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Abstract. Oblivious Transfer (OT) is a ubiquitous cryptographic tool
that is of fundamental importance in secure protocol design. Despite
extensive research into the design and veri�cation of secure and e�cient
solutions, existing OT protocols enjoy \provable" security only against
static attacks, in which an adversary must choose in advance whom it
will corrupt.

This model severely limits the applicability of OT, since it provides no
veri�able security against attackers who choose their victims adaptively
(anytime during or after the protocol) or may even corrupt both players
(which is not a moot point in a larger network protocol). This issue arises
even if the communication model provides absolutely secure channels.

Recent attention has been given to accomplishing adaptive security for
encryption, multiparty protocols (for n > 3 participants, with faulty
minority), and zero-knowledge proofs.

Our work �lls the remaining gap by demonstrating the �rst (provably)
adaptively secure protocol for OT, and consequently for fully general two-
party interactive computations. Based on the intractability of discrete
logarithms, or more generally on a minimally restricted type of one-way
trapdoor permutation, our protocols provably withstand attacks that
may compromise Alice or Bob, or both, at any time.

1 Introduction

In the Millionaires' Problem [Yao82a], Alice and Bob wish to determine who
has more money, without revealing how much each one respectively has. This
problem is a special case of the more general two-party function computation

problem, in which Alice and Bob wish to compute some arbitrary discrete func-
tion f(x; y), where Alice holds x and Bob holds y, without revealing anything
more about x and y than what f(x; y) reveals.

Kilian [K88] provided an elegant general solution based on the fundamental
primitive known as Oblivious Transfer (OT). Introduced by Rabin [R81], OT
is a process by which Alice transmits a bit b to Bob over a \noisy" channel:
Bob learns b with probability 1=2, but Alice does not discover whether Bob
succeeded or failed in learning b. This simple asymmetry in knowledge provides
the basis not only for two-party function computation but for a variety of other
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cryptographic tasks, including bit commitment and zero-knowledge proofs [K88,
BCC88, GMW87, GMR89].

Because of its importance, many implementations for OT exist [R81, EGL85,
BCR86a, BCR86b, BM89, KMO89, HL90, dB91, B92], based on a variety of un-
proven intractability assumptions and providing varying degrees of e�ciency and
security. Some provide unconditional security for Alice; some provide uncondi-
tional security for Bob.

For most, a proof of security against static 1-adversaries has been o�ered
or is straightforward to construct. In other words, most approaches support a
case-by-case analysis: an always-honest Alice is protected against Bob (adversary
corrupted Bob in advance), or an always-honest Bob is protected against Alice
(adversary corrupted Alice in advance).

Such veri�cation is technically insu�cient, in and of itself, to demonstrate
security against adaptive attacks. This does not immediately provide a means to
break existing protocols, but it does mean that they remain at best intuitively
secure. Worse, a partial veri�cation (i.e. for static attacks only) is misleading
when it suggests robustness against adaptive attacks.

In addition, certain applications of OT protocols introduce dangerous log-
ical de�ciencies, even when only static adversaries are involved. That is, if a
statically-veri�ed OT protocol is used in a non-black-box manner within a larger
protocol, then the \obvious" deduction that the larger protocol is secure against
merely static attacks may be dangerously incorrect. (See x1.4.)

To utilize Kilian's foundational result in the most robust and general fashion,
an OT implementation is needed that enjoys a proof of security against adaptive
2-attacks. This paper provides such an implementation for the �rst time, and it
uses common intractability assumptions.

1.1 Network Security and Adaptive Attacks

What is Adaptive Security? Unlike static adversaries, adaptive adversaries are
able to corrupt one or more players at any time during or after a protocol.

Often, security is argued through a simulator-based approach �a la Gold-
wasser, Micali and Racko� [GMR89] (cf. [MR91, B91]). A simulator S is given
access to some ideal setting (e.g., the rock-hard exterior of an absolutely secure
channel), and it must provide a realistic virtual environment for the adversary. If
the adversary cannot tell the di�erence between this environment and an actual
execution, then the actual execution does not leak any more information (or
provide more in
uence on results) than the ideal setting.

Encryption over public channels provides the simplest illustration of the pro-
cess. A static security proof typically arranges for S to create a fake encryption2

E(k; 0; r) of 0. In accomplishing this, S clearly needs (and is granted) no access
to the message protected by the ideal channel.

2 It is convenient to consider just public-key encryption, although even private-key

encryption such as DES su�ers the same problems with adaptive attacks. Here, k is

an encryption key; r is a random string.
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If an adversary can later corrupt the sender, then it (as well as S) is now
entitled to learn the cleartext, m. But because S cannot generally �nd k0 and/or
r0 such that E(k0;m; r0) = E(k; 0; r), an adversary can easily detect the in-
consistency. Resetting the adversary is not viable, either, particularly when in
the meantime it has examined thousands of other (simulated) messages being
delivered within a larger-scale interaction.

Even if S uses a random or cleverly chosen message m0 instead of 0, it is
highly likely that it will be mistaken. The very security of the ideal channel
itself makes this problem fundamentally inevitable.

Why is Adaptive Security Important? At �rst glance, the distinction seems an
obscure technicality. In reality, however, adaptive security re
ects a more natural
and applicable threat model. Although analyzing a protocol according to each
possible corruption pattern appears to be a convincing argument for security,
the fundamental problem is that real-world attackers need not choose in advance
whom they will corrupt; nor are they restricted to corrupting at most one party.

These factors are particularly evident when OT (or encryption) is used as a
pluggable component in a larger-scale protocol involving many parties. Any par-
ticular OT execution might be overrun by an adversary who eventually chooses
to corrupt both parties { whether immediately or later.

The technical issue would be moot if there were an obvious mapping from
static arguments to the adaptive case. No such mapping is known. Indeed, the
opposite seems to be true for certain protocols, which enjoy proofs of static
security but are unlikely to enjoy proofs of adaptive security, at least using
simulator-based approaches [B95a, B96].

What are the Obstacles? Even though computational encryption makes it di�-
cult to discover the cleartext, it binds the sender and receiver to the cleartext.
That is, because there is no equivocation of the message given the cleartext, nei-
ther sender nor receiver can �nd a di�erent key or random input to map the
ciphertext to a di�erent cleartext.

This holdover from Shannon is a curse on adaptive security in the computa-
tional setting. Not only are the sender and receiver bound to the cleartext (even
though hidden!), so is the simulator itself.

1.2 Speci�cs of Oblivious Transfer

For OT, the ideal setting contains a trusted third party who receives b from Alice
and decides randomly whether to send (0; 0) or (1; b) to Bob. The simulator can
inspect and control those ideal parties (Alice/Bob) if and precisely when the
adversary has requested their corruption.

In particular, S must provide a view of the conversation between A and B

over a public channel, even before any corruptions have been requested. When
Alice (or Bob) is then corrupted, S should \back-patch" its view to show an
internal history of Alice (or Bob) that is consistent with the conversation. For
security against 2-adversaries, S must also be prepared to provide a fake history
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for Bob (resp. Alice) in the future, if the adversary Adv later requests a second
corruption.

Example. For concreteness, consider Rabin's OT protocol [R81]. Alice generates
n = pq as a product of large Blum primes, then sends n and (for simplicity,
say) s = (�1)br2 mod n to Bob, for a random r mod n. Bob chooses a secret
x mod n and sends z = x2 mod n to Alice. Alice chooses one of the four square
roots fx;�x; y;�yg of z and sends it to Bob. If Alice chose �x, Bob learns
nothing, but if Alice chose �y, Bob can factor n and discover b.

Now, say that Adv corrupts \real" Bob. Even if the whole conversation had
been encrypted, Adv now learns the tra�c described above, and S must simulate
it. S is entitled to learn what a trusted third party handed over to \ideal" Bob
in the ideal case. With probability 1=2, S failed to learn b, yet it must present
Adv with some s.

We might try the approach that seems to su�ce for the static case: just make
s up using a guessed b, and Adv will never know the di�erence. But Adv may
choose to corrupt \real" Alice a hundred years later (even for reasons completely
independent of this OT execution), at which point S has to report a consistent
internal history for Alice. Indeed, S is now entitled to learn b by corrupting the
\ideal" Alice. But the fake value of s can be \decoded" in only one way, and
with probability 1=2, S's earlier faked value will be inconsistent with b, causing
the simulation to fail.3

1.3 Adaptive Security: Related Work

The fundamental importance of adaptively-secure solutions is underlined by re-
cent solutions for several fundamental cryptographic tasks, including:

{ Encryption [CFGN96]
{ Multiparty computation (for n > 3) [CFGN96]
{ Zero-knowledge proofs and arguments [B95a] (cf. [BCC88, FS90a])
{ Bit committal [B95a] (cf. [BCC88, FS90a])

Erasing. Simulation can be �nessed in settings where erasing internal informa-
tion is allowed [BH92, F88]. By deleting sensitive information, players remove
the evidence that might otherwise indicate a simulator's mistaken guess. If a pri-
vate key is no longer available, then the adversarial view, although information-
theoretically improper, will reveal no contradiction.

Fake Ciphertexts with Equivocation. Using public channels while maintaining
complete internal records is a signi�cantly greater challenge. Recently, Canetti,
Feige, Goldreich and Naor [CFGN96] developed a secure encryption scheme with-
out erasing, based on honest parties' refraining from learning certain bits. This

3 A simulator for the static case doesn't ever have to face this possibility; it only

produces fake information for Alice when Alice is corrupt from the start, in which

case it knows b already.
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important idea enables the simulator to construct fake ciphertexts that can be
made consistent with either 0 or 1.

Naturally, the facsimiles are imperfect (otherwise a receiver could not tell
whether the message was 0 or 1), but it is computationally di�cult to distinguish
them from actual ciphertexts.

1.4 Previous Work Insu�cient for OT

There is good reason why OT is conspicuously missing from the preceding
list. Generally speaking, the earlier settings demand at most one-sided privacy,
whereas OT requires two-sided privacy.

That is, in earlier settings, at most one of the parties is hiding in-
formation from the other. Therefore S holds no information from the
ideal setting, until it gains all information as soon as a sensitive party
(sender/receiver/prover/committer) is corrupted. Thus, S need only prepare for
one \surprise" event, namely when it suddenly gains the private information and
must back-patch its current simulation.

In OT, however, each party withholds information from the other. Achiev-
ing equivocation in both directions simultaneously is a signi�cantly di�erent and
harder task. The simulator must be prepared to back-patch 
exibly with two
kinds of newly-gained data, depending on which player is �rst compromised.
Even thereafter, the ongoing simulation must still be prepared for an eventual
back-patching needed to show consistency with the still-unknown data held by
the other player. This remains true even if the interaction occurs over an abso-
lutely secure channel.

Two-Sided Equivocation. Beaver recently characterized two equivocation prop-
erties for OT [B96]: An OT implementation is content-equivocable4 (C.E.)
if S can generate views (whether or not B is yet corrupt) so that if A is sud-
denly corrupted, the views can be made consistent with A having transmitted
b = 0 or b = 1. Likewise, the implementation is result-equivocable (R.E.) if S
can patch a view consistently with \received" or \didn't receive" when Bob is
suddenly corrupted.

Weaker equivocation properties are also useful to consider, particularly when
the tra�c itself between A and B is also encrypted. An OT protocol is weakly
content-equivocable if S need do the appropriate patching only when Bob is
already corrupt. An OT protocol is weakly result-equivocable if S need do
the appropriate patching only when Alice is already corrupt.

For example, the Rabin protocol is result-equivocable but not weakly
content-equivocable. According to need, S can use an appropriate choice from
fx;�x; y;�yg as the \actual" x that Bob chose, thereby switching whether Bob
received b or not. But as described earlier, the announced value of s prevents S
from adapting b itself.

4 The term \equivocable" means \can be made to appear equivocal." Equivocal ci-

phertexts convey no information and are useless for communication; but equivocal

facsimiles enable 
exible back-patching.
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Weak content-equivocation is virtually identical to the \chameleon" property
[BCC88] for bit commitment. Unfortunately, the methods in [BCC88] do not
generalize to achieve both C.E. and R.E. properties simultaneously for OT.

Notably, no known OT protocol is both weakly content- and weakly
result- equivocable [B96]. This includes the protocols described in Rabin [R81],
Even/Goldreich/Lempel [EGL85], Goldreich/Micali/Wigderson [GMW87], Bel-
lare/Micali [BM89], Den Boer [dB91], and Beaver [B96].

Insu�ciencies for Static Attacks. Even ignoring adaptive attacks altogether,
there are subtle dangers in using OT protocols in larger protocols. Unless the
protocol is used in a black-box manner, it can be incorrect to deduce that a
larger protocol is secure against merely static attacks based on a proof that the
OT subprotocol is secure against static attacks.

As an illustration, recall Rabin's protocol for OT, in the case where Alice
is honest, i.e. where S does not have access to b. If S uses the encryption-style
simulation, it sets b = 0 (or guesses a random b).

Now, imagine using this kind of OT protocol for commitment purposes, to tie
Alice to each bit b. As long as Alice does not ever reveal the r value, it is always
possible to \reveal" a b

0 value that is inconsistent with s = (�1)br2. (Discovering
this inconsistency is just the Quadratic Residuosity problem.)

A \black-box" use of OT would never instruct Alice to \decommit" b by
revealing r. (Thus, even if b is revealed later in a larger protocol, it remains
infeasible to detect whether S's facsimile has the wrong quadratic residuosity.)
But a less well-bred protocol might indeed use this attractive ability to decommit
b. In that case, it would be incorrect to extend a claim of security to the larger
protocol, even against static attacks. This is because the quadratic residuosity
of the simulator's fake s value will match an unknown b value only half the time,
and S's attempts at simulation will fail. This problem is particularly acute where
encryptions are used as committals in such a non-black-box way.

Again, the protocol may not be obviously breakable, but the deduction that
it is provably secure would be incorrect.

1.5 Results

Our results are complementary to recent advances in adaptive security in the
related but distinct domains of encryption, proofs and committal.

We give the �rst known protocol for Oblivious Transfer that admits a proof
of security against attacks by adaptive 2-adversaries:

Theorem1. There exists an implementation of Oblivious Transfer that is secure

against adaptive 2-adversaries, if the Di�e-Hellman Assumption holds.

Our methods require a small constant number of exponentiations and are com-
parable to the complexity of statically-secure OT implementations.

Similar results hold for other cryptographic assumptions such as the in-
tractability of factoring or breaking RSA. More generally, they hold for a slightly
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restricted type of one-way trapdoor permutation, one which allows the selection
of a permutation without knowing the trapdoor [CFGN96].

Although secure channels are insu�cient, we make use of methods in [B97]
that employ (statically-secure) key exchange in a bizarre fashion, intentionally
revealing the keys that are mutually generated.

Contents. x2 describes notation, formalities, and OT variants. x3 presents our
solution based on the Di�e-Hellman assumption. x4 describes a proof of security
against adaptive attacks. x5 discusses generalizations of the techniques.

2 Background and Notation

Notation. Let $(S) denote the uniformly random distribution over �nite set S.
Let p be a prime. Let Z�

p
= f1; 2; : : : ; p�1g and let Zp�1 = f0; 1; 2; : : : ; p�2g.

Attacks: Static or Adaptive. An adversary is a probabilistic poly-time TM
(PPTM) that issues two sorts of messages: \corrupt i," \send m from i to j." It
receives two sorts of responses: \view of i," \receive m from j to i." Whether its
send/receive message is honored depends on whether it has issued a request to
corrupt i.

A static t-adversary is an adversary who issues up to t corrupt requests
before the protocol starts. An adaptive t-adversary may issue up to t such
requests at any time.

OT speci�cation. The speci�cation protocol for OT is a three-party pro-
tocol consisting of Â, B̂, and incorruptible party OT. Â has input b, which it
is instructed to send to OT. OT 
ips a coin, ?b, and sends (?b; ?b ^ b) to B̂.5

The communication channels between Â and OT and between OT and B̂ are
absolutely private.

We also consider two variants on OT: one-out-of-two OT ( 12OT), in which
Alice holds (b0; b1) and Bob receives (c,bc) for a random c unknown to Alice

[EGL85]; and chosen one-out-of-two OT (
�
2

1

�
OT), in which Alice holds (b0; b1)

and Bob receives bc for a c of his choice, but unknown to Alice.

Simulation-based security. The de�nition of simulator-based static security is
the standard approach: �nd an appropriate simulator for the case in which Alice
is bad, and another simulator for when Bob is bad. We focus on the adaptive
case.

In the adaptive case, there is a single simulator, S, who receives requests
from and delivers responses to the attacker, Adv, creating an environment for
Adv as though Adv were attacking a given implementation. S is itself an attacker
acting within the speci�cation protocol for OT, which is run with Â on input
b. When Adv corrupts player i, S issues a corruption request and is given î's

5 Thus, (0; 0) means \failed," while (1; b) means \received b."
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information.6 S responds to Adv with a facsimile of the \view of i" response that
Adv expects. S receives all of Adv's \send m" requests and provides Adv with
facsimiles of \receive m" responses. Finally, Adv (or S on Adv's behalf) writes
its output, yAdv.

Let Adv, with auxiliary input xAdv, attack a given OT implementa-
tion OT in which Alice holds input b. The execution induces a distribution
(A(b); B; Adv(xAdv)) on output triples, (yA; yB ; yAdv).

Let S(Adv(xAdv)) attack the OT speci�cation. The execution induces a dis-
tribution (Â(b); B̂;S(Adv(xAdv))) on output triples, (y

Â
; y
B̂
; yS).

An extra, \security parameter" k may be included. This provides a sequence
of distributions on output triples in each scenario. Let � denote computational

indistinguishability, a notion whose formal de�nition is omitted for reasons of
space (cf. [GMR89]).

The implementation OT is secure against adaptive t-adversaries if, for
any adaptive t-adversary Adv, there is a PPTM simulator S such that for any
b, (A(b); B; Adv(xAdv)) � (Â(b); B̂;S(Adv(xAdv))). In other words, the simulator
maps attacks on the implementation to equivalent attacks on the speci�cation.

Assumptions. Let p be a \safe" prime, namely p � 1 = 2q, where q are prime.
Let ĝ be a generator of Z�p, and de�ne g = ĝ2 mod p; g generates a subgroup
denoted hgi.

In the Di�e-Hellman protocol, Alice selects an exponent a  $(Zp�1)
and sends x  ga mod p to Bob. Alice selects b  $(Zp�1) and sends y  
gb mod p to Bob. Alice and Bob then individually calculate the shared \key"
z = gab mod p. (Alice uses z  ya and Bob uses z  xb.)

De�ne the Di�e-Hellman distribution Dp as the triple of random vari-
ables (x; y; z) obtained from an execution of the DH protocol by honest parties.

The Decision Di�e-Hellman Assumption (DDHA) can be described as
follows:

(DDHA) Let p be a safe prime and g a subgroup generator selected
as described above. Then Dp is computationally indistinguishable from
($(hgi); $(hgi); $(hgi)).

Note that without the precaution of moving to a subgroup, typical Di�e-Hellman
triples can be distinguished from three random elements. The quadratic resid-
uosity of gab can be deduced from that of ga and gb, hence a random element
would be distinguishable from gab.

3 Solution Employing Di�e-Hellman

By Cr�epeau's reductions, it su�ces to implement
�
2

1

�
OT [C87]. Alice and Bob

attempt to set up a valid
�
2

1

�
OT execution on random bits, as in [B95b]: if

successful, they can later apply this execution to the desired input bits.

6
î is a player in the speci�cation protocol and is unaware of messages being passed in
a given implementation. In particular, Â knows only its input b (and its message to
OT), and B̂ knows only its message from OT.
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The attempt consists of four invocations of the Di�e-Hellman key-exchange
protocol [DH76], some of which are \garbled" according to Beaver's approach
[B97]. If an appropriate invocation remains ungarbled, then Alice and Bob have

established a valid
�
2

1

�
OT execution, otherwise they must try again.

3.1 Honest Players

Assuming initially that neither Alice nor Bob misbehaves, a simple overview is
possible. Essentially, Alice encodes bits b0 and b1 using a 2� 2 table �ij of bits,
where �ij = 0 i� bi = j. Bob encodes a choice c and mask m using a table �ij ,
where �cm = 0 and all other values are 1. They engage in four DH executions,
some of which are garbled. Alice \garbles" whenever �ij = 1 and Bob \garbles"
whenever �ij = 1. Bob can detect when they both left instance cm ungarbled,
in which case �cm = 0, hence bc = m. Otherwise, Bob requests a retry.

The \garbling" of the Di�e-Hellman protocol occurs in one of two ways.
Instead of choosing an exponent e and computing r = ge, a player can choose
r directly without knowing its discrete logarithm. (Thus, the player will be un-
able to calculate or verify the �nal DH key, gab.) Second, a player can garble
gab by likewise choosing a uniformly random residue whose discrete logarithm
is unknown. In particular, de�ne the following random variables, which either
report a deterministic output or produce a uniform, garbled distribution:

G(�; s) =

�
$(Z�

p) if � = 0
gs mod p if � = 1

G(�; s; r) =

�
($(Z�

p); $(Z
�

p)) if � = 0
(gs mod p; rs mod p) if � = 1

The �rst version is for the player who sends out the initial DH message (Alice,
in the original DH protocol; but this will vary below), having made choice �

whether to garble or not. The second version is for the player who responds,
having made his own choice � about whether to garble or not.

Fig. 1 describes the details of the protocol.

Why Garble? Recall that the simulator S plays the hand of an honest player
(within the proposed OT protocol) when it constructs an environment for the
adversary. But S can play that hand dishonestly (for the desired purpose of
deceiving an attacker, after all!), by always producing ungarbled instances. By
withholding suitable exponents, S can nevertheless make any ungarbled instance
look garbled, since no computationally-bounded judge can detect the di�erence
between four DH triples (fake distribution) and four triples of which one is DH
and three are wholly random (real distribution). This remains true even when
the adversary obtains all information that Alice and Bob would hold; S keeps
the logarithms up his sleeve.
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3.2 Malicious Players

Although these techniques are strongly motivated by the application of DH to
adaptively-secure encryption in [B97], note that they su�ce only for the case
of honest players. Malicious misbehavior is of little concern in encryption (i.e.
it can be handled trivially), where the sender generally has little to gain by
causing the receiver to accept nonsense messages. Here, however, both sender
and receiver have something to gain by misbehaving.

Protecting against malicious behavior will consist of two parts: (1) using com-
mittal to enable suitable random number generation; (2) using zero-knowledge
proofs of knowledge (ZKPK's) to extract e�ective values and ensure compliance
with the rules (cf. [GMW86, TW87]).

The central problem with this \obvious" cryptographic solution is that the
commitments and ZKPK's might defeat the simulator's ability to provide equiv-
ocal facsimiles. Thus, the tricks of [B97] are insu�cient, by themselves, to achieve
our desired goal.

By [B95a], however, it su�ces to employ committals that are weakly content-
equivocable (a.k.a. chameleon [BCC88], a.k.a. trapdoor [FS90b]). That is, the
\receiver" should be able to \open" the committed bits to 0 or to 1, using
knowledge held by the receiver.

Brassard, Chaum and Cr�epeau provide a discrete-logarithm-based implemen-
tation of chameleon blobs [BCC88]. This commitment scheme enables the sim-
ulator to extract the e�ective �ij/�ij values used by the adversary.

To complete the discrete-logarithm-based solution, we add the following
straightforward complications (cf. [GMW87]). The random values aij and bij
are constructed from precursors: aij  a0

ij +�aij ; bij  b0ij +�bij . Alice com-
mits to a0

ij and �bij , and Bob commits conversely. They then reveal the �aij ,
�bij values and proceed as before. (The guaranteed randomization of the �ij 's
and �ij 's is similar.) Each party must then give a ZKPK that they used the
proper aij , �ij , or bij , �ij value. Bob must give a ZKPK that xbcmcm == zcm.

4 Proving Security

Recall that S must simultaneously create a fake environment for Adv while \at-
tacking" an execution of the ideal speci�cation.

Actions in the Ideal Setting. When S engages in an extraction of knowledge
from Adv that fails, S then deliberately aborts the ideal protocol. (This re
ects a
malicious adversary's rightful ability to stop participating.) When the extraction
succeeds, S uses the value on behalf of the corrupt Â or B̂ in the ideal protocol.

4.1 Equivocation

We �rst sketch how the weak equivocation properties are satis�ed when Alice or
Bob are initially corrupted, and then discuss strong equivocation.
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OT-Honest

0. Public: prime p, generator g mod p

1.1. B: c $(0; 1), m $(0; 1) // choice and mask
for i = 0; 1, j = 0; 1:

if (i == c and j == m) then �ij  1 else �ij  0
bij  $(Zp�1)
yij  G(�ij ; bij)

1.2. B!A: y00; y01; y10; y11
2.1. A: m0  $(0; 1), m1  $(0; 1) // masks for transferred bits

for i = 0; 1, j = 0; 1:
if (j == mi) then �ij  1 else �ij  0
aij  $(Zp�1)
(xij ; zij) G(�ij ; aij ; yij)

2.2. A!B: x00; x01; x10; x11, z00; z01; z10; z11
3.1. B: if (xbcmcm == zcm) then s 1 else s 0
3.2. B!A: s // success if 1
// To use successful attempts (after [B96]):
S1.1. B: get input choice C


 = C � c

S1.2. B!A: 


S2.1. A: get input bits M0;M1

w0  M0 �m


w1  M1 �m1�


S2.2. A!B: w0; w1

S3.1. B: MC  wC �m

Fig. 1. Adaptively secure chosen-1/2-OT, for honest players.

Weak Result Equivocation. Assume that Alice is passively corrupted. To simulate

Bob, generate b̂ij  $(Zp�1), but do not choose the �ij 's yet. Set yij  gb̂ij ,
and hand these values to adversary Adv.

Extract Adv's choices for �ij from its proof of knowledge. Select s $(0; 1).

If the attempt is to fail (s = 0), then choose the �ij 's conditioned on failure.
In particular, let m0;m1 be such that �0m0

= �1m1
= 1.7 Set c  $(0; 1)

and take m  1 � mc, which enforces a failure. Set �cm  1 and �ij  0

for (i; j) 6= (c;m). Set bcm  b̂cm (which conveniently makes ycm == gbcm)
and bij  yij for (i; j) 6= (c;m). Thus, even though the three bij values were
chosen with known discrete logarithms (i.e. known to the simulator), it appears
as though they were chosen directly at random.

If the attempt is to succeed (s = 1), then we must enable result-equivocation.
The nontrivial case occurs when Bob is corrupted after a successful transmission.
(The analysis is similar, indeed trivial, if no bit has been transmitted.) The values
w0; w1 are obtained from Alice. Because Bob is now corrupt, the simulator is

7 Actually, m0;m1 may be read directly from the honest machine. Otherwise, they are
calculated from the extracted �ij values.
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entitled to learn the choice C that Bob made, along with the transmitted bit
MC . Set c  C � 
 and mc  MC � wC . Set �cm  1 and �ij  0 for

(i; j) 6= (c;m). Set bcm  b̂cm (which conveniently makes ycm == gbcm) and
bij  yij for (i; j) 6= (c;m). Again, even though the three bij values were chosen
with known discrete logarithms, it appears as though they were chosen directly
at random.

Weak Content Equivocation. Assume that Bob is passively corrupted. Extract
c;m such that �cm = 1. To simulate Alice, simply follow Alice's program, except
for the calculation of (xij ; zij). Instead of using (xij ; zij)  G(�ij ; aij ; yij), set

(xij ; zij) (gâij ; y
âij
ij ), for randomly selected âij  $(Zp�1).

In case of failure (�cm = 0), simply withhold the known discrete logarithms.
That is, set a0;m0

 â0;m0
, a0;1�m0

 x0;1�m0
, a1;m1

 â1;m1
, a1;1�m1

 

x1;1�m1
.

In case of success (�cm = 1), withhold one of the discrete logarithms by
setting acm  âcm, ac;1�m  xc;1�m. (The other pair remains \indeterminate"
for now, so the simulator can withhold the discrete logarithm of either member
of the pair, thereby e�ectively reversing the unknown bit.) Obtain Bob's �nal
choice C and the valueMC he is entitled to learn. Set wC  MC�m but w1�C  

$(0; 1) (this corresponds to the masked, unchosen bitM1�C). When Alice is later
corrupted and bit M1�C is obtained, equivocate w1�C as follows. Calculate
m1�c  w1�C �M1�C , and set �1�c;m1�c

 1, �1�c;1�m1�c
 0, Withhold

a second discrete logarithm by taking a1�c;m1�c
 â1�c;m1�c

, a1�c;1�m1�c
 

x1�c;1�m1�c
.

Strong Equivocation. Note that in the absence of corruptions, S's calculations
and \public tra�c" will be consistent with the steps described above for both
Alice and Bob. Thus, until Adv makes its �rst corruption request, S follows the
steps described above for both Alice and Bob. If Alice is corrupted �rst, S follows
the weak R.E. steps to create Alice's view, then continues with the weak C.E.
steps. If Bob is corrupted �rst, the converse programs are followed.

4.2 Reduction to Di�e-Hellman (DDHA)

The distribution that Adv obtains by interacting with the simulator di�ers from
that obtained in a regular execution in precisely one way: for certain triples
(xij ; yij ; zij), the fake distribution follows the correlated Di�e-Hellman distri-
bution Dp, whereas the \real-life" distribution contains three fully independent
random variables.

These triples occur only in successful attempts, and only on indices where
neither Alice nor Bob has chosen to know the discrete logarithm. That is, neither
logg xij nor logg yij is known to Alice or Bob, and in particular, Adv never learns
them as a result of corrupting Alice or Bob.

Straightforward arguments (see [B97], for example) show that distinguishing
the simulator's faked view from an actual view would enable distinguishing Dp

from independently-random triples, violating the DDHA.
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Note in particular that this is why failed attempts must be fully discarded.8

If the protocol were changed to capitalize on mismatched attempts (intuitively,
Alice's index choice remains secret and known only to the two of them even in
case of mismatch!) the simulator proof would fail. For instance, if Bob knows

logg xij , the simulation would be detectably fake, because zij = y
logg xij

ij would
hold in the simulated cases.

5 Generalizations and Applications

To use other intractability assumptions, such as RSA or factoring, a suitable
key-exchange construction su�ces. In particular, the dense secure public-key
cryptosystems of DeSantis and Persiano are appropriate [DP92].

General Assumptions. A more general construction (cf. [DP92, CFGN96]) em-
ploys one-way trapdoor permutation families with the property that permuta-
tions can also be generated (indistinguishably) without simultaneously generat-
ing a trapdoor. Two modi�cations are needed.

First, in the honest OT protocol, Alice and Bob respectively choose and
report four permutations, fij , gij . For garbled channels, each generates the per-
mutation without the trapdoor, and sends random numbers. For ungarbled chan-
nels, each chooses an accompanying trapdoor. Bob sends yij  fij(bij); Alice
returns zij  gij(f

�1
ij (yij)). Note that zij = bij precisely when Alice and Bob

garble the same channel.
Second, malicious behavior is again resisted through ZKPK's; the gen-

eral constructions of Feige and Shamir [FS90a, FS90b] provide the needed
trapdoor/chameleon/weak-equivocation property.

Third Parties. When third parties are available { as in the case of a multiparty
computation { one-way trapdoor permutations without the extra oblivious-
generation property can be used. These third parties need not be individually
trusted, but at least one of them must remain honest. We also require a broadcast
channel.

As in the clever construction used in [CFGN96] for encryption, the ultimate
permutations are composed of permutations generated by the third parties, who
allow Bob and Alice to learn trapdoors selectively. Receiver Bob learns one of four
(rather than of two) trapdoors by way of EGL/GMW

�
2

1

�
OT. Unlike [CFGN96],

however, Sender Alice also learns trapdoors: one from each of two pairs. The
remainder of the protocol follows the Di�e-Hellman solution proposed in this
work. Malicious behavior is avoided through network-based commitment and
proofs, which do not require the set of faults to be a minority.

8 Note: this does not mean erased; the simulator is choosing what to place in the details
of a full player history. To simulate a failed attempt, the simulator behaves perfectly

accurately on behalf of any corrupt party/parties. Only the successful attempts su�er
any mathematical (but still negligible) distinction from the real-life distribution.
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Although this approach relies on a weaker assumption, it is far less e�-
cient, requiring network-wide interaction for each transfer. Note that apply-
ing [CFGN96] to encrypt an information-theoretically secure OT protocol using
[BGW88, CCD88] would also su�ce, but it requires that faults be a strict mi-
nority.

Faulty Majority. While adaptively-secure encryption enables one to con-
struct adaptively-secure multiparty protocols when there is a faulty minority
[BH92, CFGN96], it does not directly su�ce when there is a faulty majority.
In separate work [B96b], we show that the tools described in this paper make
possible the construction of a provably fair and secure protocol for multiparty
function evaluation even in the presence of a majority of faults, using techniques
of Beaver, Goldwasser and Levin [BG89, GL90].
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