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Abstract. Adaptively-secure encryption schemes ensure secrecy even
in the presence of an adversary who can corrupt parties in an adaptive
manner based on public keys, ciphertexts, and secret data of already-
corrupted parties. Ideally, an adaptively-secure encryption scheme
should, like standard public-key encryption, allow arbitrarily-many par-
ties to use a single encryption key to securely encrypt arbitrarily-many
messages to a given receiver who maintains only a single short decryp-
tion key. However, it is known that these requirements are impossible to
achieve: no non-interactive encryption scheme that supports encryption
of an unbounded number of messages and uses a single, unchanging de-
cryption key can be adaptively secure. Impossibility holds even if secure
data erasure is possible.

We show that this limitation can be overcome by updating the de-
cryption key over time and making some mild assumptions about the
frequency of communication between parties. Using this approach, we
construct adaptively-secure, completely non-interactive encryption
schemes supporting secure encryption of arbitrarily-many messages from
arbitrarily-many senders. Our schemes additionally provide forward se-
curity and security against chosen-ciphertext attacks.

1 Introduction

Imagine a band of political dissidents who need to go into hiding from an oppres-
sive regime. While in hiding, the only form of communication with the outside
world is via the public media. Before going into hiding, each individual wants
to publish a key that will allow anyone (even parties not currently known to
this individual) to publish encrypted messages that only this individual can de-
cipher. Since it is not known in advance how long these members will need to be
in hiding, reasonably short public keys must suffice for encrypting an unbounded
number of messages. Furthermore, messages encrypted to each dissident must
remain secret even if other dissidents are caught and their secrets are extracted
from them. Do encryption schemes satisfying these requirements exist?
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At first glance, a standard public-key encryption scheme seems to suffice. In-
deed, a public-key encryption schemes allows a receiver to publish a key that can
then be used by anyone to send encrypted messages to the receiver. The pub-
lic key is short (i.e., of fixed polynomial length) and can be used by arbitrary
senders (potentially unknown to the receiver at the time the key is published) to
securely send arbitrarily-many messages to the receiver without further interac-
tion. Furthermore, senders need not maintain any state other than the receiver’s
public key, and the receiver similarly need not maintain any state except for his
secret key.

However, standard public-key encryption schemes do not provide the desired
level of security. Standard definitions of security, including semantic security
against passive attacks [gm84] as well as various notions of security against
active attacks [ny90,rs91,ddn00,bdpr98], only consider the case where the
adversary never learns any secret key. However, when an adversary can com-
promise players and learn their internal states in an adaptive manner, possibly
depending on previously-observed ciphertexts and information learned during
previous corruptions, the standard notions no longer apply. In particular, in the
adaptive setting encrypting with a CCA-secure encryption scheme is not known
to provide secure communication.

To obtain provable security against adaptive adversaries, one must ensure
that the information gathered by the adversary when compromising parties
(namely, their secret keys) does not give the adversary any additional advantage
toward compromising the security of the yet-uncorrupted parties. The standard
way of formulating this is by requiring the existence of a simulator that can
generate “dummy ciphertexts” which can be later “opened” (i.e., by revealing
an appropriate secret key) as encryptions of any message; see, e.g., [cfgn96]. A
scheme satisfying this additional condition is said to be adaptively secure.

Several methods are known for achieving adaptively-secure encrypted com-
munication, but none can be used in the basic setting exemplified by the above
toy problem. Beaver and Haber [bh92] propose an adaptively secure encryp-
tion protocol in which the sender and receiver must interact before they can
securely communicate for the first time. Furthermore, the parties must maintain
a shared secret key per connection. This key must be continually updated, with
the old key being erased, as more messages are encrypted. Non-committing en-
cryption schemes [cfgn96,b97,dn00] more closely mimic the functionality of
standard public-key encryption, and in particular do not require maintenance
of per-connection state. (In addition, these solutions also remove the need for
secure data erasure.) In these schemes, however, both the public and secret keys
are at least as long as the overall number of bits to be encrypted. In fact, as
noted by Nielsen [n02], any adaptively-secure scheme with non-interactive en-
cryption must have a decryption key which is at least as long as the number of
bits to be decrypted under this key. In a nutshell, this is because the simulator
must “open” the “dummy ciphertexts” as encryptions of any given sequence of
messages by presenting an appropriate secret key; therefore, the number of pos-
sible secret keys must be at least the number of possible message-sequences. The
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unfortunate conclusion is that a public-key encryption scheme that can encrypt
an unbounded number of messages with short and unchanging keys cannot be
adaptively secure. This holds even if secure data erasures are possible, and even
in a weaker setting where only receivers can be corrupted.

We also comment that previous work on adaptively-secure encryption did not
address resistance to chosen-ciphertext attacks.

Our Contributions. This work demonstrates that we can circumvent Nielsen’s
negative result if the secret decryption key is allowed to periodically change, and
some mild assumptions about the frequency of communication between parties
are made. That is, under standard hardness assumptions, there exist adaptively-
secure, non-interactive public-key encryption schemes with short keys that can
handle arbitrarily-many messages and senders. In particular, our schemes solve
the toy example from above in a way that is essentially the best possible under
the given constraints.

This is done by considering key-evolving encryption schemes [chk03] in which
the secret key is locally updated by the receiver according to a globally-known
schedule (say, at the end of every day), while the public key remains fixed. The
secret key for the previous period is securely erased once it is no longer needed.
Using this approach, we construct adaptively-secure, non-interactive encryption
schemes that can be used to encrypt arbitrarily-many bits as long as the number
of encrypted bits (for any particular key) is bounded per time period. As discussed
above, an assumption of this sort is essential to circumvent Nielsen’s negative
results. Also, this assumption is reasonable in many cases: for instance, one
may easily posit some known upper bound on the number of incoming e-mails
processed per day.

In addition to being adaptively secure, our schemes also provide both forward
security [a97,chk03] and security against chosen-ciphertext attacks. (We com-
ment that although forward security is reminiscent of adaptive security, neither
security property implies the other.) Accordingly, we refer to schemes satisfy-
ing our security requirements as adaptively- and forward-secure encryption (AFSE)
schemes. We formalize the requirements for AFSE schemes within the UC frame-
work [c01]. That is, we present an functionality Fafse that captures the desired
properties of AFSE schemes. This functionality is a natural adaptation of the
“standard” public-key encryption functionality of [c01,ckn03] to the context of
key-evolving encryption. As in the non-adaptive case, Fafse guarantees security
against active adversaries, which in particular implies security against chosen-
ciphertext attacks. Using the composability properties of the UC framework,
our constructions are guaranteed to remain secure in any protocol environment.
Indeed, the formulation of Fafse, which blends together the notions of forward
security, chosen-ciphertext security, and adaptive security of public-key encryp-
tion schemes, is another contribution of this work.

Techniques and Constructions. We first note that dealing with corruption of
senders is easy, since a sender can simply erase its local state upon completing the
encryption algorithm. We thus concentrate on the more difficult case of receiver
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corruption. We then show that it suffices to consider AFSE for the case when
only a single message is encrypted per time period, since any such construction
can be extended in a generic manner to give a scheme which can be used to en-
crypt any bounded number of messages per time period. With this in mind, our
first construction uses the paradigm of Naor-Yung and Sahai [ny90, s99] to con-
struct an AFSE scheme based on any forward-secure encryption (FSE) scheme
and any simulation-sound non-interactive zero-knowledge (NIZK) proof system
[ddops01]. Recall that, under the Naor-Yung/Sahai paradigm, the sender en-
crypts messages by essentially using two independent copies of a semantically-
secure encryption scheme together with an NIZK proof of consistency. To de-
crypt, the receiver verifies the proof and then decrypts either one of the com-
ponent ciphertexts. Naor and Yung prove that this provides security against
“lunch-time” (i.e., non-adaptive) chosen-ciphertext attacks when an arbitrary
NIZK proof system is used, and Sahai later showed that this technique achieves
full (i.e., adaptive) CCA-security if a one-time simulation-sound NIZK proof sys-
tem is used. We show that if a semantically-secure FSE scheme is used as the
underlying encryption scheme, and the NIZK proof system is “fully” simulation
sound (as defined in [ddops01]), the resulting construction is also an AFSE
scheme. This approach can be extended to encrypt a polynomial number of bits
per ciphertext using only a single NIZK proof. (We remark that, as opposed to
the case of standard CCA-secure encryption [s99], here it is not enough that the
underlying NIZK is one-time simulation sound.)

While the above approach is conceptually simple, it is highly impractical
due to the inefficiency of known NIZKs. We thus propose an alternate approach
that leads to more efficient solutions based on specific, number-theoretic assump-
tions. As part of this approach, we first define and construct “standard” (i.e., non
key-evolving) encryption schemes which are secure against lunch-time chosen-
ciphertext attacks and are adaptively-secure for encryption of a single message
(in total). We call such schemes receiver non-committing encryption (RNCE)
schemes.1 Our construction of an AFSE scheme proceeds by first encrypting the
message using any RNCE scheme, and then encrypting the resulting ciphertext
using any CCA-secure FSE scheme. Informally, this construction achieves adap-
tive security for an unbounded number of messages (as long as only one message
is encrypted per time period) because the secret key of the outer FSE scheme
is updated after every period and so the simulator only needs to “open” one ci-
phertext (i.e., the one corresponding to the current time period) as an arbitrary
message. It can accomplish the latter using the “inner” RNCE scheme.

Obtaining an efficient scheme using this approach requires efficient instan-
tiation of both components. Relatively efficient CCA-secure FSE schemes (in
particular, schemes which avoid the need for NIZK proofs) are already known
[chk04,bb04]. Therefore, we focus on constructing efficient RNCE schemes

1 Indeed, this is a relaxation of the notion of non-committing encryption from
[cfgn96]. It is similar to the relaxation studied by Jarecki and Lysyanskaya [jl00],
except that we also require security against lunch-time chosen-ciphertext attacks.
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based on specific number-theoretic assumptions. Our first RNCE scheme is based
on the Cramer-Shoup encryption scheme [cs98] (and adapts techniques of [jl00])
and its security is predicated on the decisional Diffie-Hellman (DDH) assump-
tion. However, this scheme allows encryption of only a logarithmic number of
bits per ciphertext. We also show a second RNCE scheme based on the schemes
of [gl03,cs03] (which, in turn, build on [cs02]), whose security relies on the de-
cisional composite residuosity assumption introduced by Paillier [p99] and which
can be used to encrypt a polynomial number of bits per ciphertext.

Organization. The AFSE functionality is defined and motivated in Section 2.
Our construction of AFSE using the Naor-Yung/Sahai paradigm is described
in Section 3. In Section 4, we present definitions for RNCE and show two con-
structions of RNCE schemes based on specific number-theoretic assumptions.
Finally, in Section 5 we construct an AFSE scheme from any RNCE scheme
and any CCA-secure FSE scheme. In Appendix A, we include definitions of
key-evolving and forward-secure encryption, while a brief overview of the UC
framework and its application to secure encryption is provided in Appendix B.
In this abstract we omit all proofs due to lack of space. The proofs can be found
in the full version of this paper [chk05].

2 Definition of AFSE

We define AFSE by specifying an appropriate ideal functionality in the UC
security framework (cf. Appendix B). This functionality, denoted Fafse and
presented in Figure 1, is obtained by appropriately modifying the “standard”
public-key encryption functionality Fpke [c01,ckn03] which is reviewed in Ap-
pendix B.1.

Intuitively, Fafse captures the same security notions as Fpke except that it
also provides a mechanism by which the receiver can “update” its secret key;
Fafse guarantees security only as long as a bounded number of messages are
encrypted between key updates. In fact, for simplicity, the functionality as de-
fined only guarantees security when a single ciphertext is encrypted between
key updates. Say a ciphertext encrypted with respect to a particular time pe-
riod t is outstanding until the receiver has updated its secret key a total of
t + 1 times. Then, if more than one outstanding ciphertext is requested, the
functionality guarantees no security whatsoever for this ciphertext. (Formally,
this is captured by handing the corresponding plaintext to the adversary.) Sec-
tion 2.1 discusses how Fafse can be extended to allow any bounded number of
outstanding ciphertexts, which corresponds to ensuring security as long as at
most this many messages are encrypted between key updates. It also presents a
generic transformation from protocols secure for a single outstanding ciphertext
to protocols secure for the general case.

For convenience, we highlight some differences between Fafse and Fpke.
First, an additional parameter — a time period t — is introduced. An encryption
request now additionally specifies a time period for the encryption called the
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Functionality Fafse

Fafse proceeds as follows, when parameterized by message domain ensemble
D = {Dk}k∈N and security parameter k.

Key Generation: Upon receiving a request (KeyGen, sid) from party R∗,
do: Verify that sid = (sid′, R∗) (i.e., that the identity R∗ is encoded in
the session ID). If not, then ignore this input. If yes:
1. Hand (KeyGen, sid) to the adversary.
2. Receive a value pk∗ from the adversary, and hand pk∗ to R∗. Initialize

t∗ ← 0 and messages-outstanding← 0.
Encryption: Upon receiving from some party P a tuple

(Encrypt, sid, pk, t, m) proceed as follows:
1. If m ∈ Dk, pk = pk∗, and either t < t∗ or messages-outstanding = 0,

then send (Encrypt,sid, pk, t, P) to the adversary. In all other cases,
send (Dummy-Encrypt, sid, pk, t, m, P) to the adversary (i.e., reveal
the plaintext to the adversary).

2. Receive a reply c from the adversary and send (ciphertext,c) to P .
In addition, if m ∈ Dk, pk = pk∗, and t ≥ t∗, then do:
(a) If messages-outstanding = 0, set messages-outstanding ← 1 and

flag← outstanding. Else, set flag← dummy.
(b) record the tuple (m, t, c, flag) in the list of ciphertexts.

Decryption: Upon receiving a tuple (Decrypt, sid, c) from player P , if P �=
R∗ then ignore this input. Otherwise:
1. If the list of ciphertexts contains a tuple (m, t, c, �) with the given

ciphertext c and t = t∗, then return m to R∗.
2. Otherwise send a message (Decrypt, sid, t∗, c) to the adversary, re-

ceive a reply m, and forward m to R∗.
Update: Upon receiving (Update, sid) from player P , if P = R∗ do:

1. Send a message (Update, sid) to the adversary.
2. Remove from the list of ciphertexts all the tuples (m, t∗, c, flag) with

the current time t∗. If any of these tuple has flag = outstanding, then
reset messages-outstanding← 0.

3. Set t∗ ← t∗ + 1.
Corruptions: Upon corruption of party P , if P = R∗ then send to the

adversary all tuples (m, t, c, �) in the list of ciphertexts with t ≥ t∗. (If
P �= R∗ then do nothing.)

Fig. 1. The AFSE functionality, Fafse

“sender time”, and the functionality maintains a variable t∗ called the “receiver
time”. The receiver time is initialized to 0, and is incremented by the receiver
R∗ using an Update request. A ciphertext generated for sender time t is only
decrypted by Fafse (upon request of the appropriate receiver) when the current
receiver time is t∗ = t.

Second, Fafse limits the information gained by the adversary upon cor-
ruption of parties in the system. When corrupting parties other than R∗, the
adversary learns nothing. When corrupting R∗ at some “receiver time” t∗, the
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adversary does not learn any information about messages that were encrypted at
“sender times” t < t∗. (This is akin to the level of security provided by forward-
secure encryption schemes, and in fact strengthens the usual notion of adaptive
security which potentially allows an adversary to learn all past messages upon
corruption of a party.) In addition, adaptive security is guaranteed for a sin-
gle message encrypted at some sender time t ≥ t∗ (i.e., a single outstanding
message).

The fact that security is guaranteed only for a single outstanding message
is captured via the variable messages-outstanding, which is initialized to 0 and
is set to 1 when a message is encrypted for time period t with t ≥ t∗. When
the receiver’s time unit t∗ advances beyond the time unit t of the outstanding
ciphertext, the variable messages-outstanding is reset to 0. If another encryption
request arrives with time period t ≥ t∗ while messages-outstanding is equal to
1, then Fafse discloses the entire plaintext to the adversary (and thus does not
ensure any secrecy in this case).

We remark that Fafse can be used in a natural way to realize a variant
of the “secure message transmission functionality” [c01,af04] in synchronous
networks with respect to adaptive adversaries. We omit further details.

2.1 Handling Multiple Outstanding Ciphertexts

While the functionality Fafse and all the constructions in this work are de-
scribed assuming a bound of at most one outstanding ciphertext, both the func-
tionality and the constructions can be generalized to the case of any bounded
number of outstanding ciphertexts (corresponding to a bounded number of mes-
sages encrypted per time period). Generalizing the functionality is straightfor-
ward, so we do not describe it here. As for constructions, any AFSE scheme
which is secure for the case of a single outstanding ciphertext can be extended
generically so as to be secure for any bounded number � of outstanding ciphertext
in the following way: The public key of the new scheme consists of � indepen-
dent keys pk1, . . . , pk� generated using the original scheme. To encrypt a message
m, the sender computes the “nested encryption” Epk1

(Epk2
(· · ·Epk�

(m) · · ·)) and
sends the resulting ciphertext to the receiver. One can show that this indeed
realizes Fafse for at most � outstanding ciphertexts. The formal proof, however,
is more involved and is omitted.

2.2 Realizing Fafse Using Key-Evolving Encryption Schemes

We present our constructions as key-evolving encryption schemes (i.e., as a col-
lection of algorithms) rather than as protocols (as technically required by the UC
framework). For completeness, we describe the (obvious) transformation from
key-evolving encryption schemes to protocols geared toward realizing Fafse.

Recall that a key-evolving encryption scheme consists of four algorithms
(Gen, Upd, Enc, Dec), where (Gen, Enc, Dec) are the key generation, encryption,
and decryption routines (as in a standard encryption scheme, except that the
encryption and decryption routines also take as input a time period t), and Upd
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is the secret-key update algorithm that takes as input the current secret key and
time unit, and outputs the secret key for the next time unit. The definition is
reviewed in Appendix A.

Given a key evolving encryption scheme S = (Gen, Upd, Enc, Dec), one may
construct the protocol πS as follows: An activation of πS with input message
KeyGen, Update, Encrypt, or Decrypt is implemented via calls to the algorithms
Gen, Upd, Enc, or Dec, respectively. The only state maintained by πS between
activations is the secret key that was generated by Gen (and that is modified
in each activation of Update), and the current time period. Any other local
variables that are temporarily used by any of the algorithms are erased as soon
as the activation completes. With this transformation we can now define an
AFSE scheme:

Definition 1. A key-evolving encryption scheme S is an adaptively- and
forward-secure encryption (AFSE) scheme if the protocol πS resulting from the
transformation above securely realizes Fafse with respect to adaptive adversaries.

3 AFSE Based on Forward-Secure Encryption

In this section we show how to construct an AFSE scheme from any FSE scheme
secure against chosen-plaintext attacks along with any simulation-sound NIZK
proof system. (See Appendix A for definitions of key-evolving encryption and
forward security, both against chosen-plaintext and chosen-ciphertext attacks.)
We describe in detail a construction that allows encryption of only a single
bit per ciphertext and then discuss how this may be generalized to allow for
encryption of any polynomial number of bits per ciphertext. Our construction
uses a simple twist of the Naor-Yung/Sahai transformation [ny90, s99]; when
applied to two FSE schemes, the resulting scheme yields not only CCA security
but also security against adaptive corruptions. We comment that, as opposed
to the case of non-adaptive CCA security, “one-time” simulation sound NIZK
proofs are not sufficient to achieve security against adaptive corruptions; instead,
we require NIZK proofs satisfying the stronger notion of unbounded simulation
soundness [ddops01].

The Construction. Let E ′ = (G′, U ′, E′, D′) be a key-evolving encryption
scheme, and let P = (�, P, V ) be an NIZK proof system (where �(k) is the
length of the common random string for security parameter k) for the following
NP language

LE′
def= {(t, pk′

0, c
′
0, pk′

1, c
′
1) :

∃ m, r0, r1 s.t. c′
0 = E′(pk′

0, t; m; r0), c′
1 = E′(pk′

1, t; m; r1)}.
We construct a new key-evolving encryption scheme E = (G, U, E, D) as

follows:

Key Generation, G. On security parameter 1k, run two independent copies
of the key generation algorithm of E ′ to obtain (pk′

0, sk
′
0) ← G′(1k) and
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(pk′
1, sk

′
1) ← G′(1k). Choose a random bit b ∈ {0, 1} and a random �(k)-bit

string crs ∈ {0, 1}�(k). The public key is the triple (pk′
0, pk′

1, crs), and the
secret key is (b, sk′

b). Erase the other key sk′̄
b.

Key Update, U . Key update is unchanged, namely U(t, (b, sk′))=(b, U ′(t, sk′)).
Encryption, E. To encrypt a bit m ∈ {0, 1} at time t, first pick two inde-

pendent random strings r0, r1 as needed for the encryption algorithm E′

and compute c′
0 ← E′(pk′

0, t; m; r0), c′
1 ← E′(pk1, t; m; r1), and a proof that

(t, pk′
0, c

′
0, pk′

1, c
′
1) ∈ LE′ ; namely π ← P (crs; t, pk′

0, c
′
0, pk′

1, c
′
1; m, r0, r1). The

ciphertext is the triple c = (c′
0, c

′
1, π).

Decryption, D. To decrypt a ciphertext c = (c′
0, c

′
1, π) at time t, first run the

verifier V (crs; t, pk′
0, c

′
0, pk′

1, c
′
1). If V rejects, the output is ⊥. Otherwise, the

recipient uses (b, sk′
b) to recover m← D′(sk′

b; c
′
b).

We claim the following theorem:

Theorem 1. If E ′ is forward-secure against chosen-plaintext attacks (fs-CPA,
cf. Definition 4) and if (P, V ) is an unbounded simulation-sound NIZK proof
system [ddops01–Def. 6], then E is an AFSE scheme.

The proof appears in the full version, but we provide some intuition here.
Underlying our analysis is the observation that a simulator (who can generate
proofs for false assertions) can come up with a valid-looking “dummy ciphertext”
whose component ciphertexts encrypt different messages (i.e., both 0 and 1). The
simulator, who also knows both underlying decryption keys, can thus open the
dummy ciphertext as an encryption of either 0 or 1, depending on which decryp-
tion key is presented to an adversary. (Note further that the adversary will be
unable to generate dummy ciphertexts of this form due to the simulation sound-
ness of the NIZK proof system.) The above argument demonstrates adaptive
security for a single encrypted bit. Adaptive security for an unbounded number
of bits (as long as only one ciphertext is outstanding) holds since the secret keys
of the underlying FSE schemes evolve after each encryption. We remark that
one-time simulation soundness for (P, V ) would not be sufficient here, since the
simulator must generate multiple “fake ciphertexts” and the hybrid argument
that works in the non-adaptive case (see [s99]) does not work here.

AFSE for Longer messages. To obtain a construction of an AFSE scheme
for n-bit messages, one can simply use n pairs of public keys generated using E ′

(the receiver now chooses at random one secret key from each pair to store, while
the other is erased). The rest is an obvious extension of the proof intuition from
above, with the only subtle point being that the resulting ciphertext contains a
single NIZK proof computed over the entire vector of n ciphertext pairs (with
the language being defined appropriately).

4 Receiver Non-committing Encryption

This section defines and constructs receiver non-committing encryption (RNCE)
that is secure against “lunch-time attacks” (aka CCA1-secure). We note that
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RNCE was considered in [jl00] for the more basic case of chosen-plaintext
attacks. Section 5 shows how to combine any RNCE scheme with any FSE
scheme secure against chosen-ciphertext attacks to obtain a secure AFSE scheme.
Since our proposed constructions of RNCE schemes are quite efficient (and since
relatively-efficient constructions of FSE schemes secure against chosen-ciphertext
attacks are known [chk03,chk04,bb04]), we obtain (relatively) efficient AFSE
schemes.

On a high level, a receiver non-committing encryption scheme is one in which
a simulator can generate a single “fake ciphertext” and later “open” this cipher-
text (by showing an appropriate secret key) as any given message. These “fake
ciphertexts” should be indistinguishable from real ciphertexts, even when an
adversary is given access to a decryption oracle before the fake ciphertext is
known.

4.1 Definition of RNCE

Formally, a receiver non-committing encryption (RNCE) scheme consists of five
ppt algorithms (G, E, D, F̃ , R̃) such that:

– G, E, and D are the key-generation, encryption, and decryption algorithms.
These are defined just as for a standard encryption scheme, except that
the key generation algorithm also outputs some auxiliary information z in
addition to the public and secret keys pk and sk.

– The fake encryption algorithm F̃ takes as input (pk, sk, z) and outputs a
“fake ciphertext” c̃.

– The reveal algorithm R̃ takes as input (pk, sk, z), a “fake ciphertext” c̃, and
a message m ∈ D. It outputs a “secret key” s̃k. (Intuitively, s̃k is a secret
key for which c̃ decrypts to m.)

We make the standard correctness requirement; namely, for any pk, sk, z out-
put by G and any m ∈ D, we have D(sk; E(pk; m)) = m.

Our definition of security requires, informally, that for any message m an
adversary cannot distinguish whether it has been given a “real” encryption of
m along with a “real” secret key, or a “fake” ciphertext along with a “fake”
secret key under which the ciphertext decrypts to m. This should hold even
when the adversary has non-adaptive access to a decryption oracle. We now give
the formal definition.

Definition 2 (RNC-security). Let E = (G, E, D, F̃ , R̃) be an RNCE scheme.
We say that E is RNC-secure (or simply “secure”) if the advantage of any ppt
algorithm A in the game below is negligible in the security parameter k.

1. The key generation algorithm G(1k) is run to get (pk, sk, z).
2. The algorithm A is given 1k and pk as input, and is also given access to a

decryption oracle D(sk; ·). It then outputs a challenge message m ∈ D.
3. A bit b is chosen at random. If b = 1 then a ciphertext c← E(pk; m) is com-

puted, and A receives (c, sk). Otherwise, a “fake” ciphertext c̃← F̃ (pk, sk, z)
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and a “fake” secret key s̃k ← R̃(pk, sk, z; c̃, m) are computed, and A re-
ceives (c̃, s̃k). (After this point, A can no longer query its decryption oracle.)
A outputs a bit b′.

The advantage of A is defined as 2 · ∣∣Pr[b′ = b]− 1
2

∣∣.
It is easy to see that the RNC-security of (G, E, D, F̃ , R̃) according to Def-

inition 2 implies in particular that the underlying scheme (G, E, D) is secure
against non-adaptive chosen-ciphertext attacks. It is possible to augment Defi-
nition 2 so as to grant the adversary access to the decryption oracle even after
the ciphertext is known, but we do not need this stronger definition for our
intended application (Section 5). We also comment that the Naor-Yung con-
struction [ny90] is RNC-secure for 1-bit messages (if the secret key is chosen
at random from the two underlying secret keys); a proof can be derived from
[ny90] as well as our proof of Theorem 1.

4.2 A Secure RNCE Scheme for Polynomial-Size Message Spaces

Here, we show that the Cramer-Shoup cryptosystem [cs98] can be modified to
give a secure RNCE scheme for polynomial-size message spaces. Interestingly,
because our definition of security only involves non-adaptive chosen-ciphertext
attacks, we can base our construction on the simpler and more efficient “Cramer-
Shoup lite” scheme. In fact, the only difference is that we encode a message m
by the group element gm, rather than encoding it directly as the element m.
(This encoding is essential for the reveal algorithm R̃.2)

In what follows, we let G = {Gk}k∈N be a family of finite, cyclic groups
(written multiplicatively), where each group Gk has (known) prime order qk

and |qk| = k. For simplicity, we describe our RNCE scheme for the message
space {0, 1}; however, we will comment briefly afterward how the scheme can be
extended for any polynomial-size message space.

Key Generation, G. Given the security parameter 1k, let G denote Gk and
q denote qk. Choose at random g1 ← G \ {1}, and also choose random
α, x1, x2, y1, y2 ← Zq. Set g2 = gα

1 ; h = gx1
1 gx2

2 ; and d = gy1
1 gy2

2 . The public
key is pk = (g1, g2, h, d), the secret key is sk = (x1, x2, y1, y2), and the
auxiliary information is z = α.

Encryption, E. Given a public key pk = (g1, g2, h, d) and a message m ∈
{0, 1}, choose a random r ∈ Zq, compute u1 = gr

1 u2 = gr
2, e = gm

1 hr and
v = dr. The ciphertext is 〈u1, u2, e, v〉.

Decryption, D. Given a ciphertext 〈u1, u2, e, v〉 and secret key sk = (x1, x2,
y1, y2), proceed as follows: First check whether uy1

1 uy2
2 = v. If not, then

output ⊥. Otherwise, compute w = e/ux1
1 ux2

2 . If w = 1 (i.e., the group
identity), output 0; if w = g1, output 1. (If w /∈ {1, g1} then output ⊥.)

2 Looking ahead, it is for this reason that the present construction only handles
polynomial-size message spaces: the receiver only directly recovers gm, and must
search through the message space to find the corresponding message m.
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Fake Encryption, F̃ . Given pk = (g1, g2, h, d) and sk = (x1, x2, y1, y2), choose
at random r ∈ Zq. Then compute ũ1 = gr

1, ũ2 = g1g
r
2, ẽ = gx2

1 hr and
ṽ = ũy1

1 ũy2
2 , and output the “fake” ciphertext c̃ = 〈ũ1, ũ2, ẽ, ṽ〉.

Reveal Algorithm, R̃. Given pk = (g1, g2, h, d), sk = (x1, x2, y1, y2), z = α, a
“fake” ciphertext 〈ũ1, ũ2, ẽ, ṽ〉, and a message m ∈ {0, 1}, set x′

2 = x2 −m
and x′

1 = x1 + mα (both in Zq) and output the “fake” secret key s̃k =
(x′

1, x
′
2, y1, y2).

One can check that the secret key s̃k matches the public key pk, since

g
x′
1

1 g
x′
2

2 = gx1+mα
1 gx2−m

2 = (gx1
1 gm

2 )gx2−m
2 = gx1

1 gx2
2 = h;

moreover, s̃k decrypts the “fake” ciphertext 〈ũ1, ũ2, ẽ, ṽ〉 to m, since

e

ũ
x′
1

1 ũ
x′
2

2

=
gx2
1 (gx′

1
1 g

x′
2

2 )r

(gr
1)x′

1(g1gr
2)x′

2
=

g
x2+rx′

1
1 g

rx′
2

2

g
rx′

1+x′
2

1 g
rx′

2
2

= g
x2−x′

2
1 = gm

1 .

The above scheme can be immediately extended to support any polynomial-
size message space: encryption, fake encryption, and reveal would be exactly the
same, and decryption would involve computation of w, as above, followed by an
exhaustive search through the message space to determine m

def= logg1
w. A proof

of the following appears in the full version:

Theorem 2. If the DDH assumption holds for G, then the above scheme is
RNC-secure.

4.3 A Secure RNCE Scheme for Exponential-Size Message Spaces

The RNCE scheme in the previous section can be used only for message spaces
of size polynomial in the security parameter, as the decryption algorithm works
in time linear in the size of the message space. We now show a scheme that
supports message spaces of size exponential in the security parameter. Just as
in the previous section, we construct our scheme by appropriately modifying a
(standard) cryptosystem secure against chosen-ciphertext attacks. Here, we base
our construction on schemes developed independently by Gennaro and Lindell
[gl03] and Camenisch and Shoup [cs03], building on earlier work by Cramer and
Shoup [cs02]. Security of our scheme, as in these earlier schemes, is predicated
on the decisional composite residuosity (DCR) assumption [p99].

Let p, q, p′, q′ be distinct primes with p = 2p′ +1 and q = 2q′ +1 (i.e., p, q are
strong primes). Let n = pq and n′ = p′q′, and observe that the group Z

∗
n2 can

be decomposed as the direct product Gn ·Gn′ ·G2 ·T, where each Gi is a cyclic
group of order i and T is the order-2 subgroup of Z

∗
n2 generated by (−1 mod n2).

This implies that there exist homomorphisms φn, φn′ , φ2, φT from Z
∗
n2 onto Gn,

Gn′ , G2, and T, respectively, and every x ∈ Z
∗
n2 is uniquely represented by

the 4-tuple (φn(x), φn′(x), φ2(x), φT (x)). We use also the fact that the element
γ

def= (1 + n) mod n2 has order n in Z
∗
n2 (i.e., it generates a group isomorphic to

Gn) and furthermore γa mod n2 = 1 + an, for any 0 ≤ a < n.
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Let Pn
def= {xn mod n2 : x ∈ Z

∗
n2} denote the subgroup of Z

∗
n2 consisting of

all nth powers; note that Pn is isomorphic to the direct product Gn′ · G2 · T.
The DCR assumption (informally) is that, given n, it is hard to distinguish a
random element of Pn from a random element of Z

∗
n2 .

Our RNCE scheme is defined below. In this description, we let G be an
algorithm that on input 1k randomly chooses two primes p′, q′ as above with
|p′| = |q′| = k. Also, for a positive real number r we denote by [r] the set
{0, . . . , 	r
 − 1}.
Key Generation, G. Given the security parameter 1k, use G(1k) to select two

random k-bit primes p′, q′ for which p = 2p′+1 and q = 2q′+1 are also prime,
and set n = pq and n′ = p′q′. Choose random x, y ∈ [n2/4] and a random
g′ ∈ Z

∗
n2 , and compute g = (g′)2n, h = gx, and d = gy. The public key is

pk = (n, g, h, d), the secret key is sk = (x, y), and the auxiliary information
is z = n′.

Encryption, E. Given a public key as above and a message m ∈ [n], choose
random r ∈ [n/4], compute u = gr, e = γmhr, and v = dr (all in Z

∗
n2), and

output the ciphertext c = 〈u, e, v〉.
Decryption, D. Given a ciphertext 〈u, e, v〉 and secret key (x, y), check whether

u2y = v2; if not, output ⊥. Then, set m̂ = (e/ux)n+1. If m̂ = 1 + mn for
some m ∈ [n], then output m; otherwise, output ⊥.
Correctness follows, since for a valid ciphertext 〈u, e, v〉 we have u2y =
(gr)2y = d2r = v2, and also (e/ux)n+1 = (γmhr/grx)n+1 = (γm)n+1 =
γm = 1 + mn (using for the third equality the fact that the order of γ is n).

Fake Encryption, F̃ . Given pk = (n, g, h, d) and sk = (x, y), choose at random
r ∈ [n/4], compute ũ = γ · gr, ẽ = ũx, and ṽ = ũy (all in Z

∗
n2), and output

the “fake” ciphertext c̃ = 〈ũ, ẽ, ṽ〉.
Reveal Algorithm, R̃. Given pk = (n, g, h, d), sk = (x, y), z = n′, a “fake”

ciphertext 〈ũ, ẽ, ṽ〉 as above, and a message m ∈ [n], proceed as follows:
Using the Chinese Remainder Theorem and the fact that gcd(n, n′) = 1,
find the unique x′ ∈ [nn′] satisfying x′ = x mod n′, and x′ = x−m mod n,
and output the secret key s̃k = (x′, y).

It can be verified that the secret key s̃k matches the public key pk and also
decrypts the “fake” ciphertext to the required message m: For the second
component y this is immediate and so we focus on the first component x′.
First, the order of g divides n′ and so gx′

= gx′ mod n′
= gx mod n′

= gx = h.
Furthermore, using also the fact that the order of γ in Z

∗
n2 is n, we have

(
ẽ

ũx′

)n+1

=
(

γxgrx

γx′grx′

)n+1

=
(
γx−x′ mod n

)n+1
= γm.

In the full version we define the decisional composite residuosity assumption
(DCR) with respect to G (cf. [p99]), and show:

Theorem 3. If the DCR assumption holds for G, then the above scheme is
RNC-secure.
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5 AFSE Based on Receiver Non-committing Encryption

We describe a construction of an AFSE scheme based on any secure RNCE
scheme and any FSE scheme secure against chosen-ciphertext attacks. Let E ′ =
(G′, E′, D′, F̃ , R̃) be an RNCE scheme, and let E ′′ = (G′′, U ′′, E′′, D′′) be a
key-evolving encryption scheme. The message space of E ′ is D, and we as-
sume that ciphertexts of E ′ belong to the message space of E ′′. We construct a
new key-evolving encryption scheme E = (G, U, E, D) with message space D as
follows:

Key Generation, G. On security parameter 1k, run the key-generation al-
gorithms of both schemes, setting (pk′, sk′, z) ← G′(1k) and (pk′′, sk′′

0) ←
G′′(1k). The public key is (pk′, pk′′) and the initial secret key is (sk′, sk′′

0).
(The extra information z is ignored.)

Key update, U . The key-update operation is derived as one would expect from
E ′′; namely: U(t; sk′, sk′′

t ) = (sk′, U ′′(t; sk′′
t )).

Encryption, E. To encrypt a message m ∈ D at time t, first compute
c′ ← E′(pk′; m) and then c ← E′′(pk′′, t; c′). The resulting ciphertext is
just c.

Decryption, D. To decrypt a ciphertext c, set c′ ← D′′(sk′′
t ; c) and then com-

pute m← D′(sk′; c′).

Theorem 4. If E ′ is RNC-secure, and if E ′′ is forward-secure against chosen-
ciphertext attacks, then the combined scheme given above is an AFSE scheme.

We provide some informal intuition behind the proof of the above theorem.
The most interesting scenario to consider is what happens upon player corrup-
tion, when the adversary obtains the secret key for the current time period t∗. We
may immediately note that messages encrypted for prior time periods t < t∗ re-
main secret; this follows from the FSE encryption applied at the “outer” layer.
Next, consider adaptive security for the (at most one) outstanding ciphertext
which was encrypted for some time period t ≥ t∗. Even though the adversary
can “strip off” the outer later of the encryption (because the adversary now
has the secret key for time period t∗), RNC security of the inner layer en-
sures that a simulator can open the inner ciphertext to any desired message.
The main point here is that the simulator only needs to “fake” the opening of
one inner ciphertext, and thus RNC security suffices. (Still, since the simula-
tor does not know in advance what ciphertext it will need to open, it actually
“fakes” all inner ciphertexts.) Chosen-ciphertext attacks are dealt with using
the chosen-ciphertext security of the outer layer, as well as the definition of
RNC security (where “lunch-time security” at the inner layer is sufficient). Also,
we note that reversing the order of encryptions does not work: namely, using
RNCE(FSE(m)) does not yield adaptive security, even if the RNCE scheme is
fully CCA secure.
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A Key-Evolving and Forward-Secure Encryption

We review the definitions of key-evolving and forward-secure encryption schemes
from [chk03].

Definition 3. A (public-key) key-evolving encryption (ke-PKE) scheme is a 4-
tuple of ppt algorithms (Gen, Upd, Enc, Dec) such that:

– The key generation algorithm Gen takes as input a security parameter 1k

and the total number of time periods N . It returns a public key pk and an
initial secret key sk0.

– The key update algorithm Upd takes as input pk, an index t < N of the
current time period, and the associated secret key skt. It returns the secret
key skt+1 for the following time period.

– The encryption algorithm Enc takes as input pk, an index t ≤ N of a time
period, and a message M . It returns a ciphertext C.
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– The decryption algorithm Dec takes as input pk, an index t ≤ N of the
current time period, the associated secret key skt, and a ciphertext C. It
returns a message M .

We require that Dec(skt; t; Enc(pkt, t, M)) = M holds for all (pk, sk0) output
by Gen, all time periods t ≤ N , all correctly generated skt for this t, and all
messages M .

Definition 4. A ke-PKE scheme is forward-secure against chosen plaintext at-
tacks (fs-CPA) if for all polynomially-bounded functions N(·), the advantage of
any ppt adversary in the following game is negligible in the security parameter:
Setup: Gen(1k, N(k)) outputs (PK, SK0). The adversary is given PK.
Attack: The adversary issues one breakin(i) query and one challenge(j, M0, M1)
query, in either order, subject to 0 ≤ j < i < N . These queries are answered as
follows:

– On query breakin(i), key SKi is computed via Upd(PK, i− 1, · · ·Upd(PK, 0,
SK0) · · ·). This key is then given to the adversary.

– On query challenge(j, M0, M1), a random bit b is selected and the adversary
is given C∗ = Enc(PK, j, Mb).

Guess: The adversary outputs a guess b′ ∈ {0, 1}; it succeeds if b′ = b. The
adversary’s advantage is the absolute value of the difference between its success
probability and 1/2.

Forward security against (adaptive) chosen-ciphertext attacks (fs-CCA secu-
rity) is defined by the natural extension of the above definition in which the ad-
versary is given decryption oracle access during both the “Attack” and “Guess”
stages.

B The UC Framework, Abridged

We provide a brief review of the universally composable security framework
[c01]. The framework allows for defining the security properties of cryptographic
tasks so that security is maintained under general composition with an un-
bounded number of instances of arbitrary protocols running concurrently. Defi-
nitions of security in this framework are called universally composable (UC).

In the UC framework, the security requirements of a given task (i.e., the
functionality expected from a protocol that carries out the task) are captured
via a set of instructions for a “trusted party” that obtains the inputs of the par-
ticipants and provides them with the desired outputs (in one or more iterations).
Informally, a protocol securely carries out a given task if running the protocol
with a realistic adversary amounts to “emulating” an ideal process where the
parties hand their inputs to a trusted party with the appropriate functionality
and obtain their outputs from it, without any other interaction.

The notion of emulation in the UC framework is considerably stronger than
that considered in previous models. Traditionally, the model of computation in-
cludes the parties running the protocol and an adversary A that controls the
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communication channels and potentially corrupts parties. “Emulating an ideal
process” means that for any adversary A there should exist an “ideal process
adversary” (or simulator) S that causes the outputs of the parties in the ideal
process to have similar distribution to the outputs of the parties in an execution
of the protocol. In the UC framework the requirement on S is more stringent.
Specifically, an additional entity, called the environment Z, is introduced. The
environment generates the inputs to all parties, reads all outputs, and in addition
interacts with the adversary in an arbitrary way throughout the computation.
A protocol is said to securely realize functionality F if for any “real-life” ad-
versary A that interacts with the protocol and the environment there exists an
“ideal-process adversary” S, such that no environment Z can tell whether it
is interacting with A and parties running the protocol, or with S and parties
that interact with F in the ideal process. In a sense, Z serves as an “inter-
active distinguisher” between a run of the protocol and the ideal process with
access to F .

The following universal composition theorem is proven in [c01]. Consider a
protocol π that operates in the F-hybrid model, where parties can communicate
as usual and in addition have ideal access to an unbounded number of copies
of the functionality F . Let ρ be a protocol that securely realizes F as sketched
above, and let πρ be identical to π with the exception that the interaction with
each copy of F is replaced with an interaction with a separate instance of ρ.
Then, π and πρ have essentially the same input/output behavior. In particular,
if π securely realizes some functionality I in the F-hybrid model then πρ securely
realizes I in the standard model (i.e., without access to any functionality).

B.1 The Public-Key Encryption Functionality Fpke

(This section is taken almost verbatim from [ckn03].) Within the UC framework,
public-key encryption is defined via the public-key encryption functionality, de-
noted Fpke and presented in Figure 2. Functionality Fpke is intended to capture
the functionality of public-key encryption and, in particular, is written in a way
that allows realizations consisting of three non-interactive algorithms without
any communication. (The three algorithms correspond to the key generation,
encryption, and decryption algorithms in traditional definitions.)

Referring to Figure 2, we note that sid serves as a unique identifier for an
instance of functionality Fpke (this is needed in a general protocol setting when
this functionality can be composed with other components, or even with other
instances of Fpke). It also encodes the identity of the decryptor for this instance.
The “public key value” pk has no particular meaning in the ideal scenario beyond
serving as an identifier for the public key related to this instance of the function-
ality, and this value can be chosen arbitrarily by the attacker. Also, in the ideal
setting ciphertexts serve as identifiers or tags with no particular relation to the
encrypted messages (and as such are also chosen by the adversary without knowl-
edge of the plaintext). Still, rule 1 of the decryption operation guarantees that
“legitimate ciphertexts” (i.e., those produced and recorded by the functionality
under an Encrypt request) are decrypted correctly, while the resultant plaintexts
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Functionality Fpke

Fpke proceeds as follows, when parameterized by message domain ensemble
D = {Dk}k∈N and security parameter k.

Key Generation: Upon receiving a value (KeyGen, sid) from some party
R∗, verify that sid = (sid′, R∗). If not, then ignore the input. Otherwise:
1. Hand (KeyGen, sid) to the adversary.
2. Receive a value pk∗ from the adversary, and hand pk∗ to R∗.
3. If this is the first KeyGen request, record R∗ and pk∗.

Encryption: Upon receiving from some party P a value
(Encrypt, sid, pk, m) proceed as follows:
1. If m /∈ Dk then return an error message to P .
2. If m ∈ Dk then hand (Encrypt, sid, pk, P) to the adversary. (If pk �=

pk∗ or pk∗ is not yet defined then hand also the entire value m to the
adversary.)

3. Receive a “ciphertext” c from the adversary, record the pair (c, m),
and send (ciphertext,c) to P . (If pk �= pk∗ or pk∗ is not yet defined
then do not record the pair (c, m).)

Decryption: Upon receiving a value (Decrypt, sid, c) from R∗ (and R∗

only), proceed as follows:
1. If there is a recorded pair (c, m) then hand m to R∗. (If there is more

than one such pair then use the first one.)
2. Otherwise, hand the value (Decrypt, sid, c) to the adversary. When

receiving a value m′ from the adversary, hand m′ to R∗.

Fig. 2. The public-key encryption functionality, Fpke

remain unknown to the adversary. In contrast, ciphertexts that were not legiti-
mately generated can be decrypted in any way chosen by the ideal-process ad-
versary. (Since the attacker obtains no information about legitimately-encrypted
messages, we are guaranteed that illegitimate ciphertexts will be decrypted to
values that are independent from these messages.) Note that the same illegiti-
mate ciphertext can be decrypted to different values in different activations. This
provision allows the decryption algorithm to be non-deterministic with respect
to ciphertexts that were not legitimately generated.

Another characteristic of Fpke is that, when activated with a KeyGen request,
it always responds with an (adversarially-chosen) encryption key pk′. Still, only
the first key to be generated is recorded, and only messages that are encrypted
with that key are guaranteed to remain secret. Messages encrypted with other
keys are disclosed to the adversary in full. This modeling represents the fact
that a single copy of the functionality captures the security requirements of
only a single instance of a public-key encryption scheme (i.e., a single pair of
encryption and decryption keys). Other keys may provide correct encryption and
decryption, but do not guarantee any security (see [ckn03] for further discussion
about possible alternative formulations of the functionality).
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