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Adaptively Secure Identity-Based

Broadcast Encryption With a

Constant-Sized Ciphertext
Jongkil Kim, Willy Susilo, Senior Member, IEEE, Man Ho Au, Member, IEEE,

and Jennifer Seberry, Senior Member, IEEE

Abstract— In this paper, we present an adaptively secure
identity-based broadcast encryption system featuring constant
sized ciphertext in the standard model. The size of the public
key and the private keys of our system are both linear in the
maximum number of receivers. In addition, our system is fully
collusion-resistant and has stateless receivers. Compared with the
state-of-the-art, our scheme is well optimized for the broadcast
encryption. The computational complexity of decryption of our
scheme depends only on the number of receivers, not the
maximum number of receivers of the system. Technically, we

employ dual system encryption technique and our proposal
offers adaptive security under the general subgroup decisional
assumption. Our scheme demonstrates that the adaptive security
of the schemes utilizing a composite order group can be proven
under the general subgroup decisional assumption, while many
existing systems working in a composite order group are secure
under multiple subgroup decision assumptions. We note that this
finding is of an independent interest, which may be useful in other
scenarios.

Index Terms— Cryptography, public key, broadcast
encryption, identity-based broadcast encryption.

I. INTRODUCTION

BROADCAST encryption (BE) [1] is a cryptographic

primitive in which multiple receivers share encrypted data

with a sender. In BE, a sender chooses the set of receivers,

adaptively, and encrypts secret data for them. The encrypted

data only can be decrypted by recipients included in the

set of receivers. BE has many practical applications such

as secure databases and Digital Right Management (DRM)

systems including DVD and Pay TV solutions.

The security of BE is defined by the security model it

follows. A BE scheme is adaptive secure [2] if it allows the

adversary to declare the set that he/she wants to attack by

using the public parameters and private keys compromised

under the restriction that the adversary cannot possess any
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decryption key of the users in the target set. The selective

security [3], by comparison, requires that the adversary to

decide the target set before the system parameters are chosen.

Selective security is a weaker notion but it is relatively easier to

achieve.

Broadcast encryption was extended to identity-based broad-

cast encryption (IBBE) [4], [5] in which each receiver is

identified by his/her unique identity as in an identity-based

encryption (IBE) [6]. As identities are arbitrary bit-strings, an

IBBE should support exponentially many users as potential

receivers. This implies that for an IBBE to be practical, the

size of parameters such as public parameters, private keys and

ciphertexts must not be related to the total number of users in

the system.

IBBE is often simplified to mID-KEM (multiple identity-

based key encryption scheme) [7], [8] which is the cryp-

tographic primitive combining identity-based encryption and

mKEM (multiple-receiver key encapsulation Mechanism).

In mID-KEM [9] and mKEM, multiple parties share a secret

key for their future secure communications to be protected by

symmetric cryptographic algorithms.

A trivial solution to broadcast is to encrypt the same

message under each receiver’s public key. However, this trivial

solution possesses a ciphertext size linear with the number

of receivers. Thus, the goal of broadcast encryption is to

reduce the size. Although there are several realizations in

broadcast encryption allowing polynomial users in the system

of the ciphertext, achieving an IBBE scheme having efficient

sized parameters remains a difficult problem because it has

to support exponentially many users in the system using the

limited entropy provided in public parameters.

An IBBE should satisfy several important properties. First,

an IBBE scheme should be fully collusion resistant [10], [11].

This property requires that even if all the users collude, they

should not be able to learn anything about the message if

none of the colluding users is included in the set of receivers

for the broadcast. The stateless receivers [12] property is

also important for the efficiency of the system. If an IBBE

scheme does not have stateless receivers, it must distribute

private keys again whenever there is a change in the set of

receivers.

In this paper, we introduce an adaptively secure IBBE

scheme achieving a constant sized ciphertext in the standard

1556-6013 © 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
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TABLE I

COMPARISON BETWEEN PREVIOUS IBBE SCHEME WITH OURS

model. Our scheme allows exponentially many users in the

system, but the maximum number of recipients in a broadcast

is defined in the system setup. Our scheme is also fully

collusion resistant and features stateless receivers. In order

to prove the adaptive security of our scheme, we use the

dual system encryption [13]–[15]. Our IBBE scheme achieves

a constant sized ciphertext assuming only General Subgroup

Decision (GSD) Assumption [16], which is static and simple.

II. PRELIMINARIES

Several existing broadcast encryption schemes [3], [13],

[17], [18] achieve constant-sized ciphertext. While they are

secure in the standard model, these schemes support only

polynomially many users because they have parameters, such

as public keys or private keys, which increase linearly with

the number of total users in the system. In these systems, the

users are normally labelled from 1 to n.

Gentry and Waters [2] suggested the first adaptively secure

identity-based scheme having sub-linear sized ciphertext. First,

they introduced an IBBE scheme in which a linear sized T ag

is included in the ciphertext to allow exponentially many users

in the system. Subsequently, they suggested a way to achieve

sub-linear sized ciphertext by reusing T ag in the original

scheme and increasing the size of other components in a

ciphertext from constant to sublinear.

Lewko, Sahai and Waters [19] introduced a revocation

scheme based on a revocation system [12], [20] which achieves

broadcast encryption not by including users but by revoking

users. The size of the parameters does not depend on the

total number of users in the system. However, the size of

the ciphertext linearly increases with the number of revoked

users in their scheme. In addition, while its parameters do not

depend on the total number of users in the system, adaptive

security has been proved when it allows a polynomial number

of users. The system can only be proven selective secure if

exponentially many users are to be supported.

Similarly, an adaptively secure Key Policy Attribute

Based Encryption (KP-ABE) scheme featuring constant-sized

ciphertext and supporting exponentially-many attributes was

introduced by Attrapadung [21]. As broadcast encryption is a

special case of a KP-ABE of which the policy consists only

of OR-gates, their scheme is also relevant to our discussion.

We analyze this scheme when it works as a broadcast encryp-

tion scheme, and we find that our scheme is more efficient

than this scheme. The size of the ciphertext and the number of

pairing computations for the decryption of our scheme are two

thirds of theirs. Also, the security of their scheme depends on

some q-type assumptions while our scheme depends on some

simple assumptions.

There are three IBBE systems using multilinear map [22].

Due to the properties of multi-linear map, they can be very

efficient. However, although the number of the group elements

of a ciphertext is constant, the size of the group elements is

O(log2 N). Also, the security of these systems depends on

some q-type assumptions, which is undesirable.

Attrapadung and Libert [23] introduced the first IBBE

scheme having a constant sized ciphertext as an application of

Inner Product Encryption (IPE). Since broadcast encryption

can be interpreted as a special case having only OR-gates

between recipients, broadcast encryption can be also achieved

by IPE. Their scheme is constructed in a prime order group

and has a constant sized ciphertext although the sizes of a

private key and a public parameter of their scheme linearly

increase with the size of maximum number of receivers in the

system. To achieve this, they used the dual system encryption.

Their scheme depends on standard assumptions (hardness of

the Decision Linear Problem (DLIN) and the Decision Bilinear

Diffie-Hellman Problem (DBDH)). However, their scheme is

designed for IPE and is not well adapted for an IBBE system.

Some important features are missing in their construction

arising from this matter. The security of their system fails

if only one receiver is included in a ciphertext because their

n-wise independence argument does not hold. Also, their

computataional complexity can be reduced if IPE is used

to construct IBBE. They also achieved an adaptively secure

broadcast encryption scheme by applying the dual system

encryption to [24]. However, this scheme requires a subgroup

decisional assumption, which cannot be reduced as General

Subgroup Decision (GSD) Assumption.

We compare our scheme with the existing schemes, and

the result is summarized in Table I. We note that we also

use IPE for IBBE as in [23]. Nevertheless, we optimize the

IPE scheme to support IBBE. Hence, in addition to a constant

sized ciphertext, the computational complexity of our scheme

only depends on the number of receivers for a broadcast. Also,

we observe that there exists a possible failure in the security

if only one receiver is included in a encryption. We provide

a practical solution for this. Furthermore, the security of
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our system depends only on GSD assumption. As a result,

our adaptively secure IBBE features low cost decryption by

achieving a constant sized ciphertext and low computational

complexity for the decryption process. More importantly, our

decryption algorithm only depends on the number of receivers

of the ciphertext, instead of the maximum number of receivers,

which is part of the system parameters. This offers a big

advantage in comparison to the other schemes.

A. Our Technique

The traditional way to prove the security of broadcast

encryption is using q-type assumptions and partitioning

the key space by the set of identities of receivers and

others [2], [3]. The dual system encryption [13], introduced by

Waters, gives a break-through in security proof methodology

by introducing the concept of semi-functional keys and cipher-

text which are only used in the security proof. However,

proving the invariance between a semi-functional key and a

normal key is still challenging because the simulator can detect

this correlation by generating a semi-functional ciphertext

which can be decrypted only by a normal key to distinguish

whether the key is a semi-functional key or a normal key.

Dual system encryption is used widely to provide security

protocols including BE [13], [19], [25], [26].

Lewko and Waters [14] suggested a way to solve this

problem. In their suggestion, when the algorithm generates

a semi-functional ciphertext, the ciphertext is correlated with

semi-functional keys. This means if a valid semi-functional

key is used to decrypt a semi-functional ciphertext, the semi-

functional key does not hinder decryption and works like a

normal key, but this correlation between the semi-functional

key and ciphertext is hidden to the adversary who cannot query

a valid key for the challenge ciphertext.

Although the nominally semi-functionality is very helpful

to prove the security, hiding the correlation is not trivial if the

system has to support exponentially many users with limited

entropy. Lewko and Waters [27] introduced the technique to

overcome the shortage of randomness. To amplify the entropy,

they localize semi-functional spaces by introducing ephemeral

semi-functional space which is only used to prove the key

invariance between a normal key and a semi-functional key.

The random values, hiding the correlation between the key and

the ciphertext, are only used in ephemeral semi-functional

space. Then, the semi-functional spaces share only random

values which do not interrupt to hide this correlation in

ephemeral semi-functional space.

We prove the security of our scheme similarly with [27].

However, we prove the adaptive security of our system using

General Subgroup Decision (GSD) Assumption [16] only.

Specifically, in [27], when they proved the semi-functional

invariance of their scheme, they used an assumption which

cannot be reduced to GSD. In contrast, we prove semi-

functional invariance without this assumption. Hence, the

security of our scheme relies on fewer assumptions than

Lewko and Waters’ scheme [27].

Our IBBE scheme achieves adaptive security by com-

bining dual system encryption [13] with n-wise pairwise

independence argument [23], However, the n-wise indepen-

dence argument does not hold if only one receiver is included

in the system. Hence, first we restrict our scheme so that

the number of receivers is larger than 1. Then, we provide a

practical way to overcome this restriction. The computational

complexity of the decryption algorithm of our scheme only

depends on the number of receivers.

B. Broadcast Encryption Systems

Our broadcast encryption scheme consists of four

algorithms, namely, setup (Setup), private key generation

(KeyGen), encryption (Enc) and decryption (Dec) as defined

below.

Setup(λ, n, ℓ) takes as input the number of receivers (n) and

the maximal size of a broadcast recipient group (ℓ (≤ n)).

It outputs a public/master secret key pair 〈P K , M SK 〉.
KeyGen(i , M SK ) takes as input an index i ∈ {1, . . . , n} and

the secret key MSK. It outputs a private key di .

Enc(S, M , P K ) takes as input a subset S ⊆ {1, . . . , n},
a message M and a public key P K . If |S| ≤ ℓ, it outputs

a CT .

Dec(S, i , di , CT , P K ) takes as input a subset S ⊆ {1, . . . , n}
an index i ∈ {1, . . . , n}, a private key di for i , a

ciphertext CT, and the public key P K . If |S| ≤ ℓ and

i ∈ S, then the algorithm outputs the message M.

Correctness For the correctness, the following property

must be satisfied.

For S ⊆ {1, . . . , n} where |S| ≤ ℓ ≤ n, let

(P K , M SK ) ← Setup(λ, n, ℓ), di ← K eyGen(i, M SK )

for i ∈ [1, n] and CT ← Enc(S, M, P K ). Then, if i ∈ S,

Dec(S, i, di , CT, P K ) = M .

It should be noted that the definition of BE above is general

enough to describe IBBE.

C. Security Definition

We define the adaptive security model of IBBE. This

basically follows the adaptive security model of [2]. The

only difference being we adapt it for an ordinary IBBE

scheme while the adaptive security model of [2] is for a key

encapsulation scheme.

Both the adversary and the challenger are given as

input ℓ and n, i.e., the maximal size of a set of receivers S

and the maximum users in a system, respectively.

Setup: The challenger runs Setup(λ, n, ℓ) to obtain a public

key PK. It gives A the public key PK.

Phase I: The adversary A adaptively issues private queries

for identities i ∈ {1, . . . , n}.
Challenge: If Phase I is over, The attacker declares two

equal length message M0 and M1 and a challenge set

S∗ where S∗ ⊆ {1, . . . , n} and the identities of S∗ never

have been queried in Phase I. If |S∗| is larger than ℓ, it

outputs ⊥. Otherwise, the challenger randomly selects

b ← {0, 1} and runs encryption algorithm to obtain

CT = Enc(S∗,Mb ,P K ). The challenger returns CT to A.

Phase II: The adversary A adaptively issues private

queries as Phase I except that added restriction that

identities i /∈ S.
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Guess: Finally, the adversary A outputs a guess b′ ∈ {0, 1}
and wins the game if b = b′.

We define the advantage of an adversary A in attacking

the identity based broadcast encryption system IBBE with

inputs (n, ℓ, λ):

AdvA,IBBE,n,ℓ(λ) := |Pr [b = b′] − 1/2|

We define that an identity based encryption system IBBE is

adaptively secure if AdvA,IBBE,n,ℓ(λ) = ǫ is negligible for

all PPT algorithms A.

D. Composite Order Bilinear Groups

We briefly describe the important properties of composite

order bilinear groups which were introduced in [28]. Let G be

a group generation algorithm taking a security parameter λ as

input and outputting a description of a bilinear group G. For

our purposes, we will have G output (p1, p2, p3, G, GT , e)

where p1, p2, p3 are distinct primes, G and GT are cyclic

groups of order N = p1 p2 p3, and e : G2 → GT is a map

such that:

1. (Bilinear) ∀g, h ∈ G, a, b ∈ ZN , e(ga, hb) = e(g, h)ab

2. (Non-degenerate) ∃g ∈ G such that e(g, g) has order N

in GT .

We assume that the group operations in G in GT as well as

the bilinear map e are computable in polynomial time with

respect to λ and that the group descriptions of G and GT

include generators of the respective cyclic groups. We let

G p1 , G p2 and G p3 denote the subgroup of order p1, p2

and p3 in G respectively. We note that when hi ∈ G pi

and h j ∈ G p j for i �= j , e(hi , h j ) is the identity element

in GT (i.e. e(h1, h2) = 1). This orthogonal property of

G p1, G p2 , G p3 will be used to implement semi-functionality

in our constructions.

E. Complexity Assumption

Our scheme is adaptively secure under General Subgroup

Decision (GSD) assumption [16]. To avoid duplicate state-

ments in the security proof and demonstrate which GSD

instances were used clearly, we include Assumptions 1, 2 and 3

which are special cases of GSD.

General Subgroup Decision (GSD) Assumption [16]: Let

G(1λ) be a group generator and Z0, Z1, …, Zk be a collection

of non-empty subset of {1, 2, 3} where each Z i for i ≥ 2

satisfies either (1) or (2) following

Z0 ∪ Z i �= ∅ and Z1 ∩ Z i �= ∅ (1)

Z0 ∩ Z i = ∅ and Z1 ∩ Z i = ∅ (2)

Then, we define the following distribution:

G = (N = p1 p2 p3, G, GT , e)
R

←− G(1λ),

gZ2

R
←− G Z2, . . . , gZk

R
←− G Zk

D = (G, gZ2, . . . , gZk ), T1
R

←− G Z0, T2
R

←− G Z1 .

With the fixed collection of sets Z0, . . . , Zk , we define the

advantage of an algorithm A in breaking this assumption to be:

AdvGS D
G,A (λ) := |Pr [A(D, T0) = 1] − Pr [A(D, T1) = 1]|.

We define three assumptions as special cases of GSD

assumption.

For each assumption, given a group generator G(1λ), we

define the following distribution:

G = (N = p1 p2 p3, G, GT , e)
R

←− G(1λ),

Assumption 1 (A Special Case of GSD Assumption With

Z0 = {1, 2} Z1 = {1}):

g
R

←− G p1, D = (G, g), T1
R

←− G p1 p2, T2
R

←− G p1

Assumption 2 (A Special Case of GSD Assumption With

Z0 = {1} Z1 = {1, 3}):

g, X1
R

←− G p1, g2
R

←− G p2, X3
R

←− G p3

D = (G, g, g2, X1 X3), T1
R

←− G p1, T2
R

←− G p1 p3

Assumption 3 (A Special Case of GSD Assumption With

Z0 = {1, 3} Z1 = {1, 2, 3}):

g, X1
R

←− G p1, X2, Y2
R

←− G p2 , g3, Y3
R

←− G p3

D = (G, g, g3, X1 X2, Y2Y3), T1
R

←− G p1 p3, T2
R

←− G

In some lemmas, the roles of p2 and p3 of Assumption 3

are reversed.

III. OUR IBBE CONSTRUCTION

A. Construction

Let i be an identity of a user in the system, and S be a set

of identities of recipients for a broadcast. Also we define the

maximum number of receivers ℓ. We restricted the number of

receivers to be greater than 1.

• Setup(λ, ℓ, n) The setup algorithm takes in n, ℓ and

the security parameter λ as input. Then, it chooses

a bilinear group G of order N = p1 p2 p3 where

p1, p2 and p3 are distinct primes. Then the algorithm

generates g, u, w, v, h
R

←− G p1 where G pi is a subgroup

of G of order p1, and also generates randomly

M SK = {δ} in ZN . It outputs

P K = 〈g, u, w, vα j , hα j , e(g, h)δ : j ∈ [0, ℓ]〉

• KeyGen(MSK, PK, i ) Generate yi , ri
R

←− ZN for identity

i , randomly and the sets �X := (xℓ, . . . , x1, x0) =
(i ℓ, . . . , i, i0). Using M SK and P K , it sets

di := 〈K0, K1, K2, K3, j : j ∈ [1, ℓ]〉

= 〈gδwyi , h yi , v yi · uri , h(−α0 x j/x0+α j )ri : j ∈ [1, ℓ]〉

It should be noted that x0 is fixed as i0 = 1. However,

we leave it in the definition to clarify the correctness.

• Enc(P K , M , S) First, the encryption algorithm parses S

as {i1, . . . , ik} and sets �Z = (zℓ, .., z0) where z j is

an coefficient of z j of
∏k

j=1(z − i j ). With randomly

generated s, t
R

←− ZN , To output CT , it sets

CT := 〈C, C0, C1, C2, C3〉

= 〈M · e(g, h)δs, hs , wsv〈�α, �Z〉t , h〈�α, �Z〉t , ut 〉

where �α = (αℓ, . . . , α0).
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TABLE II

THE RECOMMENDED SIZE OF THE PARAMETERS FOR 3 PRIMES [29]

• Decrypt(S, i , di , CT , P K ) Suppose i ∈ S, and calculate
�Z , the decryption algorithm outputs

D =
e(K0, C0)e(K2, C2)

e(K1, C1)e((K3,1)z1 · · · (K3,k)zk , C3)
= e(g, h)δs

Then, it outputs a message M = C/D.

Correctness D can be computed as follows:

E =
e(K0, C0)e(K2, C2)

e(K1, C1)
=

e(gδwyi , hs)e(v yi uri , h〈�α, �Z〉t )

e(h yi , wsv〈�α, �Z〉t )

=
e(g, h)sδe(h, w)syi e(h, v)〈�α, �Z〉t yi e(h, u)tri 〈�α, �Z〉

e(h, w)syi e(h, v)〈�α, �Z〉t yi

= e(g, h)sδe(h, u)tri 〈�α, �Z〉

F = e((K3,1)
z1 · · · (K3,k)

zk , C3)

= e(

k
∏

j=1

(h(z j (−α0x j /x0+α j ))ri , ut )

= e((h
−α0(�

k
j=1z j x j )/x0+�k

j=1z j α j )ri , ut )

= e(h
(α0z0+�k

j=1α j z j )ri , ut )

= e(h, u)tri 〈�α, �Z〉

As i is a root of
∏k

j=1(z − i j ), 〈 �X , �Z 〉 = �k
j=0x j z j = 0,

this also implies that �k
j=1x j z j = −z0x0. Therefore,

D = E/F = e(g, h)sδ.

We restricted our scheme to have |S|. However, this can be

accommodated by reserving one identity when system sets

up and including this identity if encryption body want to

share a secret with only one user. It should be noted that the

private key for this reserved identity must not be given to

any user.

B. Choice of Parameters

The size of parameters is determined by the security level

which a broadcast system aims to achieve. In our construction,

N is the product of three primes. The factors of N must

not be revealed to the attackers. We recommend the size of

N based on the result of Guillevic [29] in Table II for achieving

equivalent security levels with AES. The sizes are calculated

based on the attacks “Number Field Sieve attack” and “Elliptic

Curve Method attack” [30]. The minimum of the size of

parameters is calculated based on the cost (time) equivalence,

while the maximum of the size of parameters is computed

based on the computational equivalence [30].

IV. SECURITY ANALYSIS

In order to prove the security of our scheme, the dual

system encryption was used. The security can be proved by

the invariances of security games.

A. Security Properties for the Dual System Encryption IBBE

Before we present the security proof of our construction, we

define semi-functional keys and a semi-functional ciphertext

which are not used in the real system, but necessary in

the proof. In the definition, g2, g3 denotes generators of

G2, G3, respectively. In order to create semi-functional keys,

we generate ψ, σ
R

←− ZN , first. These are shared parameters in

semi-functional keys regardless of the identity of i .

Semi-Functional Key: Let (K ′
0, K ′

1, K ′
2, K ′

3, j : j ∈ [1, ℓ])
be a normal key generated by using the key generation

algorithm. Then, we randomly select ỹi
R

←− ZN for the

identity i and define a semi-functional key as below

K0 = K ′
0(g2g3)

ψ ỹi , K1 = K ′
1(g2g3)

ỹi

K2 = K ′
2(g2g3)

σ ỹi , K3, j = K ′
3, j : j ∈ [1, ℓ].

Semi-Functional Ciphertext: Let C ′, C ′
0, C ′

1, C ′
2 and C ′

3

be a properly distributed normal ciphertext. Then, with

randomly generated a, b ← ZN , a semi-functional key is

defined as below

C = C ′, C0 = C ′
0ga

2 , C1 = C ′
1gb

2, C2 = C ′
2, C3 = C ′

3

Semi-functional keys are only able to decrypt a normal

ciphertext but not a semi-functional ciphertext although normal

keys can decrypt both a normal and a semi-functional cipher-

text. Now, we will prove that no PPT algorithm distinguishes

the following security games with non-negligible advantage.

GameI B B E
Real This is a real game following the adaptive secu-

rity model of IBBE. All private keys and the challenge

ciphertext are also normal.

GameI B B E
k This is identical with GameI B B E

Real except for the

types of private keys and a ciphertext. In this game, the

first k keys are semi-functional keys, and the rest of

the keys are normal keys and the challenge ciphertext is

semi-functional.

GameI B B E
Final′

This is identical with GameI B B E
q where q is the

total number of key queries besides the private keys.

In this game, random elements from G p3 are added to K2,

K3,1, . . . K3,ℓ components of all semi-functional keys.

GameI B B E
Final′′

This is identical with GameI B B E
Final′

besides the

challenge ciphertext. In this game, the challenge cipher-

text is similar to the semi-functional ciphertext, but all

components except C have additional random elements

from from G p3 .

GameI B B E
Final This is identical with GameI B B E

Final′′
besides the

challenge ciphertext. In this game, the first component

C of the challenge ciphertext is replaced by a random

element from GT .

Theorem 1: Our IBBE system is adaptively secure under

General Subgroup Decision Assumption.

Proof: This is proved by Lemmas 1 to 7. �
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Lemma 1 (Semi-Functional Ciphertext Invariance): Suppose

there exists a polynomial time algorithm A such that

GameI B B E
Real AdvA − GameI B B E

0 AdvA = ǫ. Then we can

construct a polynomial time algorithm B with advantage ǫ in

breaking Assumption 1.

Proof: B is given g1, T . It will simulate GameI B B E
Real

or GameI B B E
0 with A. It chooses random exponents

yu, yw, yv , yh, α0, . . . , αℓ, δ ∈ ZN , and sets g = g1,

u = g
yu

1 , w = g
yw

1 , v = g
yv

1 , h = g
yh

1 . It publishes the public

parameters:

P K = (g, u, w, vα j , hα j , e(g, h)δ : j ∈ [0, ℓ])

Also, B generates normal keys by the key generation algorithm

because it knows both P K and M SK .

In the challenge, A sends B two messages M0, M1 and

the set of receivers, S. To make the challenge ciphertext,

B calculates �Z = (zℓ, .., z0) where z j is an coefficient of z j

of
∏k

j=1(z−i j ), and implicitly sets gs
1 to be the G p1 part of T

(this means that T is the product of gs
1 ∈ G p1 and possibly an

element of G p2). B also generates t ∈ ZN randomly. It chooses

f ∈ {0, 1} by flipping a coin and sets:

C = M f e(gδ, T yh ), C0 = T yh , C1 = T yw gyv 〈�α, �Z〉t ,

C2 = g
yh〈�α, �Z〉t
1 , C3 = g

yut
1 .

If T ∈ G p1 , this is properly distributed normal ciphertext,

and B properly simulates the Game I B B E
Real . If T ∈ G p1 p2 ,

then we have a semi-functional ciphertext with a = yhs′ and

b = yws′: we denote the G p2 part of T by gs ′

2 (i.e. T = gs
1gs ′

2 ).

Since the values of yh, and yw modulo p2 are uncorrelated

from their values modulo p1, reusing the values from G p1

does not correlate with the normal key. So, this is a properly

distributed semi-functional ciphertext, and B properly

simulates GameI B B E
0 . �

Lemma 2 (Semi-Functional Security): Suppose there exists

a polynomial time algorithm A such that Game I B B E
q AdvA −

GameI B B E
Final AdvA = ǫ. Then we can construct a polynomial

time algorithm B with advantage ǫ in breaking Assumption 2

or Assumption 3.

Proof: This is proved by Lemmas 2.1 to 2.3. �

Lemma 2.1: Suppose there exists a polynomial time algo-

rithm A such that GameI B B E
q AdvA− GameI B B E

Final′
AdvA = ǫ.

Then we can construct a polynomial time algorithm B with

advantage ǫ in breaking Assumption 2.

Proof: B is given g1, g2, X1 X3, T . It will simulate

GameI B B E
q or GameI B B E

Final′
with A. It chooses random

exponents yg, yu, yw, yv, α0, . . . , αℓ, δ ∈ ZN , and sets

g = g
yg

1 , u = g
yu

1 , w = g
yw

1 , v = g
yv

1 , h = g1. It publishes

the public parameters:

P K = (g, u, w, h, vα j , hα j , e(g, h)δ : j ∈ [0, ℓ])

When A makes a ciphertext query by sending two messages

M0, M1 and the set of receivers, S, B responds to A by

choosing random t, s, a, b ∈ ZN . Then, it randomly selects

f ∈ {0, 1} and returns

C = M f e(g, h)δs, C0 = hs ga
2 ,

C1 = ws gb
2v〈�α, �Z〉t , C2 = h〈�α, �Z〉t , C3 = ut }.

When A makes private key queries, for some identity i , A

chooses a random y ′
i , r ′

i ∈ ZN and returns

{(X1 X3g2)
yw y′

i , (X1 X3g2)
y′

i ,

(X1 X3g2)
yv y′

i T yur ′
i , T r ′

i (−a0x j/x0+a j ) : j ∈ [1, ℓ]}.

We let g
yx1

1 g
yx2

2 denote X1 X3. Then, yi equals to yx1 y ′
i modulo

p1 and ỹi equals to y ′
i modulo p2 and yx3 y ′

i modulo p3. Also,

ri equals to tr ′
i modulo p1 if we write the G p1 of T as gt

1.

Also it impicitly sets that ψ = yw and σ = yv modulo p2, p3.

If T ∈ G p1 , this has simulated GameI B B E
q , properly. Also,

If T ∈ G p1 p3 , because yu and a j modulo p3 do not appear

anywhere else, the random elements of G p3 are added in

K2 and K3, j to each key and randomized by r ′
i . Hence, this

has well simulated GameI B B E
Final′

. �

Lemma 2.2: Suppose there exists a polynomial time algo-

rithm A such that GameI B B E
Final′

AdvA−GameI B B E
Final′′

AdvA = ǫ.

Then we can construct a polynomial time algorithm B with

advantage ǫ in breaking Assumption 2.

Proof: B is given g1, g3, X1 X2, T . It will simulate

GameI B B E
Final′

or GameI B B E
Final′′

with A. It chooses random expo-

nents yg, yu, yw, yv , α0, . . . , αℓ, δ, ψ, σ ∈ ZN , and sets

g = g
yg

1 , u = g
yu

1 , w = g
yw

1 , v = g
yv

1 , h = g1. It publishes

the public parameters:

P K = (g, u, w, h, vα j , hα j , e(g, h)δ)

When A makes private key queries, for some identity i , B

chooses a random yi , r ′
i , γ

′
0, . . . , γ

′
ℓ ∈ ZN and it returns

K0 = (X1 X2)
yw y′

i g
ψy′

i

3 , K1 = (X1 X2g3)
y′

i ,

K2 = (X1 X2)
yv y′

i g
σ y′

i

3 uri (g3)
ri γ

′
0,

K3, j = hri (−α0x j /x0+α j )(g3)
ri γ

′
j : j ∈ [1, ℓ]}

We let g
yx1

1 g
yx2

2 denote X1 X2. Then, yi equals to yx1 y ′
i modulo

p1 and ỹi equals to yx2 y ′
i modulo p2 and y ′

i modulo p3.

So, these are properly distributed semi-functional keys.

When A makes a ciphertext query by sending M0, M1 and

the set of receivers, S, B responds to A by choosing random

t ′, t ′′, t ′′′ ∈ ZN Then, it randomly selects f ∈ {0, 1} and

returns

C = M f e(g, T )δ, C0 = T ga
2 ,

C1 = T yw gb
2 T yv 〈�α, �Z〉t ′′′v〈�α, �Z〉t ′,

C2 = T 〈�α, �Z〉t ′′′h〈�α, �Z〉t ′, C3 = T yu t ′′′ gyut ′ .

We denote the G p1 part of T as gτ
1 . This implicitly sets s = τ

and t = t ′ + τ t ′′′ modulo p1.

If T ∈ G p1 , this B has properly simulated Game I B B E
Final′

.

If T ∈ G p1 p3 , we must argue that the G3 terms attached to

the ciphertext are uniformly random in order to claim that

B simulates properly GameI B B E
Final′′

. Let us denote by G3 the

part of ciphertext g
t0
3 , g

t1
3 , g

t2
3 and g

t3
3 . If we also denote by G3

the part of T as gτ ′′

3 , then t0 = τ ′′, t1 = τ ′′(yw + yv〈�α, �Z〉t ′′′),

t2 = τ ′′(〈�α, �Z 〉t ′′′) and t3 = τ ′′(yu t ′′′) modulo p3. Because

α j 〉, yw, yv , yu do not appears any G p3 parts in this simulation.

So, the G3 parts of the challenge ciphertext are randomly

distributed. Hence, it has simulated Game I B B E
Final′′

. �
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Lemma 2.3: Suppose there exists a polynomial time

algorithm A such that GameI B B E
Final′′

AdvA −

GameI B B E
Final AdvA = ǫ. Then we can construct a polynomial

time algorithm B with advantage ǫ in breaking Assumption 3.

Proof: B is given g1, g3, X1 X2, Y2Y3, T . It will simu-

late GameI B B E
Final′′

or GameI B B E
Final using A. It chooses random

exponents yg, yu, yw, yv , α0, . . . , αℓ ∈ ZN , and sets g = g
yg

1 ,

u = g
yu

1 , w = g
yw

1 , v = g
yv

1 and h = g1. It publishes the

public parameters:

P K = (g, u, w, h, vα j , hα j , e(T yg , g1))

When A makes private key queries, for some identity i , B

chooses a random y ′
i , r ′

i , γ
′
0, . . . γ

′
ℓ ∈ ZN and returns

K0 = T (yw+yg)wy′
i (Y2Y3)

(yw+yg)y′
i , K1 = T h y′

i (Y2Y3)
y′

i ,

K2 = T yv v y′
i (Y2Y3)

yv y′
i uri g

riγ
′
0

3 ,

K3, j = hri (−α0x j /x0+α j )g
ri γ

′
j

3 : j ∈ [1, ℓ]

If we write Y2Y3 and the G p1 p3 part of T as g
yy1

1 g
yy3

3 and

gδ
1gδ′′

3 , respectively, this implicitly sets yi = δ+ y ′
i modulo p1.

Also, ỹ ′
i equals to yy3 y ′

i +δ′′ modulo p3. ψ = yw + yg modulo

p2 and p3, and σ = yv modulo p2 and p3. If T ∈ G p1 p3 , ỹ ′
i

equals to yy2 y ′
i modulo p2. If T ∈ G, ỹ ′

i equals to yy3 y ′
i + δ′

modulo p2 if we write the G p2 part of T as gδ′

2 .

When A makes a ciphertext query by sending M0, M1 and

the set of receivers, S, B responds to A by choosing random

a′, b′, s′, t ∈ ZN and returning

C = e(T yg , X1 X2)
s ′
, C0 = (X1 X2)

s ′
(Y2Y3)

a′
,

C1 = (X1 X2)
yws ′

(Y2Y3)
b′
v〈�α, �Z〉t,

C2 = h〈�α, �Z〉t gt ′

3 , C3 = ut gt ′′

3

The random values are properly added into the G p2 p3 part

of the ciphertext because of a′, b′, t ′, t ′′. If T ∈ G p1 p3 , this

properly simulated GameI B B E
Final′′

. If T ∈ G, e(g2, g2)
δ′yx2

s ′

additionally added to C of the ciphertext. It should be noted

that the value of s′ modulo p2 appears C0 and C1 in the

ciphertext, but its value is not revealed because of a′ and b′

modulo p2. Hence, e(g2, g2)
δ′yx2

s ′
is uniformly random to A,

and this has well simulated GameI B B E
Final . �

B. Semi-Functional Key Invariance

It is quite challenging to prove that there is no polynomial

time algorithm B to distinguish between Game I B B E
k−1 and

GameI B B E
k with non-negligible advantage because there is

no restriction on B. Hence it can generate a semi-functional

ciphertext to test whether the kth key is semi-functional or

normal by decrypting the semi-functional ciphertext using

the kth key. In order to avoid this potential paradox, we

designed oracles which output the challenge ciphertext and the

private key unless the identities of the keys requested do not

belong to the set of the recipients’ identities of the challenge

ciphertext. However, constructing these oracles and proving

the invariance between them is still challenging when we

work with exponentially many users because we often have to

amplifying the randomness of system with the limited entropy

of public keys. Hence, we defined additionally ephemeral key

and ciphertext which are similar with the ephemeral

semi-functional key and ciphertext introduced in [27].

In this setting, an ephemeral key decrypts both a normal

and a semi-functional ciphertext, but an ephemeral challenge

ciphertext is decrypted only by a normal key.

Ephemeral key: Let K ′
0, K ′

1, K ′
2, and K ′

3, j be a normal key

generated by using the key generation algorithm. With

random γ0, γ1, . . . γℓ
R

←− ZN

K0 = K ′
0, K1 = K ′

1, K2 = K ′
2(g2g3)

γ0,

K3, j = K ′
3, j (g2g3)

γ j : j ∈ [1, ℓ]

Ephemeral ciphertext: Let C ′, C ′
0, C ′

1, C ′
2 and C ′

3 be a

properly distributed normal ciphertext. Then with random

a, b, α′
0, . . . , α

′
k, t ′, t ′′

R
←− ZN , and outputs

C = C ′, C0 = C ′
0ga

2 ,

C1 = C ′
1gb

2 g
σ 〈�α′, �Z〉t ′

2 , C2 = C ′
2g

〈�α′, �Z〉t ′

2 , C3 = C ′
3gt ′′

2

where �α′ = (α′
0,..α

′
k).

It should be noted that an ephemeral ciphertext has the

parameter σ shared with the semi-functional key.

1) Sequence of Games: In order to prove the invariance

between GameI B B E
k−1 and GameI B B E

k , we additionally define

security games having an ephemeral key and/or an ephemeral

ciphertext and the added restriction in modulo p3.

GameI B B E ′

k−1 This game is identical with Game I B B E
k−1 , except

for the added restriction that the identity of the (k-1)th key

cannot be equal to any of the identities of the challenge

ciphertext modulo p3.

GameE K
k In this game, the ciphertext is semi-functional and

the kth key is ephemeral. The additional restriction on

the identities modulo p3 is retained in this game.

GameEC
k In this game, both the ciphertext the kth key are

ephemeral. The additional restriction on the identities

modulo p3 is retained in this game.

GameI B B E ′

k This game is identical with Game I B B E
k , except

for the additional restriction on the identities modulo p3.

First, we will prove that GameI B B E
k ≈ GameI B B E ′

k . Then,

the steps GameI B B E ′

k−1 ≈ GameE K
k , GameE K

k ≈ GameEC
k ,

GameEC
k ≈ GameI B B E ′

k and GameI B B E ′

k ≈ GameI B B E
k will

be followed.

Lemma 3: Suppose there exists a polynomial time algorithm

A such that GameI B B E
k AdvA − GameI B B E ′

k AdvA = ǫ.

Then we can construct a polynomial time algorithm B with

advantage ǫ in breaking Assumption 2 or Assumption 3.

Proof: We suppose there exists a PPT attacker A

that distinguishes between Game I B B E
k and GameI B B E ′

k with

non-negligible advantage. Because A has non-negligible

advantage, it produces two values I,I ′ ∈ ZN which satisfy

I �= I ′ modulo N but I = I ′ modulo p3 with non-negligible

probability while it is simulating Game I B B E
k . We set A as the

g.c.d of I − I ′ and N and B as N/A. Then, p3 is divisible

by A, and B �= 1. There are two possible cases: 1) p1 is

divisible by B and 2) A = p1 p3, B = p2. The rest of the

proof can be described as the same manner of [14] and [27].

The case 1 can be used to break Assumption 2, and the case 2

can be used to break Assumption 3. �
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TABLE III

THE SUMMARY OF ORACLES

2) Oracle Lemmas: The invariance between Game I B B E ′

k−1

and GameI B B E ′

k will be proved by using the oracle lemmas.

In the following proofs, B uses oracles to simulate the security

games with A, but it cannot distinguish which oracles with

which it is working. We define four oracles (O0, O1, O2, O3).

Each oracle can response to an initial query, a challenge

key query and a challenge ciphertext query. We summarize

the relation between the oracles and the security games

in Table III.

In order to respond to an initial query, the oracles randomly

select g, u, w, v, h ∈ G p1 and α0, . . . , αℓ, s, a, ψ, ỹ, y,

σ ∈ ZN and return the group elements:

{g, u, w, h, vα j , hα j , hs ga
2 ,

wy(g2g3)
ψ ỹ, h y(g2g3)

ỹ, v y(g2g3)
σ ỹ : j ∈ [0, ℓ]}.

The responses that each oracle outputs as a challenge key and

a challenge ciphertext have different distributions according

to the type of oracle. They are distributed as the following:

Oracle O0: If the oracle receives a challenge key query

for an identity i ∈ ZN , it returns the group elements which

are identical with a normal key. Upon receiving a challenge

ciphertext query for a set of recipients S ⊂ {1, . . . , n}, it

calculates �Z for S and selects randomly b, t
R

←− ZN , then

returns the group elements

{ws gb
2v〈�α, �Z〉t , h〈�α, �Z〉t , ut }.

Oracle O1: If the oracle receives a challenge key query for an

identity i ∈ ZN , it selects randomly y ′, r ′, γ ′
0, . . . , γ

′
ℓ

R
←− ZN ,

then returns the group elements

{wy′
, h y′

, v y′
ur ′

(g2g3)
γ ′

0,

h(−α0x j /x0+α j )r
′
(g2g3)

γ ′
j : j ∈ [1, ℓ]}

The challenge ciphertext response is identical with O0.

Oracle O2: If the oracle receives a challenge ciphertext

query for a set of recipients S ⊂ {1, . . . , n}, it calculates �Z

for S and selects randomly b, t, α′
0, . . . , α

′
ℓ, t1, t2

R
←− ZN , then

returns the group elements

{ws gb
2v〈�α, �Z〉t g

σ 〈�α′, �Z〉t1
2 , h〈�α, �Z〉t g

〈�α′, �Z〉t1
2 , ut g

t2
2 }

It responses to a challenge key query in the same way as O1.

Oracle O3: If the oracle receives a challenge key query for

an identity i ∈ ZN , it selects randomly y ′, ỹ ′, r ′ R
←− ZN , then

returns the group elements

{wy′
(g2g3)

ψ ỹ′
, h y′

(g2g3)
ỹ′
, v y′

(g2g3)
σ ỹ′

ur ′
,

h(−α0x j /x0+α j )r
′
: j ∈ [1, ℓ]}

The challenge ciphertext response is identical with O0.

The invariances of (O0, O1, O2, O3) are proved by

TABLE IV

THE SUMMARY OF HOPS

several lemmas with additionally defined sub-oracles.

For the overview of proving sequences, we add Table IV.

Lemma 4: Suppose there exists a polynomial time

algorithm A such that O0 AdvA − O1 AdvA = ǫ . Then we

can construct a polynomial time algorithm B with advantage

ǫ in breaking Assumption 2 or Assumption 3.

Proof: This is proved by Lemma 4.1 and Lemma 4.2 with

an additional oracle O0.1.

Oracle O0.1: If the oracle receives a challenge key query for

an identity i ∈ ZN , it selects randomly y ′, r ′, γ ′
0, . . . γ

′
ℓ

R
←− ZN ,

then returns the group elements

{wy′
, h y′

, v y′
ur ′

g
γ ′

0

3 , h(−α0x j /x0+α j )r
′
g

γ ′
j

3 : j ∈ [1, ℓ]}.

It responses to an initial query and a challenge ciphertext query

in the same way as O0. �

Lemma 4.1: Suppose there exists a polynomial time

algorithm A such that O0 AdvA − O0.1 AdvA = ǫ . Then we

can construct a polynomial time algorithm B with advantage

ǫ in breaking Assumption 2.

Proof: B is given g1, g2, X1 X3, T . It will simulate

O0 or O0.1 using A. It chooses random exponents yg, yu, yw,

yv , α0, . . . , αℓ, s, a, ỹ ∈ ZN , and sets g = g
yg

1 , u = g
yu

1 ,

w = g
yw

1 , v = g
yv

1 , h = g1. It sends the group elements to A:

(g, u, w, h, vα j , hα j , hs ga
2 ,

(X1 X3)
yw g

yw ỹ
2 , (X1 X3)g

ỹ
2 , (X1 X3)

yv g
yv ỹ
2 : j ∈ [0, ℓ])

If we write X1 X3 as g
yx1

1 g
yx3

3 , this implicitly sets y equal to yx1

modulo p1 and ỹ equal to yx3 modulo p3. Also, ψ equals yw

and σ equals yv modulo p2 and p3. Because the values of yw

and yv modulo p1 do not correlate with their values in modulo

p2 and p3, this is properly distributed.

When A makes a ciphertext-type query for the set of

receivers, S∗, B chooses a random b, t ∈ ZN and returns the

group elements

{ws gb
2v〈�α, �Z〉t , h〈�α, �Z〉t , ut }.

When A makes a challenge key-type query for some

identity i , A chooses a random y ′ ∈ ZN and returns

{wy′
, h y′

, v y′
T yu , T −α0x j /x0+α j : j ∈ [1, ℓ]}.

This implicitly sets gr ′

1 to be the G p1 part of T . If T ∈ G p1 ,

then this matches the distribution of O0. If T ∈ G p1 p3 ,
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then this matches the distribution of O0.1. Also this implicitly

sets α′
j = α j , γ ′

0 = r ′′yu and γ ′
j = r ′′(−α0x j/x0+α j ) modulo

p3 when we write the G p3 part of T as gr ′′

3 . γ ′
0 contains yu

modulo p3 which does not appear anywhere else. Also, for

all j ∈ [1, ℓ], γ ′
j contains α j modulo p3 which also does

not appear anywhere else. Because yu modulo p3 and α j

modulo p3 are not correlated with their values in modulo p1,

this challenge ciphertext is randomly distributed. �

Lemma 4.2: Suppose there exists a polynomial time

algorithm A such that O0.1 AdvA − O1 AdvA = ǫ . Then we

can construct a polynomial time algorithm B with advantage

ǫ in breaking Assumption 3.

Proof: B is given g1, g3, X1 X2, Y2Y3, T . It will simulate

O0.1 or O1 using A. It chooses random exponents yg, yu, yw,

yv , α0, . . . , αℓ, ψ, y, ỹ, σ ∈ ZN , and sets g = g
yg

1 ,

u = g
yu

1 , w = g
yw

1 , v = g
yv

1 , and h = g1. It sends the group

elements to A:

(g, u, w, h, vα j , hα j , X1 X2,

wy(Y2Y3)
ψ ỹ, h y(Y2Y3)

ỹ, v y(Y2Y3)
σ ỹ : j ∈ [1, ℓ])

This is implicitly sets a = yx2 modulo p2 when we

write X1 X2 = gs
1g

yx2

2 .

When A makes a ciphertext-type query for the set of

recivers, S, B responds to A by choosing a random t ∈ ZN

and returning

{(X1 X2)
yw , v〈�α, �Z〉t , h〈�α, �Z〉t , ut }.

This implies b = yw yx2 modulo p2. a and b are uniformly

distributed because yw modulo p2 does not appear anywhere

else.

When A makes a challenge key-type query for some iden-

tity i , A chooses a random y ′ ∈ ZN and returns

{wy′
, h y′

, v y′
T yu , T −α0 x j/x0+α j : j ∈ [1, ℓ]}.

The G1 part of the challenge ciphertext is properly distributed

if we write gr ′

1 as the G1 part of T . If we write the G p3

part of T as gr ′′

3 , this implicitly sets γ ′
0 = r ′′yu modulo p3

and γ ′
j = r ′′(−α0x j/x0 + α j ) modulo p3. Because yu and

α j modulo p3 do not appear anywhere else, the G p3 parts

of this challenge ciphertext is randomly distributed. Hence,

if T ∈ G p1 p3 , then this matches the distribution of O0.1.

If T ∈ G, then this matches the distribution of O1 because

yu and α j modulo p2 do not appear anywhere else and does

not correlate their values in modulo p1 and p3, this is the

properly distributed challenge ciphertext. �

Lemma 5: Suppose there exists a polynomial time algo-

rithm A such that O1 AdvA − O2 AdvA = ǫ . Then we can

construct a polynomial time algorithm B with advantage ǫ in

breaking Assumption 2 or Assumption 3.

Proof: This is proved by Lemma 5.1, Lemma 5.2 and

Lemma 5.3 with additional oracles O1.1 and O1.2.

Oracle O1.1: If the oracle receives a challenge ciphertext

query for a set of recipients S ⊂ {1, . . . , n}, it selects randomly

b, t, α′
0, . . . , α

′
ℓ, t1, t2

R
←− ZN , then returns the group elements

{ws gb
2v〈�α, �Z〉t g

σ 〈�α′, �Z〉t1
3 , h〈�α, �Z〉t g

〈�α′, �Z〉t1
3 , ut g

t2
3 }.

It responses an initial query and a challenge ciphertext query

in the same way as O1.

Oracle O1.2: If the oracle receives a challenge cipher-

text query for an identity i ∈ ZN , it selects randomly

b, t, α′
0, . . . , α

′
ℓ, t1, t2

R
←− ZN , then returns the group elements

{ws gb
2v〈�α, �Z〉t (g2g3)

σ 〈�α′, �Z〉t1,

h〈�α, �Z〉t (g2g3)
〈�α′, �Z〉t1, ut (g2g3)

t2}

It responses an initial query and a challenge ciphertext query

in the same way as O1.1. �

Lemma 5.1: Suppose there exists a polynomial time algo-

rithm A such that O1 AdvA − O1.1 AdvA = ǫ . Then we can

construct a polynomial time algorithm B with advantage ǫ in

breaking Assumption 2.

Proof: B is given g1, g2, X1 X3, T . It will simulate O1

or O1.1 with A. It chooses random exponents yg, yw, yv ,

yh, σ ′, α0, . . . , αℓ, s, a, ỹ ∈ ZN , and sets g = g
yg

1 ,

u = g
yu

1 , w = g
yw

1 , v = g
yv

1 , h = g1. It sends the group

elements to A:

(g, u, w, h, vα j , hα j , hs ga
2 , (X1 X3)

yw g
yw ỹ
2 ,

(X1 X3)g
ỹ
2 , (X1 X3)

yv g
σ ′ ỹ
2 : j ∈ [0, ℓ])

We let X1 X3 denote as g
yx1

1 g
yx3

3 . Then, this implicitly sets

y equals to yx1 modulo p1. Also, ψ equal to yw sets σ equal

to σ ′ modulo p2 and yv modulo p3.

When A makes a challenge key-type query for some iden-

tity i , A chooses a random y ′, r ′, γ ′
0, . . . , γ

′
ℓ ∈ ZN and returns

{wy′
, h y′

, v y′
(X1 X3)

r ′ yu g
γ ′

0

2 ,

(X1 X3)
r ′(−α0x j /x0+α j )g

γ ′
j

2 : j ∈ [1, ℓ]}

This implies that γ ′
0 = r ′yu yx3 modulo p3 and

γ ′
j = r ′(−α0x j/x0 + α j )yx3 modulo p3.

When A makes a ciphertext-type query for the set of

recivers, S, B responds to A by returning

{ws gb
2 T yv 〈�α, �Z〉, T 〈�α, �Z〉, T yu }.

This implicitly sets gt to be the G p1 part of T . If T ∈ G p1 ,

then this matches the distribution of O1 because yu, α j of

G p3 part of the challenge key does not appear anywhere

else. However, if T ∈ G p1 p3 , α j modulo p3 for j ∈ [0, ℓ]
also appears in the challenge ciphertext. We must argue

−α0x j/x0+α j modulo p3 for j ∈ [1, ℓ] are uniformly random

even if 〈�α, �Z〉 modulo p3 for j ∈ [0, ℓ] is given: Let α′
j = α j

modulo p3 for all j ∈ [0, ℓ]. Then, we rewrite the relations

γ ′
j , α′

j and 〈�α′, �Z〉 as follows.

⎛

⎜

⎜

⎜

⎜

⎜

⎝

−x1/x0 1

−x2/x0 1
...

. . .

−xk/x0 1

z0 z1 z2 · · · zk

⎞

⎟

⎟

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎜

⎜

⎝

α′
0

α′
1
...

α′
k−1

α′
k

⎞

⎟

⎟

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎜

⎜

⎝

γ ′
1

γ ′
2
...

γ ′
k

〈�α′, �Z〉

⎞

⎟

⎟

⎟

⎟

⎟

⎠

Because α′
j modulo p3 is uniformly random and does not

correlate their values with those in modulo p1 by CRT, γ ′
j for

all j ∈ [1, ℓ] and 〈�α′, �Z〉 are k-wise independent for k > 1.
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This implies that γ ′
1, . . . , γ

′
k are 〈�α′, �Z〉 are uniformly

distributed. It should be noted that if k = 1, γ ′
1 is equal to

〈�α′, �Z 〉 because z0 equal to −x1/x0 and z1 = 1. Also, we

stress that γ ′
k+1, . . . γ

′
ℓ given to the adversary shares the α′

0,

but the value of α′
0 is not revealed because for all j ∈ [k+1, ℓ],

γ ′
j has α j which does not appear anywhere else. �

Lemma 5.2: Suppose there exists a polynomial time algo-

rithm A such that O1.1 AdvA − O1.2 AdvA = ǫ . Then we can

construct a polynomial time algorithm B with advantage ǫ in

breaking Assumption 3.

Proof: B is given g1, g3, X1 X2, Y2Y3, T . It will simulate

O1.1 or O1.2 with A. It chooses random exponents yg, yu, yw,

yv , α0, . . . , αℓ, ψ, y, ỹ, σ ∈ ZN , and sets g = g
yg

1 , u = g
yu

1 ,

w = g
yw

1 , v = g
yv

1 , and h = g1. It sends the group

elements to A:

(g, u, w, h, vα j , hα j , (X1 X2),

wy(Y2Y3)
ψ ỹ, h y(Y2Y3)

ỹ, v y(Y2Y3)
yv ỹ : j ∈ [0, ℓ])

This implicitly sets a = yx2 modulo p2 if we write

X1 = gs
1g

yx2

2 .

When A makes a challenge key-type query for some

identity i , A chooses a random y ′, r ′, γ ′
0, . . . , γ

′
ℓ ∈ ZN and

returns

{wy′
, h y′

, v y′
ur ′

(Y2Y3)
γ ′

0,

hr ′(−α0x j /x0+α j )(Y2Y3)
γ ′

j : j ∈ [1, ℓ]}

When A makes a ciphertext-type query for the set of recivers,

S, B responds to A by returning

{(X1 X2)
yw T yv 〈�α, �Z〉, T 〈�α, �Z〉, T yu }.

This implies b = yw yx2 . a and b modulo p2 are uniformly

distributed because yw modulo p2 do not appear anywhere

else.

If T ∈ G, then this matches the distribution of O1.2. If we

write (g2g3)
t ′ to be the G p2 p3 part of T ., then this implies

that t1 = t ′, t2 = t ′yu and α′
j = α j modulo p2 and p3

for j ∈ [0, ℓ]. Because α j , yu modulo p2 and p3 do not

appear anywhere else, these are properly distributed. Similarly,

If T ∈ G p1 p3 , then this matches the distribution of O1.1. �

Lemma 5.3: Suppose there exists a polynomial time algo-

rithm A such that O1.2 AdvA − O2 AdvA = ǫ . Then we can

construct a polynomial time algorithm B with advantage ǫ in

breaking Assumption 2.

Proof: B is given g1, g2, X1 X3, T . It will simu-

late O1.2 or O2 with A. It chooses random exponents

yg, yw, yv , α0, . . . , αℓ, s, a, y2 ∈ ZN , and sets g = g
yg

1 ,

u = g1, w = g
yw

1 , v = g
yv

1 , h = g1. Then, the responses

of the initial and challenge-key queries can be generated the

same way as Lemma 5.1.

When A makes a ciphertext-type query for the set of

receivers, S, B randomly selects s, b, α0, . . . , αℓ, t1, t2 and

responds to A by returning

{ws gb
2 T yv 〈�α, �Z〉g

σ ′〈�α′, �Z〉t1
2 , T 〈�α, �Z〉g

〈�α′, �Z〉t1
2 , T g

t2
2 }.

This is possible because g2 was given. If we denote gt to be

the G p1 part of T, the G p1 part of the challenge ciphertext

is properly distributed. If T ∈ G p1 , then this matches the

distribution of O2. If T ∈ G p1 p3 , this matches the distribution

of O1.2 for the same reasons as for Lemma 5.1. �

Lemma 6: Suppose there exists a polynomial time

algorithm A such that O2 AdvA − O3 AdvA = ǫ . Then we

can construct a polynomial time algorithm B with advantage

ǫ in breaking Assumption 2 or Assumption 3.

Proof: This is proved by Lemmas 6.1 to 6.9 with

additional oracles Oracle O2.1, Oracle O2.2, Oracle O2.3,

Oracle O2.4, Oracle O2.5, Oracle O2.6, Oracle O2.7 and

Oracle O2.8.

Oracle O2.1: If the oracle receives a challenge key query

for an identity i ∈ ZN , it selects randomly y ′, ỹ ′, r ′, γ ′
0, . . . ,

γ ′
ℓ

R
←− ZN , then returns the group elements

{wy′
g

ψ ỹ′

3 , h y′
g

ỹ′

3 , v y′
ur ′

(g2g3)
γ ′

0 g
σ ỹ′

3 ,

hr ′(−α0x j /x0+α j )(g2g3)
γ ′

j : j ∈ [1, ℓ]}

It responses to an initial query and a challenge ciphertext query

in the same way as O2.

Oracle O2.2: The response for an initial query is identical

with that of O2.1 except that hs(g2g3)
a replaces hs ga

2 .

If the oracle receives a challenge ciphertext query for

a set of recipients S ⊂ {1, . . . , n}, it selects randomly

b, α′
0, . . . , α

′
ℓ, t, t1, t2, t3, t4, t5

R
←− ZN , then returns the group

elements

{ws gb
2v〈�α, �Z〉t g

σ 〈�α′, �Z〉t1
2 g

t3
3 , h〈�α, �Z〉t g

〈�α′, �Z〉t1
2 g

t4
3 , ut g

t2
2 g

t5
3 }

It responses to a challenge ciphertext query in the same way

as O2.1.

Oracle O2.3: If the oracle receives a challenge key query

for identity i ∈ ZN , it selects randomly y ′, ỹ ′, r ′, γ ′
0, . . . ,

γ ′
ℓ

R
←− ZN , then returns the group elements

{wy′
(g2g3)

ψ ỹ′
, h y′

(g2g3)
ỹ′
, v y′

ur ′
(g2g3)

γ ′
0+σ ỹ′

,

hr ′(−α0x j /x0+α j )(g2g3)
γ ′

j : j ∈ [1, ℓ]}

It responds to an initial query and a challenge ciphertext query

in the same way as O2.2.

Oracle O2.4: The response for an initial query is identical

with that of O2.1.

If the oracle receives a challenge ciphertext query for

a set of recipients S ⊂ {1, . . . , n}, it selects randomly

s, b, α′
0, . . . , α

′
ℓ, t, t1, t2

R
←− ZN , then returns the group

elements

{ws gb
2v〈�α, �Z〉t g

σ 〈�α′, �Z〉t1
2 , h〈�α, �Z〉t g

〈�α′, �Z〉t1
2 , ut g

t2
2 }

It responds to a challenge ciphertext query in the same way

as O2.3.

Oracle O2.5: If the oracle receives a challenge ciphertext

query for a set of recipients S ⊂ {1, . . . , n}, it selects randomly

s, b, α′
0, . . . , α

′
ℓ, t, t1, t2, t3, t4

R
←− ZN , then returns the group

elements

{ws gb
2v〈�α, �Z〉t g

σ 〈�α′, �Z〉t1
2 g

σ t3
3 , h〈�α, �Z〉t g

〈�α′, �Z〉t1
2 g

t3
3 , ut g

t2
2 g

t4
3 }

It responds to an initial query and a challenge ciphertext query

in the same way as O2.4.
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Oracle O2.6: If the oracle receives a challenge ciphertext

query for a set of recipients S ⊂ {1, . . . , n}, it selects randomly

s, b, t, t3, t4
R

←− ZN , then returns the group elements

{ws gb
2v〈�α, �Z〉t g

σ t3
3 , h〈�α, �Z〉t g

t3
3 , ut g

t4
3 }

It responds to an initial query and a challenge ciphertext query

in the same way as O2.5.

Oracle O2.7: If the oracle receives a challenge ciphertext

query for a set of recipients S ⊂ {1, . . . , n}, it selects randomly

s, b, t
R

←− ZN , then returns the group elements

{ws gb
2v〈�α, �Z〉t , h〈�α, �Z〉t , ut }

It responds to an initial query and a challenge ciphertext query

in the same way as O2.6.

Oracle O2.8: If the oracle receives a challenge key query

for an identity i ∈ ZN , it selects randomly y ′, ỹ ′, r ′, γ ′′,

γ ′′′ R
←− ZN , then returns the group elements

{wy′
(g2g3)

ψ ỹ′
, h y′

(g2g3)
ỹ′
, v y′

ur ′
(g2g3)

σ ỹ′
g

γ ′
0

3 ,

hr ′(−α0 x j/x0+α j )g
γ ′

j

3 : j ∈ [1, ℓ]}

It responds to an initial query and a challenge ciphertext query

in the same way as O2.7. �

Lemma 6.1: Suppose there exists a polynomial time

algorithm A such that O2 AdvA − O2.1 AdvA = ǫ. Then we

can construct a polynomial time algorithm B with advantage

ǫ in breaking Assumption 2.

Proof: B is given g1, g2, X1 X3, T . It will simulate

O2 or O2.1 with A. It chooses random exponents

yg, yu, yw, yv , α0, . . . , αℓ, s, a, ỹ ∈ ZN , and sets g = g
yg

1 ,

u = g
yu

1 , w = g
yw

1 , v = g
yv

1 , and h = g1. It sends the group

elements to A:

(g, u, w, h, vα j , hα j , hs ga
2 ,

(X1 X3)
yw g

yw ỹ
2 , (X1 X3)g

ỹ
2 , (X1 X3)

yv g
yv ỹ
2 : j ∈ [1, ℓ])

This implicitly sets g
y
1 = X1 modulo p1. Also, ψ equals yw

and σ equals yv modulo p2, p3.

When A makes a ciphertext-type query for the set

of receivers, S, B responds to A by choosing random

b, t, α′
0, . . . , α

′
ℓ, t1, t2 ∈ ZN and returning

{ws gb
2v〈�α, �Z〉t g

yv〈�α
′, �Z〉t1

2 , h〈�α, �Z〉t g
〈�α′, �Z〉t1
2 , ut g

t2
2 }

where �α′ = (α′
0, . . . , α

′
ℓ).

When A makes a challenge key-type query for some

identity i , A chooses a random γ ∈ ZN and returns

{T yw , T, T yv (X1 X3g
γ
2 )yu ,

(X1 X3g
γ
2 )−α0x j /x0+α j : j ∈ [1, ℓ − 1]}

If we denote X1 X3 = g
yx1

1 g
yx3

3 , this implicitly sets r ′ = yx1

modulo p1. We note γ ′
0 = γ yu modulo p2 and γ ′

0 = yx3 yu

modulo p3, also γ ′
j = γ (−α0x j/x0 + α j ) modulo p2 and

γ ′
j = yx3(−α0x j/x0 + α j ) modulo p3.

Let T ∈ G p1 and g
y′

1 be the G p1 part of T , then this matches

the distribution of O2. If T ∈ G p1 p3 (g1g3)
y′

is the G p1 p3

part of T , then this matches the distribution of O2.1 because

yu and α0, . . . αℓ modulo p2 do not appear anywhere else. �

Lemma 6.2: Suppose there exists a polynomial time

algorithm A such that O2.1 AdvA − O2.2 AdvA = ǫ . Then we

can construct a polynomial time algorithm B with advantage

ǫ in breaking Assumption 3.

Proof: In this lemma G p2 and G p3 parts of Assumption 3

are reversed. B is given g1, g2, X1 X3, Y2Y3, T . It will simulate

O2.1 or O2.2 with A. It chooses random exponents yg, yu, yw,

yv , α0, . . . , αℓ, y, σ ∈ ZN , and sets g = g
yg

1 , u = g
yu

1 ,

w = g
yw

1 , v = g
yv

1 , h = g1. It sends the group elements to A:

(g, u, w, h, vα j , hα j , T, wy(Y2Y3)
yw ,

h y(Y2Y3), v
y(Y2Y3)

σ : j ∈ [1, ℓ])

This is properly distributed if we denote the G p1 part of T

by gs
1. Also, this sets ψ = yw modulo p2, p3. If T ∈ G p1 p2 ,

this is a properly distributed set of group elements of O2.1.

If T ∈ G, this is properly distributed set of group elements

of O2.2.

When A makes a challenge key-type query for some iden-

tity i , A chooses a random r ′, γ ′
0, . . . , γ

′
ℓ ∈ ZN and it returns

{(X1 X3)
yw , (X1 X3), (X1 X3)

yv ur ′
(Y2Y3)

γ ′
0,

hr ′(−α0x j /x0+α j )(Y2Y3)
γ ′

j : j ∈ [1, ℓ]}

This is properly a distributed challenge-key. It should be noted

that yv modulo p3 was used but not revealed because there

is random parameter γ ′
0 modulo p3 which does not appear in

any other component.

When A makes a ciphertext-type query for the set of

receivers, S, B responds to A by choosing random t ′, t ′′,

t ′′′ ∈ ZN and returns

{T yw T yv 〈�α, �Z〉t ′′′v〈�α, �Z〉t ′ g
σ 〈�α, �Z〉t ′

2 ,

T 〈�α, �Z〉t ′′′h〈�α, �Z〉t ′ g
〈�α, �Z〉t ′

2 , T yu t ′′′ gyut ′ gt ′′

2 }.

We denote the G p1 p2 part of T as gτ
1 gτ ′

2 . This implicitly

sets s = τ and t = t ′ + τ t ′′′ modulo p1. Also, G2 parts

of the challenge ciphertext distribute gb
2 g

σ 〈�α, �Z〉t1
2 , g

〈�α, �Z〉t1
2 , g

t2
2

where b = τ ′(yw + yv〈�α, �Z 〉t ′′′ − σ 〈�α, �Z〉t ′′′), t1 = τ ′t ′′′ + t ′,

t2 = yuτ
′t ′′′ + t ′′. b is not correlated with t1 and t2 because yv

modulo p2 appears only here. Also, due to t ′ and t ′′, t1 and t2
do not correlate. Therefore, the G2 terms here are properly

distributed. If T ∈ G p1 p2 , this B has properly simulated O2.1.

If T ∈ G, we must argue that the G3 terms attached to the

ciphertext are uniformly random in order to claim that B

simulates properly O2.2. Let us denote by G3 the part of

ciphertext g
t3
3 , g

t4
3 and g

t5
3 . If we also denote by G3 the part

of T as gτ ′′

3 , then t3 = τ ′′(yw+yv〈�α, �Z〉t ′′′), t4 = τ ′′(〈�α, �Z 〉t ′′′)
and t5 = τ ′′(yu t ′′′) modulo p3. Neither t3 nor t4 correlates

with t5 because of 〈�α, �Z〉 which is randomly distributed as

〈�α, �Z〉 modulo p3 do not appear anywhere. Also t3 and t4 do

not correlate to each other because yv does not reveal its value

although it appears within the challenge key. So, the G3 parts

of the challenge ciphertext are properly distributed. �

Lemma 6.3: Suppose there exists a polynomial time algo-

rithm A such that O2.2 AdvA − O2.3 AdvA = ǫ. Then we can
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construct a polynomial time algorithm B with advantage ǫ in

breaking Assumption 3.

Proof: B is given g1, g3, X1 X2, Y2Y3, T . It will sim-

ulate O2.2 or O2.3 with A. It chooses random exponents

yg, yu, yw, yv , α0, . . . , αℓ, s, a, y ∈ ZN , and sets g = g
yg

1 ,

u = g
yu

1 , w = g
yw

1 , v = g
yv

1 , and h = g1. It sends the group

elements to A:

(g, u, w, h, vα j , hα j , hs(Y2Y3)
a, wy(Y2Y3)

yw ,

h y(Y2Y3), v
y(Y2Y3)

yv : j ∈ [0, ℓ])

This implicitly sets ψ = yw and σ = yv modulo p2 and p3.

When A makes a ciphertext-type query for the set

of receivers, S, B responds to A by choosing random

b′, t ′, t4, t5 ∈ ZN and returns

{ws(Y2Y3)
b′
(X1 X2)

yv 〈�α, �Z〉t ′,

(X1 X2)
〈�α, �Z〉t ′ g

t4
3 , (X1 X2)

yu t ′ g
yu t5
3 }.

Then the G1 part of challenge ciphertext properly is distributed

and t = t ′yx1 . We write X1 = g
yx1

1 . Also, the G2 part

of challenge ciphertext, t1 = t ′ modulo p2 and t2 = yut ′

modulo p2, are properly distributed. Moreover, if we

denote Y2Y3 a g
yy2

2 g
yy3

3 , b modulo p2 equal to b′yy2 . The G3

part also properly distributed with random values, t3 = b′yy3

modulo p3, t4 and t5.

When A makes a challenge key-type query for some

identity i , A chooses a random r ′, γ ′
0, . . . , γ

′
ℓ ∈ ZN and returns

{T yw , T, T yv ur ′
(Y2Y3)

γ ′
0,

hr ′(−a0x j /x0+a j )(Y2Y3)
γ ′

j : j ∈ [1, ℓ]}

If T ∈ G p1 p3 , the challenge key type response is identically

distributed to a response from O2.2. If T ∈ G, then the

challenge key-type reponse is identically distributed to a

response from O2.3. �

Lemma 6.4: Suppose there exists a polynomial time

algorithm A such that O2.3 AdvA − O2.4 AdvA = ǫ . Then we

can construct a polynomial time algorithm B with advantage

ǫ in breaking Assumption 3.

Proof: In this lemma, G p2 and G p3 parts of Assumption 3

are reversed. B is given g1, g2, X1 X3, Y2Y3, T . It will simulate

O2.3 or O2.4 with A. It chooses random exponents yg, yu, yw,

yv , α0, . . . , αℓ, ψ, y ′, σ ∈ ZN , and set g = g
yg

1 , u = g
yu

1 ,

w = g
yw

1 , v = g
yv

1 , h = g1. Then, initial response, normal

keys can be responded by generating them as the same way

of Lemma 6.2.

When A makes a challenge key-type query for some iden-

tity i , A chooses a random r ′, γ ′
0, . . . , γ

′
ℓ ∈ ZN and returns

{(X1 X3g2)
yw , (X1 X3g2), (X1 X3g2)

yv ur ′
(Y2Y3)

γ ′
0,

hr ′(−a0x j/x0+a j )(Y2Y3)
γ ′

j : j ∈ [1, ℓ]}

This is properly distributed challenge-key. It should be noted

that yv modulo p2 and p3 was used but not revealed because

there is random parameter r ′ modulo p2 and p3 which does

not appear anywhere else.

When A makes a ciphertext-type query for the

set of receivers, S, B responds to A by choosing

random t ′, t ′′, t ′′′ ∈ ZN and returning

{T yw T yv 〈�α, �Z〉t ′′′v〈�α, �Z〉t ′ g
σ 〈�α, �Z〉t ′

2 ,

T 〈�α, �Z〉t ′′′h〈�α, �Z〉t ′ g
〈�α, �Z〉t ′

2 , T yu t ′′′ gyut ′ gt ′′

2 }.

Identically with lemma 6.2, if T ∈ G p1 p2 , this properly simu-

lates O2.4. Also, if T ∈ G, G p3 part of the challenge ciphertext

distributed randomly, and this properly simulates O2.3. �

Lemma 6.5: Suppose there exists a polynomial time

algorithm A such that O2.4 AdvA − O2.5 AdvA = ǫ . Then we

can construct a polynomial time algorithm B with advantage

ǫ in breaking Assumption 2.

Proof: B is given g1, g2, X1 X3, T . It will simulate

O2.4 or O2.5 using A. It chooses random exponents

yg, yu, yw, yv , α0, . . . , αℓ, s, a, ỹ ∈ ZN , and sets g = g
yg

1 ,

u = g
yu

1 , w = g
yw

1 , v = g
yv

1 and h = g1. It sends the following

group elements to A:

(g, u, w, h, vα j , hα j , hs ga
2 ,

(X1 X3)
yw g

yw ỹ
2 , (X1 X3)g

ỹ
2 , (X1 X3)

yv g
yv ỹ
2 : j ∈ [1, ℓ]).

This implicitly sets g
y
1 = X1 modulo p1 and g

ỹ
3 modulo p3.

Also, ψ = yw and σ = yv modulo p2 and p3.

When A makes a challenge key-type query for some

identity i , A chooses a random y ′′, r ′′, γ ′′
0 , . . . γ ′′

ℓ ∈ ZN and

returns

{(X1 X3g2)
yw y′′

, (X1 X3g2)
y′′

, (X1 X3g2)
yv y′′

(X1 X3)
r ′′ yu g

γ ′′
0

2 ,

(X1 X3)
r ′′(−α0x j /x0+α j )g

γ ′′
j

2 : j ∈ [1, ℓ]}

Let us write X1 X3 as g
yx1

1 g
yx3

3 , this implicitly sets

y ′ = yx1 y ′′ and r ′ = yx1r ′′ modulo p1. ỹ ′ equals to y ′′

modulo p2 and yx3 y ′′ modulo p3. Also, ψ = yw modulo

p2 and p3, and σ = yv modulo p2 and p3. γ ′
0 equals γ ′′

0

modulo p2 and yx3r ′′yu modulo p3. For j ∈ [1, ℓ], γ ′
j equals

γ ′′
j modulo p2 and yx3r ′′(−α0x j/x0 + α j ) modulo p3.

When A makes a ciphertext-type query for the set

of receivers, S, B responds to A by choosing random

b, t, α′
0, . . . , α

′
ℓ, t1, t2 ∈ ZN and returning

{ws gb
2 T yv 〈�α, �Z〉g

yv 〈�α
′, �Z〉t1

2 , T 〈�α, �Z〉g
〈�α′, �Z〉t1
2 , T yu g

t2
2 }

where �α′ = (α′
0, . . . , α

′
ℓ).

If T ∈ G p1 and gt
1 is the G p1 part of T , then this matches

the distribution of O2.4. If T ∈ G p1 p3 , gt
1gt ′

3 is the G p1 p3 part

of T , this implicitly sets t3 = 〈α, �Z 〉t ′ modulo p3 and t4 = yut ′

modulo p3. This matches the distribution of O2.5 because the

G p3 part in the challenge ciphertext is k-wise independent as

in Lemma 5.1. �

Lemma 6.6: Suppose there exists a polynomial time algo-

rithm A such that O2.5 AdvA − O2.6 AdvA = ǫ . Then we can

construct a polynomial time algorithm B with advantage ǫ in

breaking Assumption 3.

Proof: B is given g1, g3, X1 X2, Y2Y3, T . It will simulate

O2.5 or O2.6 with A. It chooses random exponents yg, yu, yw,

yv , α0, . . . , αℓ, ψ, y ∈ ZN , and sets g = g
yg

1 , u = g
yu

1 ,

w = g
yw

1 , v = g
yv

1 , h = g1. It sends to A the group elements:

(g, u, w, h, vα j , hα j , X1 X2, w
y(Y2Y3)

ψ ,

h y(Y2Y3), v
y(Y2Y3)

yv : j ∈ [1, ℓ])
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This is properly distributed if we set X1 X2 = gs
1ga

2 . Moreover,

this implies that σ = yv modulo p2 and p3.

When A makes a challenge key-type query for some

identity i , A chooses a random y ′, r ′, γ ′
0, . . . , γ

′
ℓ ∈ ZN and

returns

{wy′
(Y2Y3)

ψy′
, h y′

(Y2Y3)
y′
, v y′

ur ′
(Y2Y3)

γ ′
0+yv y′

,

hr ′(−α0 x j/x0+α j )(Y2Y3)
γ ′

j : j ∈ [1, ℓ]}.

When A makes a ciphertext-type query for the set of

receivers, S, B responds to A returning

{(X1 X2)
yw T yv 〈�α, �Z〉, T 〈�α, �Z〉, T yu }

Because yw and yv modulo p2 do not appear anywhere else,

gb
2 = g

ayw

2 is randomly distributed. T ∈ G p1 p3 , 〈�α, �Z 〉 modulo

p3 appears to be uniformly random to the adversary since

α j and yu modulo p3 do not appear anywhere else. Hence,

this matches the distribution of O2.6. If T ∈ G, this implies

that α′
j = α j modulo p2, t1 = t ′ and t2 = yut ′ where we

denote by G2 the part of T as g
t1
2 . It should be noted that

yu modulo p2 does not appear anywhere else. So, t2 is also

uniformly random to the adversary. Therefore, this matches

the distribution of O2.5. �

Lemma 6.7: Suppose there exists a polynomial time algo-

rithm A such that O2.6 AdvA − O2.7 AdvA = ǫ. Then we can

construct a polynomial time algorithm B with advantage ǫ in

breaking Assumption 2.

Proof: B is given g1, g2, X1 X3, T . It will simulate

O2.6 or O2.7 with A. It chooses random exponents

yg, yw, yv , α0, . . . , αℓ, s, a, ỹ ∈ ZN , and sets g = g
yg

1 ,

u = g1, w = g
yw

1 , v = g
yv

1 , h = g1. It sends to A the group

elements:

(g, u, w, h, vα j , hα j , hs ga
2 , (X1 X3)

yw g
yw ỹ
2 ,

(X1 X3)
yh g

ỹ
2 , (X1 X3)

yv g
yv ỹ
2 : j ∈ [1, ℓ]).

This is properly distributed. Also, ψ = yw and σ = yv

modulo p2, p3.

When A makes a challenge key-type query for some

identity i , A chooses a random y ′′, r ′, γ ′
0, . . . , γ

′
ℓ ∈ ZN returns

{(X1 X3g2)
yw y′

, (X1 X3g2)
y′
, (X1 X3g2)

yv y′
(X1 X3)

yur ′
g

γ ′
0

2 ,

(X1 X3)
r ′(−α0x j /x0+α j )g

γ ′
j

2 : j ∈ [1, ℓ − 1]}

When A makes a ciphertext-type query for the set of receivers,

S, B randomly choose b, t1, t2 and responds to A by returning

{ws gb
2 T yv 〈�α, �Z〉, T 〈�α, �Z〉, T yu }.

This implicitly sets gt
1 to be the G p1 part of T . If T ∈ G p1 ,

then this matches the distribution of O2.7. If T ∈ G p1 p3 , for

the same reasons as Lemma 6.5, this matches the distribu-

tion of O2.6. �

Lemma 6.8: Suppose there exists a polynomial time algo-

rithm A such that O2.7 AdvA − O2.8 AdvA = ǫ . Then we can

construct a polynomial time algorithm B with advantage ǫ in

breaking Assumption 3.

Proof: B is given g1, g3, X1 X2, Y2Y3, T . It will sim-

ulate O2.7 or O2.8 with A. It chooses random exponents

yg, yu, yw, yv , α0, . . . , αℓ, s, a, y, ψ, σ ∈ ZN , and sets

g = g
yg

1 , u = g
yu

1 , w = g
yw

1 , v = g
yv

1 , h = g1. It sends to

A the group elements:

(g, u, w, h, vα j , hα j , X1 X2, w
y(Y2Y3)

ψy,

h y(Y2Y3)
y, v y(Y2Y3)

σ y : j ∈ [0, ℓ])

When A makes a ciphertext-type query for the set of recivers,

S, B responds to A by choosing random t ∈ ZN and returning

{(X1 X2)
yw g

yv 〈�α, �Z〉t
1 , g

〈�α, �Z〉t
1 , g

yu t
1 }.

Then the G p1 part of challenge ciphertext properly distributed

if we denotes X1 X2 = gs
1g

yx2

1 . Also, the G p2 part of chal-

lenge ciphertext, b = yx2 yw modulo p2. This is a properly

distributed ciphertext because yx2 modulo p2 does not appear

anywhere else.

When A makes a challenge key-type query for some

identity i , A chooses a random y ′′, r ′ ∈ ZN and returns

{wy(Y2Y3)
ψy′′

, h y(Y2Y3)
y′′

, v y(Y2Y3)
σ y′′

T yu ,

T (−a0x j /x0+a j ) : j ∈ [1, ℓ]}.

The G p1 part of the challenge key is properly distributed if

we implicitly set the G p1 part of T as gr ′

1 . Moreover, if we

write Y2Y3 as g f r f t
yy2

2 g
yy3

3 , ỹ ′ is equal to y ′′yy2 modulo p2

and y ′′yy3 modulo p3.

If T ∈ G p1 p3 , the challenge key type response is identically

distributed to a response from O2.8 because α j and yu modulo

p3 do not appear anywhere else. If T ∈ G, then the challenge

key-type response is identically distributed with a response

from O2.7. because α j and yu modulo p2 and p3 do not appear

anywhere else. �

Lemma 6.9: Suppose there exists a polynomial time algo-

rithm A such that O2.8 AdvA − O3 AdvA = ǫ . Then we can

construct a polynomial time algorithm B with advantage ǫ in

breaking Assumption 2.

Proof: B is given g1, g2, X1 X3, T . It will simulate O2.8

or O3 with A. It chooses random exponents yg, yu, yw,

yv , α0, . . . , αℓ, s, a, y2 ∈ ZN , and sets g = g
yg

1 , u = g
yu

1 ,

w = g
yw

1 , v = g
yv

1 , h = g1. It sends to A the group elements:

(g, u, w, h, vα j , hα j , hs ga
2 , (X1 X3)

yw g
yw y2

2 ,

(X1 X3)g
y2

2 , (X1 X3)
yv g

yv y2

2 : j ∈ [1, ℓ]).

This is properly distributed and implies that ψ = yw and

σ = yv modulo p2, p3.

When A makes a ciphertext-type query for the set of

receivers, S, B responds to A by choosing random t, t1,

t2 ∈ ZN and returns

{ws gb
2v〈�α, �Z〉t , h〈�α, �Z〉t , ut }.

When A makes a challenge key-type query for some

identity i , A chooses a random ỹ ′ ∈ ZN and returns

{(X1 X3g
ỹ′

2 )yw , (X1 X3g
ỹ′

2 ),

(X1 X3g
ỹ′

2 )yv T yur ′
, T r ′(−a0x j /x0+a j ) : j ∈ [1, ℓ]}.

This implicitly sets gr ′

1 to be the G p1 part of T . If T ∈ G p1 p3 ,

the G p3 part of the challenge key is properly distributed
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because yu and a j modulo p3 do not appear anywhere else.

Hence, this matches the distribution of O2.8 If T ∈ G p1 , then,

this matches the distribution of O3. �

Lemma 7: Suppose there exists a polynomial time algo-

rithm A such that GameI B B E ′

k−1 AdvA−GameI B B E ′

k AdvA = ǫ.

Then we can construct a polynomial time algorithm B with

advantage ǫ in breaking Assumption 2 or Assumption 3.

Proof: We assume there exists a PPT attacker A who

distinguishes between GameI B B E ′

k−1 and GameI B B E ′

k with

non-negligible advantage. This means that A can distin-

guish at least one of following games such as Game I B B E ′

k−1

and GameE K
k , GameE K

k and GameEC
k , and GameEC

k and

GameI B B E ′

k with non-negligible advantage. If this adversary

exists, this can be used to create a PPT algorithm B distin-

guishing one of following pairs of oracles such as O0 and O1,

O1 and O2 and O2 and O3 with non-negligible advantage.

However, this violates one of Lemmas 4, 5 and 6.

Assuming that B interacts with one of O0, O1, O2 and O3.

Each oracle outputs as an initial response the group elements

{g, u, w, h, vα j , hα j , hs ga
2 ,

wy(g2g3)
ψ ỹ, h y(g2g3)

ỹ, v y(g2g3)
σ ỹ : ∀ j ∈ [0, ℓ]}.

B randomly chooses δ ∈ ZN , and gives to A the public

parameters,

P K = {N, G, g, u, w, vα j , hα j , e(g, h)δ : ∀ j ∈ [0, ℓ]}.

To create the first k − 1 semi-functional keys, B generates

K0, K1, K2, and K3, j using the key generation algorithm.

Then, it randomly chooses δ, y ′
i ∈ ZN and, by using the

semi-functional elements in the initial response, constructs

semi-functionl keys as:

K ′
0 = gδ K0(w

y(g2g3)
ψ ỹ)y′

i , K ′
1 = K1(h

y(g2g3)
ψ ỹ)y′

i ,

K ′
2 = K2(v

y(g2g3)
σ ỹ)y′

i , K ′
3, j = K3, j : j ∈ [1, ℓ]

This implicitly sets yi = yy ′
i + y ′′

i modulo p1 and y = yy ′
i

modulo p2, p3 when we let y ′′
i be a randomization parameter

shared in the first three components of the normal key for

identity i .

For responding normal keys (> k), B generates normal

keys by the key generation algorithm. This is possible because

B knows M SK = {δ}. It forwarded a normal key to the A.

If A requests the kth key for some identity i , B makes a

challenge key-type query to the oracle with i . Then, oracle

returns group elements, {T0, T1, T2, T3, j : j ∈ [1, ℓ]}.
B constructs the challenge key for A as:

K0 = gδT0, K1 = T1, K2 = T2, K3, j = T3, j : j ∈ [1, ℓ]

If the oracle which B interacts with is O0, this challenge key

is a properly distributed normal key. If the oracle is O1, this

key will be a properly distributed ephemeral key. If the oracle

is O2, this key will be distributed as ephemeral key, properly.

If B is interacting with O3, this will be distributed as a proper

semi-functional key.

When A requests challenge-ciphertext with the set of

receivers S for messages M0, M1, B forwards this query to

the oracle and the received group elements (T ′
1, T ′

2, T ′
3). Then

B choose f ∈ {0, 1}, and construct the ciphertext as:

C = M f e(gδ, hs ga
2 ), C0 = hs ga

2 , C1 = T ′
1, C2 = T ′

2, C3 = T ′
3

and returns it to A.

If B is interacting with O0, O1, O3 then the challenge

ciphertext will be a properly distributed semi-functional

ciphertext. Otherwise, if the oracle which B interacts is O2,

then the challenge ciphertext will be an properly distributed

ephemeral ciphertext.

Thus, if B interacts with O0, O1, O2 and O3, then it

has properly simulated GameI B B E ′

k−1 , GameE K
k , GameEC

k and

GameI B B E ′

k , respectively. Thus, if A distinguishes at least one

of the pairs of games with non-negligible advantage, B can use

this to distinguish a corresponding pair of oracles with non-

negligible advantage. This violates Lemmas 3, 4 or 5. �

V. CONCLUSION

In this paper, we introduced the adaptively secure identity-

based broadcast encryption scheme featuring constant size

ciphertext. The public parameters and private keys in our

scheme increase linearly with the maximum number of

receivers, but not the total number of users. Also, the computa-

tional complexity of the decryption process of our scheme only

depends on the number of receivers. Finally, we showed that

our scheme is adaptively secure under the general decisional

subgroup assumption instead of multiple subgroup decisional

assumptions in the standard model through the use of the dual

system encryption technique.

REFERENCES

[1] A. Fiat and M. Naor, “Broadcast encryption,” in Proc. CRYPTO, 1993,
pp. 480–491.

[2] C. Gentry and B. Waters, “Adaptive security in broadcast encryp-
tion systems (with short ciphertexts),” in Proc. 28th Annu. Int.

Conf. EUROCRYPT, 2009, pp. 171–188.

[3] D. Boneh, C. Gentry, and B. Waters, “Collusion resistant broadcast
encryption with short ciphertexts and private keys,” in Proc. CRYPTO,
2005, pp. 258–275.

[4] C. Delerablée, “Identity-based broadcast encryption with constant size
ciphertexts and private keys,” in Proc. ASIACRYPT, 2007, pp. 200–215.

[5] R. Sakai and J. Furukawa, “Identity-based broadcast encryption,” IACR

Cryptol. ePrint Archive, vol. 2007, p. 217, 2007.

[6] A. Shamir, “Identity-based cryptosystems and signature schemes,” in
Proc. CRYPTO, 1984, pp. 47–53.

[7] J. Baek, R. Safavi-Naini, and W. Susilo, “Efficient multi-receiver
identity-based encryption and its application to broadcast encryption,”
in Proc. 8th Int. Workshop Theory Public Key Cryptography, 2005,
pp. 380–397.

[8] M. Barbosa and P. Farshim, “Efficient identity-based key encapsulation
to multiple parties,” in Proc. IMA Int. Conf., 2005, pp. 428–441.

[9] N. P. Smart, “Efficient key encapsulation to multiple parties,” in Proc.

4th Int. Conf. SCN, 2004, pp. 208–219.

[10] Y. Dodis and N. Fazio, “Public key broadcast encryption for stateless
receivers,” in Proc. Digit. Rights Manage. Workshop, 2002, pp. 61–80.

[11] D. Halevy and A. Shamir, “The LSD broadcast encryption scheme,” in
Proc. 22nd Annu. Int. CRYPTO, 2002, pp. 47–60.

[12] D. Naor, M. Naor, and J. B. Lotspiech, “Revocation and tracing
schemes for stateless receivers,” in Proc. 21st Annu. Int. CRYPTO, 2001,
pp. 41–62.

[13] B. Waters, “Dual system encryption: Realizing fully secure IBE and
HIBE under simple assumptions,” in Advances in Cryptology (Lecture
Notes in Computer Science), vol. 5677, S. Halevi, Ed. Berlin, Germany:
Springer-Verlag, 2009, pp. 619–636.



IE
E
E

P
ro

o
f

KIM et al.: ADAPTIVELY SECURE IDENTITY-BASED BROADCAST ENCRYPTION 15

[14] A. Lewko and B. Waters, “New techniques for dual system encryption
and fully secure HIBE with short ciphertexts,” in Theory of Cryptogra-

phy (Lecture Notes in Computer Science), vol. 5978, D. Micciancio, Ed.
Berlin, Germany: Springer-Verlag, 2010, pp. 455–479.

[15] A. Lewko, T. Okamoto, A. Sahai, K. Takashima, and B. Waters,
“Fully secure functional encryption: Attribute-based encryption and
(hierarchical) inner product encryption,” in Advances in Cryptology
(Lecture Notes in Computer Science), vol. 6110, H. Gilbert, Ed. Berlin,
Germany: Springer-Verlag, 2010, pp. 62–91.

[16] M. Bellare, B. Waters, and S. Yilek, “Identity-based encryption secure
against selective opening attack,” in Theory of Cryptography (Lecture
Notes in Computer Science), vol. 6597, Y. Ishai, Ed. Berlin, Germany:
Springer-Verlag, 2011, pp. 235–252.

[17] B. Malek and A. Miri, “Adaptively secure broadcast encryption with
short ciphertexts,” IJ Netw. Secur., vol. 14, no. 2, pp. 71–79, 2012.

[18] Y. Ren and D. Gu, “Fully CCA2 secure identity based broadcast
encryption without random oracles,” Inf. Process. Lett., vol. 109, no. 11,
pp. 527–533, May 2009.

[19] A. Lewko, A. Sahai, and B. Waters, “Revocation systems with very
small private keys,” in Proc. IEEE Symp. Secur. Privacy, May 2010,
pp. 273–285.

[20] M. Naor and B. Pinkas, “Efficient trace and revoke schemes,” in Proc.

4th Int. Conf. Financial Cryptography, 2000, pp. 1–20.
[21] N. Attrapadung, “Dual system encryption via doubly selective security:

Framework, fully secure functional encryption for regular languages,
and more,” in Advances in Cryptology (Lecture Notes in Computer
Science), vol. 8441, P. Q. Nguyen and E. Oswald, Eds. Berlin, Germany:
Springer-Verlag, 2014, pp. 557–577.

[22] D. Boneh, B. Waters, and M. Zhandry, “Low overhead broadcast encryp-
tion from multilinear maps,” IACR Cryptol. ePrint Archive, vol. 2014,
p. 195, 2014.

[23] N. Attrapadung and B. Libert, “Functional encryption for inner product:
Achieving constant-size ciphertexts with adaptive security or support for
negation,” in Proc. 13th Int. Conf. Pract. Theory Public Key Cryptogra-

phy (PKC), vol. 6056. Paris, France, May 2010, pp. 384–402. [Online].
Available: http://dx.doi.org/10.1007/978-3-642-13013-7

[24] D. Boneh and M. Hamburg, “Generalized identity based and broadcast
encryption schemes,” in Proc. 14th Int. Conf. Theory Appl. Cryptol.

Inf. Secur. Adv. Cryptol. (ASIACRYPT), vol. 5350. Melbourne, Vic.,
Australia, Dec. 2008, pp. 455–470.

[25] M. Zhang, B. Yang, Z. Chen, and T. Takagi, “Efficient and adaptively
secure broadcast encryption systems,” Secur. Commun. Netw., vol. 6,
no. 8, pp. 1044–1052, Aug. 2013.

[26] L. Zhang, Y. Hu, and Q. Wu, “Adaptively secure identity-based broadcast
encryption with constant size private keys and ciphertexts from the
subgroups,” Math. Comput. Model., vol. 55, nos. 1–2, pp. 12–18,
Jan. 2012.

[27] A. Lewko and B. Waters, “Unbounded HIBE and attribute-based encryp-
tion,” in Advances in Cryptology (Lecture Notes in Computer Science),
vol. 6632, K. G. Paterson, Ed. Berlin, Germany: Springer-Verlag, 2011,
pp. 547–567.

[28] D. Boneh, E.-J. Goh, and K. Nissim, “Evaluating 2-DNF formulas on
ciphertexts,” in Theory of Cryptography (Lecture Notes in Computer
Science), vol. 3378, J. Kilian, Ed. Berlin, Germany: Springer-Verlag,
2005, pp. 325–341.

[29] A. Guillevic, “Comparing the pairing efficiency over composite-
order and prime-order elliptic curves,” in Applied Cryptography and

Network Security (Lecture Notes in Computer Science), vol. 7954,
M. Jacobson, Jr., M. Locasto, P. Mohassel, and R. Safavi-Naini, Eds.
Berlin, Germany: Springer-Verlag, 2013, pp. 357–372.

[30] A. K. Lenstra, “Unbelievable security matching AES security using
public key systems,” in Proc. 7th Int. Conf. Theory Appl. Cryptol.

Inf. Secur. Adv. Cryptol. (ASIACRYPT), Gold Coast, Qld, Australia,
Dec. 2001, pp. 67–86.

Jongkil Kim is currently pursuing the Ph.D. degree
with the School of Computer Science and
Software Engineering, University of Wollongong,
Wollongong, NSW, Australia. He is a member of
the Centre for Computer and Information Security
Research. His main research interest is in functional
encryption, including broadcast encryption.

Willy Susilo (SM’01) received the Ph.D. degree
in computer science from the University of
Wollongong, Wollongong, NSW, Australia. He is
currently a Professor with the School of Com-
puter Science and Software Engineering and the
Director of the Centre for Computer and Informa-
tion Security Research, University of Wollongong.
He has received the prestigious Australian Research
Council Future Fellowship. His main research inter-
ests include cryptography and information security.
He has authored numerous publications in the area

of digital signature schemes and encryption schemes.

Man Ho Au (M’12) is currently an Assistant Profes-
sor with the Department of Computing, Hong Kong
Polytechnic University, Hong Kong. His research
interests include information security and privacy.
He has authored over 60 referred journal and con-
ference papers, including two papers in the ACM
Conference on Computer and Communications
Security that were named as the Runners-Up for the
Pet Award 2009: Outstanding Research in Privacy
Enhancing Technologies.

Jennifer Seberry (SM’97) received the
Ph.D. degree in computation mathematics from
La Trobe University, Melbourne VIC, Australia,
in 1971. She is currently a Professor with the School
of Computer Science and Software Engineering and
the Founding Director of the Centre for Computer
Security Research, University of Wollongong,
Wollongong, NSW, Australia. She has published
extensively in Discrete Mathematics and is world
renown for her new discoveries on Hadamard
matrices, orthogonal designs, and statistical design.

Because of her outstanding contribution to cryptologic research, she has
been a fellow of the International Association for Cryptologic Research
since 2012.


	Adaptively secure identity-based broadcast encryption with a constant-sized ciphertext
	Recommended Citation

	Adaptively secure identity-based broadcast encryption with a constant-sized ciphertext
	Abstract
	Disciplines
	Publication Details

	untitled

