X
1
1 , . . . , X

0
n, X

1
n), ε)

proc Ev(G, (X1, . . . , Xn))

for i ∈ {1, . . . , n} do (Zi, Vi)← Xi

(G′, v, V )← G
return Ev′(G′, (Z1, . . . , Zn))

proc En((X0
1 , X

1
1 , . . . , X

0
n, X

1
n), x)

x1 · · ·xn ← x
return (Xx1

1 , . . . , Xxn
n )

Fig. 3. OMSS definition (top). Scheme OMSS[G] = (Gb2,En2,De2,Ev2, ev) where
G = (Gb,En,De,Ev, ev). OMSS counterexample (bottom). The garbling scheme
G = (Gb,En,De,Ev, ev) obtained from G ′ = (Gb′,En′,De,Ev′, ev) is prv secure when
G ′ is, but OMSS[G] is not prv2 secure.

now resets si = y⊕ s⊕ si⊕ s1⊕ · · · ⊕ sn and returns (Xi, si), so that evaluation
of the garbled function indeed results in output y.

This simulation strategy is intuitive, but trying to prove it correct runs into
problems. We have to show that Advprv2, Φ,S2

G2
(A2, ·) is negligible. We must

utilize the assumption of prv security to do this, which means we must perform
a reduction. The only plausible path towards this is to construct from A2 an
adversary A against the prv-security of G and then exploit the existence of a
simulator S such that Advprv, Φ,S

G (A, ·) is negligible. However, it is not clear
how to construct A, let alone how its simulator comes into play. (As we will
see when proving our transforms, the proof template that works is different, not
trying first to build S2, but instead building A from A2 and then S2 from S.)

The problem turns out to be more than technical, for we will see that the
transform itself does not work in general. By this we mean that we can exhibit
a (projective) circuit-garbling scheme G = (Gb,En,De,Ev, ev) that is prv-secure
relative to Φ = Φtopo but the transformed scheme G2 = OMSS[G] is subject to
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proc Gb1(1
k, f)

(F, e, d)← Gb(1k, f)

F ′ � {0, 1}|F |, d′ � {0, 1}|d|
F1 ← F ⊕ F ′, d1 ← d⊕ d′

e1 ← (e, d′, F ′)
return (F1, e1, d1)

proc En1(e1, x)
(e, d′, F ′)← e1, X ← En(e, x)
return (X, d′, F ′)

proc Ev1(F1, X1)
(X, d′, F ′)← X1, F ← F1 ⊕ F ′

Y ← Ev(F,X)
return (Y, d′)

proc De1(d1, Y1)
(Y, d′)← Y1, d← d1 ⊕ d′

return De(d, Y )

proc Gb2(1
k, f)

(F, e, d)← Gb1(1
k, f)

(X0
1 , X

1
1 , . . . , X

0
n, X

1
n)← e

N ← |En1(e, 0n)|
for i ∈ {1, . . . , n} do

Zi � {0, 1}|X0
i |, Si � {0, 1}N

Z ← (Z1, . . . , Zn)
Sn ← Z ⊕ S1 ⊕ · · · ⊕ Sn−1

for i ∈ {1, . . . , n} do
T 0
i ← (X0

i ⊕ Zi, Si), T 1
i ← (X1

i ⊕ Zi, Si)

return (F, (T 0
1 , T

1
1 , . . . , T

0
n , T

1
n), d)

proc Ev2(F,X2)(
(U1, S1), . . . , (Un, Sn)

)← X2

Z ← S1 ⊕ · · · ⊕ Sn

(Z1, . . . , Zn)← Z
X ← (U1 ⊕ Z1, . . . , Un ⊕ Zn)
return Ev1(F,X)

proc En2(e2, x)

(T 0
1 , X

1
1 , . . . , T

0
n , X

1
n)← e2

x1 · · ·xn ← x
return (T x1

1 , . . . , T xn
n )

Fig. 4. Transform prv-to-prv1 (top): Scheme G1 = (Gb1,En1,De1,Ev1, ev) ∈
GS(prv1, Φ) obtained by applying the prv-to-prv1 transform to G = (Gb,En,De,Ev,
ev) ∈ GS(prv, Φ). Transform prv1-to-prv2 (bottom): Projective garbling scheme
G2 = (Gb2,En2,De,Ev2, ev) ∈ GS(prv2, Φ) obtained by applying the prv1-to-prv2 trans-
form to projective garbling scheme G1 = (Gb1,En1,De1,Ev1, ev) ∈ GS(prv1, Φ).

an attack showing that it is not prv2 secure. This means, in particular, that the
above simulation strategy does not in general work.

To carry this out, we start with an arbitrary projective circuit-garbling
scheme G ′ = (Gb′,En′,De,Ev′, ev) assumed to be prv-secure relative to Φ =
Φtopo. We then transform it into the projective circuit-garbling scheme G = (Gb,
En,De,Ev, ev) shown at the bottom of Fig. 3. (We assume the decoding rule of G ′

is vacuous, a feature inherited by G. We are letting v denote the bitwise comple-
ment of a string v.) The following proposition, whose proof is in the full paper [3],
says that G continues to be prv-secure but an attack shows that OMSS[G] is not
prv2-secure. (The proof shows it is in fact not even prv1 secure.)

Proposition 1 Let ev be the canonical circuit-evaluation function. Assume
G ′ = (Gb′,En′,De,Ev′, ev) ∈ GS(prv, Φtopo) ∩ GS(proj) and let G = (Gb,En,
De,Ev, ev) ∈ GS(proj) be the garbling scheme shown at the bottom of Fig. 3.
Then (1) G ∈ GS(prv, Φtopo) ∩ GS(proj), but (2) OMSS[G] �∈ GS(prv2, Φtopo).

Achieving prv1 security. We now describe a transform prv-to-prv1 that
successfully turns a prv secure circuit garbling scheme into a prv1 secure one.
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Combined with established results [4], this yields prv1-secure schemes based on
standard assumptions. The idea is to use one-time pads to mask F and d, and
then append the pads to X. This will ensure that the adversary learns nothing
about F and d until it fully specifies function f and x. Given a (not necessarily
projective) garbling scheme G = (Gb,En,De,Ev, ev), the prv-to-prv1 transform
returns the garbling scheme prv-to-prv1[G] = (Gb1,En1,De1,Ev1, ev) at the top
of Fig. 4. We claim:

Theorem 2. For any Φ, if G ∈ GS(prv, Φ) then prv-to-prv1[G] ∈ GS(prv1, Φ).

The intuition behind the prv-to-prv1 transform (outlined above) is simple, but
the proof template is instructive in indicating how to move from the intuition
to a formal proof. Given any PT adversary A1 against the prv1-security of G1
we build a PT adversary A against the prv-security of G. Now the assumption
of prv-security yields a PT simulator S for A such that Advprv, Φ,S

G (A, ·) is
negligible. Now we build from S a PT simulator S1 such that for all k ∈ N we
have Advprv1, Φ,S1

G1
(A1, k) ≤ Advprv, Φ,S

G (A, k). This yields the theorem. In the
full paper [3] we provide a full proof that shows how to build A and S1.
Achieving prv2 security. Next we show how to transform a prv1 scheme
into a prv2 one. Formally, given a projective garbling scheme G = (Gb,En,De,
Ev, ev) ∈ GS(prv1, Φ), the prv1-to-prv2 transform returns the projective garbling
scheme prv1-to-prv2[G] = (Gb2,En2,De,Ev2, ev) shown at the bottom of Fig. 4.
The idea is to mask the garbled input and then use the second part of GKR’s
idea as represented by OMSS, namely secret-share the mask, putting a piece
in each token, so that unless one has all tokens, one learns nothing about the
garbled input. The formal proof of the following is in the full paper [3].

Theorem 3. For any Φ, if G1 ∈ GS(prv1, Φ) ∩ GS(proj) then prv1-to-prv2[G1] ∈
GS(prv2, Φ) ∩ GS(proj).

One-time compilers. Starting from garbling schemes with prv2 security,
we give simple designs, and proofs, for one-time programs. We begin with the
definitions. Following GKR [13], the intent is that possession of a one-time pro-
gram P for a function f should enable one to evaluate f at any single value x;
but, beyond that, the one-time program should be useless. Unachievable in any
standard model of computation (where possession of P would enable its repeated
evaluation at multiple point), GKR suggest achieving one-time programs in a
model of computation that provides one-time memory—tamper-resistant hard-
ware whose read-once i-th location returns, on query (i, b) ∈ N × {0, 1}, the
string T b

i , immediately thereafter expunging T 1−b
i . A one-time compiler proba-

bilistically transforms the description of a function f into a one-time program P
and its associated one-time memory T .

For a formal treatment, we begin by specifying two stateful oracles; see Fig. 5.
The first, OTPf , formalizes the desired behavior of a one-time program for f .
Here f will now be regarded as a string, not a function, but this string represents
a circuit computing a function ev(f) : {0, 1}f.n → {0, 1}f.m; we write ev for
the canonical circuit-evaluation function [4]. The agent calling out to OTPf
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proc OTPf (x) proc OTMT (i, b)

if x �∈ {0, 1}f.n then ret ⊥ (T 0
1 , T

1
1 , . . . , T

0
� , T

1
� )← T

if called then ret ⊥ if i �∈ [1..�] or usedi or b �∈ {0, 1} then ret ⊥
called ← true usedi ← true
ret ev(f, x) ret T b

i

Fig. 5. Oracles model one-time programs and one-time memory. Oracle OTP

depends on a string f representing a boolean circuit. Oracle OTM depends on a list of
strings T .

provides x and, on the first query, it gets ev(f, x). Subsequent queries return
nothing. On the right-hand side of Fig. 5 we similarly define an oracle OTMT ,
this to model possession of a one-time-memory system. Given a list of � pairs of
strings (establish some convention so that every string T is regarded as denoting
a list of � pairs of strings, for some � ∈ N) the oracle returns at most one string
from each pair, otherwise satisfying each request.

Elaborating on GKR, we now define a one-time compiler as a pair of prob-
abilistic algorithms Π = (Co,Ex) (for compile and execute). Algorithm Co, on
input 1k and a string f , produces a pair (P, T ) ← Co(1k, f) where P (the one-
time program) is a string and T (the one-time-memory) encodes a list of 2�
strings, for some �. Algorithm Ex, on input of strings P and x, and given access
to an oracle O, returns a string y ← ExO(P, x). We require the following cor-
rectness condition of Π = (Co,Ex): if (P, T )← Co(1k, f) and x ∈ {0, 1}f.n then

ExOTMT (·,·)(P, x) = ev(f, x).
The security of Π = (Co,Ex) will be relative to a side-information function

Φ; the value φ = Φ(f) captures the information about f that P is allowed to
reveal. So fix a one-time compiler Π = (Co,Ex), an adversary A, a security
parameter k, and a string f . (1) Consider the distribution RealΠ,A,f (k) deter-
mined by the following experiment: first, sample (P, T ) ← Co(1k, f); then, run
AOTMT (·)(1k, P ) and output whatever A outputs. (2) Alternatively, fix a one-
time compiler Π = (Co,Ex), an information function Φ, a simulator S, a security
parameter k, and a string f . Consider the distribution FakeΠ,Φ,S,f (k) determined
by the following experiment: run SOTPf (·)(1k, Φ(f)) and output whatever S out-
puts. For D an algorithm and Π, Φ, A, S, and k as above, let

Advotc
Π,Φ,A,S,D(k) = Pr[(f, σ)← D(1k); v�RealΠ,A,f (k) : D(σ, v)⇒ 1]−

Pr[(f, σ)← D(1k); v�FakeΠ,Φ,S,f (k) : D(σ, v)⇒ 1]

One-time compilerΠ is said to be (OTC-) secure with respect to side-information
function Φ if for any PPT adversary A there is a PPT simulator S such that for
all PPT distinguishers D, function Advotc

Π,Φ,A,S,D(k) is negligible.

Constructing an OTC from a garbling scheme. A circuit-garbling
scheme G = (Gb,En,De,Ev, ev) can be turned into a one-time compiler Π =
(Co,Ex) in a natural way: let OTC[G] = (Co,Ex) be defined as follows. (1)
Co(1k, f): let (F, e, d) ← Gb(f) and return (P, T ) where P = (F, d) and T = e.
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(2) ExO(P, x): Let (F, d) ← P , let x1 · · ·xn ← x, query oracle O on (1, x1),
. . . , (n, xn) to obtain X1, . . . , Xn, respectively, and return De(d,Ev(F,X)) with
X = (X1, . . . , Xn). The proof of the following is in the full paper [3].

Theorem 4. If G is a prv2-secure garbling scheme over side-information func-
tion Φ then OTC[G] is OTC-secure with respect to side-information Φ.

The straightforwardness of the construction and its trivial proof are, we believe,
points in our favor, evidence of our claim that the garbling scheme abstraction
and appropriate security notions for it engender applications in direct, simple
and less error-prone ways.

Separation. In the full paper [3], we elaborate on how Proposition 1 gives
an example of a garbling scheme G such that OTC[OMSS[G]] is not otc-secure.
We explain why this refutes GKR’s claim [13] that their construction provides
a secure one-time compiler assuming one-way functions.

4 Obliviousness, Authenticity and Secure Outsourcing

We define obliviousness and authenticity, both with either the coarse-grained
or fine-grained adaptivity. We show how to achieve these goals, in combination
with adaptive privacy, via generic transforms and in the standard model. In the
full paper [3] we provide more efficient transforms in the ROM. Finally we apply
this to obtain extremely simple and modular designs, and security proofs, for
verifiable outsourcing schemes based on the paradigm of GGP [9].

Obliviousness. Intuitively, a garbling scheme is oblivious if garbled function F
and garbled input X, these corresponding to f and x, reveal nothing of f or x
beyond side-information Φ(f). In particular, possession F and X will not allow
the calculation of y = ev(f, x).

The formal definition for static obliviousness is from BHR [4]. See the top
of Fig. 6. We add to this two new definitions, to incorporate either coarse-
grained or fine-grained adaptive security. See the rest of Fig. 6. Fine-grained
adaptive security continues to require that G be projective. The games used
for defining obliviousness closely mirror their privacy counterparts. The first
important difference is that the adversary does not get the decoding function d.
The second important difference is that the simulator must do without y =
ev(f, x). For a garbling scheme G, side-information Φ, simulator S, adversary A,
and security parameter k ∈ N, we let Advobv, Φ,S

G (A, k) = 2Pr[ObvAG,Φ,S(k)]−1,

Advobv1, Φ,S
G (A, k) = 2Pr[Obv1AG,Φ,S(k)] − 1, and finally Advobv2, Φ,S

G (A, k) =

2Pr[Obv2AG,Φ,S(k)]− 1. Garbling scheme G is obv-secure with respect to Φ if for

every PPT A there exists a simulator S such thatAdvobv, Φ,S
G (A, k) is negligible.

We similarly define obv1 and obv2 security. For xxx ∈ {obv, obv1, obv2} we let
GS(xxx, Φ) denote the set of all garbling schemes that are xxx-secure over Φ.

Fig. 6 also formalizes the games underlying three definitions of authenticity,
capturing an adversary’s inability to create from F and X a garbled output
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proc Garble(f, x) ObvG,Φ,S

b� {0, 1}
if x �∈ {0, 1}f.n then return ⊥
if b = 1 then (F, e, d)← Gb(1k, f), X ← En(e, x)
else (F,X)← S(1k, Φ(f))
return (F,X)

proc Garble(f)

b� {0, 1}
if b = 1 then (F, e, d)← Gb(1k, f)
else F ← S(1k, Φ(f), 0)
return F

proc Input(x) Obv1G,Φ,S

if x �∈ {0, 1}f.n then return ⊥
if b = 1 then X ← En(e, x)
else X ← S(1)
return X

proc Garble(f)

b� {0, 1}; n← f.n; Q← ∅; σ ← ε
if b = 1 then

(F, (X0
1 , X

1
1 , . . . , X

0
n, X

1
n), d)←Gb(1k, f)

else F ← S(1k, Φ(f), 0)
return F

proc Input(i, c) Obv2G,Φ,S

if i �∈ {1, . . . , n} \Q then return ⊥
xi ← c; Q← Q ∪ {i}
if b = 1 then Xi ← Xxi

i

else Xi ← S(i, |Q|)
return Xi

proc Garble(f, x) AutG

if x �∈ {0, 1}f.n then return ⊥
(F, e, d)← Gb(1k, f), X ← En(e, x)
return (F,X)

proc Garble(f)

(F, e, d)← Gb(1k, f)
return F

proc Input(x) Aut1G

if x �∈ {0, 1}f.n then return ⊥
X ← En(e, x)
return X

proc Garble(f)

n← f.n; Q← ∅; σ ← ε

(F, (X0
1 , X

1
1 , . . . , X

0
n, X

1
n), d)←Gb(1k, f)

return F

proc Input(i, c) Aut2G

if i �∈ {1, . . . , n} \Q then return ⊥
xi ← c; Q← Q ∪ {i}, Xi ← Xxi

i

if |Q| = n then X ← (X1, . . . , Xn)
return Xi

Fig. 6. Obliviousness (top). Games for defining the obv, obv1, and obv2 security of
G = (Gb,En,De,Ev, ev). For each game, Finalize(b′) returns (b = b′). Authenticity
(bottom). Games for defining the aut, aut1, and aut2 security of G = (Gb,En,De,Ev,
ev). Procedure Finalize(Y ) of each game returns (De(d, Y ) �= ⊥ and Y �= Ev(F,X)).

Y �= F (X) that will be deemed authentic. The static definition of BHR [4] is
strengthened either to allow the adversary to specify x subsequent to obtain-
ing F , or, stronger, the bits of x are provided one-by-one, each corresponding
token then issued. For the second case, game Aut2, the garbling scheme must
once again be projective. For a garbling scheme G, adversary A, and security
parameter k ∈ N, we let Advaut

G (A, k) = 2Pr[AutAG (k)] − 1, Advaut1
G (A, k) =
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proc Gb1(1
k, f)

(F, e, d)← Gb(1k, f)

F ′ � {0, 1}|F |, d′ � {0, 1}|d|
F1 ← F ⊕ F ′, K� {0, 1}k, d1 ← (d⊕ d′,K)
tag← FK(d′), e1 ← (e, d′, F ′, tag)
return (F1, e1, d1)

proc En1(e1, x)
(e, d′, F ′, tag)← e1
return (En(e, x), d′, F ′, tag)

proc Ev1(F1, X1)
(X, d′, F ′, tag)← X1, F ← F1 ⊕ F ′

Y ← Ev(F,X)
return (Y, d′, tag)

proc De1(d1, Y1)
(Y, d′, tag)← Y1

(D,K)← d1, d← D ⊕ d′

if tag �= FK(d′) then return ⊥
return De(d, Y )

Fig. 7. Scheme all-to-all1[G] = (Gb1,En1,De1,Ev1, ev) ∈ GS(prv1, Φ) ∩ GS(obv1, Φ) ∩
GS(aut1) obtained from scheme G = (Gb,En,De,Ev, ev) ∈ GS(prv, Φ) ∩ GS(obv, Φ) ∩
GS(aut). The transform uses a PRF F : {0, 1}k × {0, 1}∗ → {0, 1}k.

2Pr[Aut1AG (k)]−1, and Advaut2
G (A, k) = 2Pr[Aut2AG (k)]−1. Garbling scheme G

is aut-secure with respect to Φ if for every PPT A Advaut
G (A, k) is negligible.

We similarly define aut1 and aut2 security. For xxx ∈ {aut, aut1, aut2} we let
GS(xxx) denote the set of all garbling schemes that are xxx-secure.

Achieving obv1 and aut1 security. It is tempting to think that the
prv-to-prv1 operator in Fig. 4 also promotes xxx-security, with xxx ∈ {obv, aut},
to xxx1-security, but it does not. We now show how to change prv-to-prv1 to
an operator all-to-all1 that promotes any xxx ∈ {prv, obv, aut} to being xxx1
secure. See Fig. 7. The proof of the following is in the full paper [3].

Theorem 5. (1) For any Φ and any xxx ∈ {prv, obv}, if G ∈ GS(xxx, Φ) then
all-to-all1[G] ∈ GS(xxx1, Φ) (2) If G ∈ GS(aut) then all-to-all1[G] ∈ GS(aut1)
(3) If G ∈ GS(proj) then all-to-all1[G] ∈ GS(proj).

Achieving obv2 and aut2 security. The transform to promote coarse-
grained to fine-grained security is unchanged. We let all1-to-all2 = prv1-to-prv2
be the transform at the bottom of Fig. 4. We claim it has additional features
captured by the following, whose proof is in the full paper [3].

Theorem 6. (1) For any Φ and any xxx ∈ {prv, obv} if G1 ∈ GS(xxx1, Φ) ∩
GS(proj) then all1-to-all2[G1] ∈ GS(xxx2, Φ) ∩ GS(proj) (2) If G1 ∈ GS(aut1) ∩
GS(proj) then all1-to-all2[G1] ∈ GS(aut2) ∩ GS(proj).

Outsourcing definitions. Towards the application to secure outsourcing,
we begin with the definitions, following GGP [9]. An outsourcing scheme Π =
(Gen, Inp,Out,Comp, ev) is a tuple of PT algorithms that, intuitively, will be run
partly on a client and partly on a server. Generation algorithm Gen is run by the
client on input of the unary encoding 1k and a string f describing the function
ev(f, ·) : {0, 1}f.n → {0, 1}f.m to be evaluated (so that ev, like in a garbling
scheme, is a deterministic evaluation algorithm) to get back a public key pk that
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is sent to the server and a secret key sk that is kept by the client. Algorithm Inp
is run by the client on input pk , sk and x ∈ {0, 1}f.n to return a garbled input
X that is sent to the server. Associated state information St is preserved by
the client. Algorithm Comp is run by the server on input pk , X to get a garbled
output Y that is returned to the client. The latter runs deterministic algorithm
Out on pk , sk , Y,St to get back y ∈ {0, 1}f.n ∪ {⊥}. Correctness requires that
for all k ∈ N, all f ∈ {0, 1}∗, and all x ∈ {0, 1}f.n, if (pk , sk) ← Gen(1k, f),
(X,St) ← Inp(pk , sk , x), Y ← Comp(pk , X), and y ← Out(pk , sk , Y,St), then
y = ev(f, x). Our syntax is the same as that of GGP [9] except for distinguishing
between functions and their descriptions, as represented the addition of ev to the
list.

The games OSVFΠ and OSPRΠ,Φ,Sos
of Fig. 8 are used to define verifiability

and privacy of an outsourcing scheme Π = (Gen, Inp,Out,Comp, ev), where Φ
is a side-information function and Sos is a simulator. In both games, the adver-
sary is allowed only one GetPK query, and this must be its first oracle query.
For adversaries Aos and Bos, we let Advosvf

Π (Aos, k) = Pr[OSVFAos

Π (k)] and

Advospr,Φ,Sos

Π (Bos, k) = 2Pr[OSPRBos

Π,Φ,Sos
(k)]− 1. We say that Π is verifiable if

Advosvf
Π (Aos, ·) is negligible for all PT adversaries Aos. We say that Π is pri-

vate over Φ if for all PT adversaries Bos there is a PT simulator Sos such that
Advospr,Φ,Sos

Π (Aos, ·) is negligible. An adversary is said to be one-time if it makes

only one Input query. We say that Π is one-time verifiable if Advosvf
Π (Aos, ·) is

negligible for all PT one-time adversaries Aos. We say that Π is one-time private
over Φ if for all PT one-time adversaries Bos there is a PT simulator Sos such
that Advospr,Φ,Sos

Π (Aos, ·) is negligible.
Our verifiability definition coincides with that of GGP [9] but our privacy

definition is stronger: it requires not just “input privacy” (concealing each in-
put x) but, also, privacy of the function f (relative to Φ). (As in our garbling
definitions this is subject to Φ(f) being revealed). Also, while GGP use an
indistinguishability-style formalization, we use a simulation-style one, as this
is stronger for some side-information functions.

To be “interesting” the work of the client in an outsourcing scheme should
be less than the work required to compute the function directly, for otherwise
outsourcing is not buying anything. An outsourcing scheme is said to be non-
trivial if this condition is met.

From garbling to outsourcing. GGP show how to use FHE to turn
any one-time verifiable and private outsourcing scheme into a fully verifiable
and private one. This allows us to focus on designing the former. We show how
a garbling scheme that is both aut1 and obv1 secure immediately implies a
one-time verifiable and private outsourcing scheme. The construction, given in
Fig. 8, is very direct, and the proof of the following, given in the full paper [3],
is trivial, points which reinforce our claim that the garbling scheme abstraction
and adaptive security may be easily used in applications:

Theorem 7. If G ∈ GS(obv1, Φ) ∩ GS(aut1) then outsourcing scheme Π[G] is
one-time verifiable and also one-time private over Φ.



18 Bellare, Hoang, and Rogaway

proc GetPK(f) OSVFΠ

(pk , sk)← Gen(1k, f), i← 0
return pk

proc Input(x)

if x �∈ {0, 1}f.n then return ⊥
i← i+ 1, xi ← x
(Xi,St i)← Inp(pk , sk , x)
return Xi

proc Finalize(Y, j)
if j �∈ {1, . . . , i} then return false
y ← Out(pk , sk , Y,Stj)
return (y �∈ {ev(f, xj),⊥})

proc GetPK(f) OSPRΠ,Φ,Sos

c� {0, 1}
if c = 1 then (pk , sk)← Gen(1k, f)
else (pk , σ)← Sos(1k, Φ(f))
return pk

proc Input(x)

if x �∈ {0, 1}f.n then return ⊥
if c = 1 then (X,St)← Inp(pk , sk , x)
else (X,σ)← Sos(σ)
return X

proc Finalize(c′)
return (c = c′)

Gen(1k, f)
(F, e, d)← Gb(1k, f)
return (F, (e, d))

Inp(F, (e, d), x)
X ← En(e, x)
return (X, ε)

Comp(F,X)
Y ← Ev(F, x)
return Y

Out(F, (e, d), Y,St)
y ← De(d, Y )
return y

Fig. 8. Games to define the verifiability (OSVF) and privacy (OSPR) of outsourcing
scheme Π = (Gen, Inp,Out,Comp, ev). Bottom: constructing the outsourcing scheme
Π[G] = (Gen, Inp,Out,Comp, ev) from garbling scheme G = (Gb,En,De,Ev, ev).

A benefit of our modular approach is that we may use any obv1+ aut1 garbling
scheme as a starting point while GGP were tied to the scheme of [17]. However,
the latter scheme is not adaptively secure, which brings us to our next point.

Discussion. GGP give a proof that their outsourcing scheme is one-time verifi-
able assuming the encryption scheme underlying the garbled-circuit construction
of [17] meets the condition called Yao-secure in [17]. However, their proof has
a gap. Quoting [9, p. 12 of Aug 2010 ePrint version]: “For any two values x, x′

with f(x) = f(x′), the security of Yao’s protocol implies that no efficient player
P2 can distinguish if x or x′ was used.” This claim is correct if both x and x′

are chosen independently of the randomness in the garbled circuit. But in their
setting, the string x is chosen after the adversary sees the garbled circuit, and
the security proof given by [17] no longer applies.

One may try to give a new proof that the LP garbling scheme satisfies aut1
security. However, this seems to be difficult. Intuitively, an adaptive attack on the
garbling scheme allows the adversary to mount a key-revealing selective-opening
(SOA-K) attack on the underlying encryption scheme. But SOA-K secure en-
cryption is notoriously hard to achieve [2]. The only known way to achieve it is
via non-committing encryption [5, 6, 8], which is only possible with keys as long
as the total number of bits of message ever encrypted [19], so the outsourcing
scheme may fail to be non-trivial.

This brings us to a more full discussion of non-triviality. The obv1 + aut1
secure scheme obtained via our all-to-all1 transform has long garbled inputs, so
the one-time verifiable outsourcing scheme yielded by Theorem 7, while secure,
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is not non-trivial. Our ROM transforms coupled with Theorem 7 yield a non-
trivial one-time outsourcing scheme in the ROM but the FHE-based method of
GGP of lifting to a many-time scheme fails in the ROM. Finding a obv1 + aut1
garbling scheme with short garbled inputs in the standard model under standard
assumptions is an open problem. We think Theorem 7 is still useful because it
can be used at any point such a scheme emerges. All this again is an indication
of the subtleties and hidden challenges underlying adaptive security of garbled
circuits that seem to have been overlooked in the literature.
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