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Abstract. We propose a distributed key generation protocol for pairing-based cryptosystems which
is adaptively secure in the erasure-free and secure channel model, and at the same time completely
avoids the use of interactive zero-knowledge proofs. Utilizing it as the threshold key generation
protocol, we present a secure (t, n) threshold signature scheme based on the Waters’ signature
scheme. We prove that our scheme is unforgeable and robust against any adaptive adversary who
can choose players for corruption at any time during the run of the protocols and make adaptive
chosen-message attacks. And the security proof of ours is in the standard model (without random
oracles). In addition our scheme achieves optimal resilience, that is, the adversary can corrupt any
t < n/2 players.
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1. Introduction

Since threshold cryptography was introduced by the works of Boyd (1986), Croft and
Harris (1989), Desmedt (1988), and Desmedt and Frankel (1990), it has received con-
siderable attention. Many threshold cryptosystems, including many kinds of threshold
signature schemes, have been proposed (Chien et al., 2003; Desmedt, 1994; Long et al.,
2006; Qian et al., 2005; Shoup, 2000; Tsai et al., 2003). And a lot of techniques were
developed.

As part of distributed cryptography, there are also two adversary models in threshold
cryptography, one is static adversary and the other is adaptive adversary (Canetti et al.,
1999). In both cases the adversary is allowed to corrupt any subset of players up to some
threshold. However, in the case of an adaptive adversary, the adversary can choose which
players to corrupt at any time and based on any information he sees during the run of
the protocol. In contrast, in the case of a static adversary, the adversary fixes the players
that will be corrupted before the protocol starts. It is known that the adaptive adversary is
strictly stronger than the static one (Canetti et al., 1996, 2000; Cramer et al., 1999). Since
the adaptive adversary model appears to better capture real threats, designing and proving
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threshold signature schemes secure in the adaptive adversary model has been focused in
recent years.

Some techniques have been proposed to achieve adaptively secure for threshold sig-
nature schemes. Canetti et al. (1999) and Frankel et al. (1999a, 1999b) achieved adap-
tive security respectively by developing and utilizing many protocol designing and prov-
ing techniques, such as using additive sharing instead of polynomial sharing, Pedersen’s
commitment and zero-knowledge proofs, erasing private values, rewinding the adver-
sary, single-inconsistent-player etc. in the secure channel model. Jarecki and Lysyanskaya
(2000) and Lysyanskaya and Peikert et al. (2000, 2001) improved the schemes to work in
the erasure-free model and to remain secure under concurrent composition by develop-
ing a novel construction tool of a committed zero-knowledge proof and a new analytical
tool of single persistently inconsistent player. Furthermore, they implemented the se-
cure channels in the adaptive erasure-free model by devising a receiver-non-committing
encryption scheme. Thus, their threshold cryptosystems could be implemented in the
non-secure channel model. Though their schemes achieved more security and function-
ality, their schemes still heavily depended on zero-knowledge proofs. Abe et al. (2004)
implemented two adaptively secure Feldman VSS (Feldman, 1987) schemes, one is in
the non-secure channel model and the other is in the secure channel model. Based on
the one in non-secure channel, they proposed adaptively secure distributed discrete-log
key generation protocol in the erasure-free model, which was also proved secure in the
single-inconsistent-player UC model1. They also proposed a fully UC threshold Schnorr
signature scheme, a fully UC threshold DSS signature scheme and other adaptively secure
protocols. And they avoided the use of interactive zero-knowledge proofs.

On the other hand, many efficient digital signature schemes (Bellare and Rogaway,
1996; Boneh et al., 2001) and their threshold versions (Shoup, 2000; Boldyreva, 2003)
are proved secure in the random oracle model (Bellare and Rogaway, 1993). However,
the result from Canetti et al. (1998) shows that there exists an encryption scheme which
is secure in the random oracle model (RO model), but is not secure in the complexity-
theoretic model (named CT model or standard model), no matter the instantiation of the
RO. This leads to focus on constructing secure cryptosystems proved without random
oracles, e.g., in the standard model.

Currently, most practical signature schemes proved secure without random oracles are
based on the Strong RSA assumption (Cramer and Shoup, 2000; Gennaro et al., 1999a)
or the Strong Diffie–Hellman assumption (Boneh and Boyen, 2004). Recently, Waters
proposed an efficient digital signature scheme (Waters, 2005) based on the Computa-
tional Diffie–Hellman assumption which can be proved secure without random oracles.
This is the first signature scheme based on the more standard computational complexity
assumption.

Based on the short digital signature scheme proposed in Boneh and Boyen (2004),
Wang et al. (2005) proposed a threshold signature scheme proved secure without ran-
dom oracles. But their scheme is based on the Strong Diffie–Hellman assumption, which

1Universally Composable security model is proposed by Canetti (2001) which defines stronger security
notion for cryptographic protocols.
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is a stronger assumption than the Computational Diffie–Hellman assumption. Based on
Waters’ provably signature scheme, Xu proposed a provably secure threshold signa-
ture scheme without random oracles (Xu, 2006). As Waters’ scheme, the security of
Xu’s scheme is based on the Computational Diffie–Hellman assumption and can toler-
ate t < n/4 malicious parties. But her scheme is not proved adaptively secure.

In this paper, utilizing Abe’s adaptively secure Feldman VSS scheme in secure chan-
nel model and other construction and analytical techniques, we present an adaptively
secure distributed key generation (DKG) protocol for pairing based cryptosystems. As
an application of the DKG protocol, based on Waters’ signature scheme, we present a
provably secure threshold signature scheme without random oracles. We prove security
of our schemes by exhibiting a direct reduction of its security to the hardness of the Com-
putational Diffie–Hellman Problem. Our scheme achieves optimal resilience, that is, the
adversary can corrupt any t < n/2 players. Furthermore, both the DKG protocol and the
threshold signature generation protocol achieve the adaptive security in the secure chan-
nel model, without data erasure and zero knowledge proofs. This is the first adaptively
secure threshold signature scheme reached optimal resilience in the erasure-free secure
channel model without random oracles and zero knowledge proofs.

The rest of this paper is organized as follows. In Section 2, we summarize the commu-
nication and adversary models and the definition of security for the threshold signature
schemes. In Section 3, we give a brief review of Waters’ signature scheme. In Section 4,
we propose our distributed key generation protocol and prove its security against adaptive
adversary. In Section 5, we present our threshold Waters’ signature scheme and prove its
security. Finally, Section 6 is our conclusions.

2. Preliminaries

In this section, we briefly review the computation, communication and adversary models
for our threshold signature scheme. We also briefly review the definition of threshold
signature scheme and its security. More details can be found in Canetti et al. (1999),
Jarecki and Lysyanskaya (2000), Gennaro et al. (2001, 2003).

2.1. Computation, Communication, and Adversary Models

Computation Model. The computation proceeds among a set of n players P1, . . . , Pn

modelled by probabilistic polynomial-time Turing machines (PPT TM), and an adver-
sary A, also modelled as a PPT TM. In addition, the players do not need to erase local
data once it is no longer needed.

Communication Model. We assume that the players are connected by a complete net-
work of private (i.e., untappable) and authenticated point-to-point channels. In addition,
the players have access to a dedicated broadcast channel. By dedicated we mean that if a
player broadcasts a message, it is received by every other player and recognized as com-
ing from that player. The dedicated broadcast can be implemented for example by Cachin
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and Poritz (2002). We assume that the communication channels provide a partially syn-
chronous message delivery, i.e., that computation proceeds in synchronized rounds and
that the messages are received by their recipients within some specified time bound. To
guarantee this round synchronization, and for simplicity of discussion, we assume that
the players are equipped with synchronized clocks.

The Adversary Model. We assume the adversary A is adaptive, that is he can choose
any player to corrupt at any time, based on any information he sees during the run of the
protocols. He can corrupt up to t of the n players, for any value of t < n/2, which is
the best achievable threshold. In addition he can cause the corrupted players to arbitrarily
divert from the specified protocol, that is the adversary is malicious. On the other hand,
existential unforgeability under adaptive chosen-message attacks (EUF-CMA; Goldwasser
et al., 1998) is a widely accepted standard notion for the security of digital signature
schemes. It fits for threshold signature schemes also. Thus the adversary is permitted to
request a threshold signature on any message of his choice and get it.

2.2. The Definition of Threshold Signature Scheme and Its Security

DEFINITION 1. Let S = (Key-Gen, Sig, Ver) be a signature scheme. A (t, n)-threshold
signature scheme T S for S is a triple of protocols (Thresh-Key-Gen, Thresh-Sig, Ver)
for the set of players {P1, . . . , Pn}.

Thresh-Key-Gen is a distributed key generation protocol used by the players to jointly
generate a pair (x, y) of private/public keys. At the end of the protocol the private output
of player Pi is a value xi which is a secret sharing of x. This share may be a polynomial
share or an additive share with respect to the threshold signature scheme. The public
output of the protocol contains the public key y.

Thresh-Sig is the distributed signature protocol. The private input of Pi is the value xi.
The public inputs consist of a message m and the public key y. The output of the protocol
is a value σ ∈ Sig(m, x).

Ver is the verification algorithm, which is the same as in the regular signature
scheme S .

DEFINITION 2. A (t, n)-threshold signature scheme T S = (Thresh-Key-Gen, Thresh-
Sig, Ver) is t-threshold secure if it is both t-threshold unforgeable and t-threshold robust.
T S is t-threshold unforgeable means no malicious adversary who corrupts at most t

players can produce, with non-negligible probability, the signature on any new (i.e., pre-
viously unsigned) message M , given the view of the protocol Thresh-Key-Gen and of
the protocol Thresh-Sig on input messages M1, . . . , Mk which the adversary adaptively
chose. T S is t-threshold robust means both Thresh-Key-Gen and Thresh-Sig complete
successfully except for negligible probability, even if in the presence of an adversary who
corrupts maliciously at most t players.
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3. Brief Review of Waters’ Signature Scheme

In this section, we first present some background on groups with efficiently computable
bilinear maps and the definition of Computational Diffie–Hellman problem and assump-
tion. Then, we recall the definition of existentially unforgeable signatures. Finally, we
recall the Waters’ signature scheme.

3.1. Groups and Complexity Assumption

We briefly review the necessary facts about bilinear maps and bilinear map groups. For
more detail, see, e.g., Galbrait (2005); Paterson (2005). Consider the following setting:

− G and GT are two (multiplicative) cyclic groups of prime order p;
− the group actions on G and GT can be computed efficiently;
− g is a generator of G;
− e: G × G → GT is an efficiently computable map with the following properties:

• bilinear: for all u, v ∈ G and a, b ∈ Zp, e(ua, vb) = e(u, v)ab;
• non-degenerate: e(g, g) �= 1.

We say that G is a bilinear group if it satisfies these requirements. In recent years, many
cryptographic schemes were proposed based on some computational hard problems in
the bilinear groups (Boneh et al., 2001; Boldyreva, 2003; Boneh and Boyen, 2004; Qian
et al., 2005; Waters, 2005; Wang et al., 2005; Long et al., 2006; Lu et al., 2006; Xu,
2006; Kancharla et al., 2007; Huang et al., 2007; Chang et al., 2007; Tseng et al., 2008).

The security of our scheme relies on the hardness of the Computational Diffie–
Hellman (CDH) problem in the bilinear groups. We state the problem and the assumption
as follows.

DEFINITION 3 (CDHP on G). Given (g, ga, gb) ∈R G
3 for some unknown a, b ∈ Zp,

compute gab ∈ G.

Define the success probability of an algorithm A in solving the CDHP on G as

Advcdh
A

def= Pr
[

A(g, ga, gb) = gab: a, b
R←− Zp

]
.

The probability is over the uniform random choice of g from G, of a, b from Zp, and the
coin tosses of A. We say that an algorithm A (t, ε)-breaks CDHP on G if A runs in time
at most t, and Advcdh

A is at least ε.

DEFINITION 4 ((t, ε)-CDHA on G). Given (g, ga, gb) ∈R G
3 for some unknown a, b ∈

Zp, no adversary (t, ε)-breaks CDHP on G.

3.2. Security Definition of Signature Schemes

A signature scheme is made up of three algorithms, Gen, Sign, and Ver, for generating
keys, signing, and verifying signatures, respectively.



596 Z. Wang et al.

Existential Unforgeability under adaptive Chosen-Message Attacks (EUF-CMA)
(Goldwasser et al., 1988) is a widely accepted standard notion for the security of dig-
ital signature schemes.

DEFINITION 5. An adversary A (t, qs, ε)-breaks a signature scheme if A runs in time t,
makes at most qs signature queries and

Pr
[

(pk, sk) ← Gen(1k); (m, σ) ← ASignsk(·)(pk):
σ /∈ Σ∗ ∧ Verpk(m, σ) = 1

]
� ε,

where Σ∗ is the set of signatures received from the signing oracle. A signature scheme is
(t, qs, ε)-existentially unforgeable under adaptive chosen-message attacks if no adversary
(t, qs, ε)-breaks it.

3.3. The Waters’ Signature Scheme

We describe the Waters’ signature scheme (Waters, 2005). In our description the mes-
sages will be bit strings of the form {0, 1}k for some fixed k. However, in practice one
could apply a collision-resistant hash function H: {0, 1}∗ → {0, 1}k to sign messages of
arbitrary length.

The scheme requires, besides the random generator g ∈ G, k + 1 additional random
generators u′, u1, . . . , uk ∈ G. In the basic scheme, these can be generated at random as
part of system setup and shared by all users.

The Waters’ signature scheme is a tri-tuple of algorithms W = (Key-Gen, Sig, Ver)
described as follows.

W .Key-Gen. Pick random x
R←− Zp and set y ← e(g, g)x. The public key pk is

y ∈ GT. The private key sk is x.
W .Sig(sk, M ). Parse the user’s private key sk as x ∈ Zp and the message M as a bit

string (m1, . . . , mk) ∈ {0, 1}k. Pick a random r
R←− Zp and compute

σ1 ← gx ·
(

u′
k∏

i=1

umi
i

)r

, σ2 ← gr. (1)

The signature is σ = (σ1, σ2) ∈ G
2.

W .Ver(pk, M, σ). Parse the user’s public key pk as y ∈ GT, the message M as a bit
string (m1, . . . , mk) ∈ {0, 1}k, and the signature σ as (σ1, σ2) ∈ G

2. Verify that

e(σ1, g) · e

(
σ2, u

′
k∏

i=1

umi
i

)−1
?= y (2)

holds; if so, output 1 (valid); if not, output 0 (invalid).
This signature scheme is existentially unforgeable under adaptive chosen-message

attacks, if CDH problem is hard. Readers can refer to Corollary 1 of Lu et al. (2006) for
a roundabout proof of this conclusion.
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4. Adaptively Secure Distributed Key Generation Protocol

4.1. The Proposed DKG Protocol

Now we present an adaptively secure distributed key generation protocol for our threshold
signature scheme. The protocol is made up of three steps in logic as follows: Generating a
commitment key h; Generating a random secret key x ∈ Zp; Extracting the correspond-
ing public key y = e(g, g)x ∈ GT. The detailed protocol is presented as follows, which
mainly utilizes the ideas and techniques of the adaptively secure Feldman VSS scheme
in Abe and Fehr (2004), the Pedersen’s VSS scheme in Pedersen (1991), the additive se-
cret sharing in Jarecki and Lysyanskaya (2000) and the DKG protocol in Gennaro et al.
(1999b).

Adaptively Secure DKG Protocol Thresh-Key-Gen

Input: Parameters (G, GT, g, p, e).
Steps:
K-0. Every Pj generates a commitment-key hj ∈ G and broadcasts it.
K-1. All players jointly generate a commitment key h ∈ GT. Each Pi chooses ηi ∈ Zp

at random and shares it as follows.
K-1.1 Pi first chooses rij ∈ Zp at random and computes commitments

Iij = e(g, g)j · e(g, hj)rij , j = 1, . . . , n.

Next, he chooses αi1, . . . , αin as a random permutation of 1, . . . , n. Then, he
selects a random polynomial

di(z) = ηi + di1z + · · · + ditz
t

over Zp[z] and computes

ηij = di(αij), j = 1, . . . , n

as well as

Di0 = e(g, g)ηi , Dik = e(g, g)dik , k = 1, . . . , t,

and sets

Hi = Di0 = e(g, g)ηi .

Finally, Pi broadcasts Ii1, . . . , Iin ordered in such a way that Iij appears in
αij-th position. Additionally, he broadcasts Hi, Dik for k = 1, . . . , t, and
privately sends (αij , rij , ηij) to Pj for j = 1, . . . , n.
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K-1.2 Each Pj identifies Iij in αij-th position and accepts the assignment if

Iij = e(g, g)j · e(g, hj)rij , (3)

and he accepts his share ηij if it satisfies the following verification equation

e(g, g)ηij =
t∏

k=0

D
αk

ij

ik . (4)

Otherwise, he broadcasts a complaint against Pi. If more than t players
complain then Pi is clearly faulty and is disqualified. Otherwise, Pi reveals
(αij , rij , ηij) such that Eq. (4) holds and Iij in αij-th position satisfies Eq. (3)
for each complaining player Pj . If he fails, he is also disqualified. Otherwise
Pj uses the new (αij , rij , ηij) as his assignment and share. By convention,
if Pi is disqualified then ηi = 0 and each player Pj takes default values
(αij , rij , ηij).

K-1.3 Each Pi computes h =
∏n

i=1 Hi.

K-2. All players jointly generate a random secret key x. Each player Pi chooses xi ∈ Zp

at random and shares it as follows.
K-2.1 Each player Pi selects random polynomials

fi(z) = xi + ai1z + · · · + aitz
t

and

f ′
i(z) = x′

i + bi1z + · · · + bitz
t

over Zp[z] of degree t, where x′
i ∈R Zp. Next, he computes

Ci = Ci0 = e(g, g)xihx′
i , Cik = e(g, g)aikhbik , k = 1, . . . , t,

and

xij = fi(αij), x′
ij = f ′

i(αij), j = 1, . . . , n.

Then, he broadcasts Ci and Cik for k = 1, . . . , t, and privately sends
(xij , x

′
ij) to Pj for j = 1, . . . , n.

K-2.2 Each player Pj verifies every (xij , x
′
ij), i = 1, . . . , n, received from other

players by checking whether the equation

e(g, g)xij hx′
ij = Ci ·

t∏
k=1

C
αij

k

ik (5)
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holds. If it holds, he broadcasts verified, else he broadcasts a complaint
against Pi. If there are more than t complaints against Pi, he is disqualified.
Otherwise, Pi should reveal (xij , x

′
ij) such that Eq. (5) holds. If he fails, he is

also disqualified. Otherwise Pj uses the new (xij , x
′
ij). By convention, if Pi

is disqualified then xi = 0 and each player Pj takes default values (xij , x
′
ij).

K-3. All players jointly extract the corresponding public key y = e(g, g)x. Each player
Pi broadcasts

yi = e(g, g)xi , Aik = e(g, g)aik , k = 1, . . . , t.

Each player Pj verifies the values broadcasted by the other players Pi by checking
whether the equation

e(g, g)xij = yi ·
t∏

k=1

A
αij

k

ik (6)

holds. If the check fails, Pj complains against Pi by broadcasting the values
(αij , xij , x

′
ij) that satisfy Eq. (5) but do not satisfy Eq. (6). For player Pi who re-

ceives at least one valid complaint, i.e., values which satisfy Eq. (5) but not Eq. (6),
the other players broadcast their values (αij , xij , x

′
ij) received from Pi. The bad

shares can be checked out through Eq. (5) and Eq. (6), and the polynomial fi(z)
can be reconstructed by t + 1 correct shares through Lagrange interpolation. Thus
xi, yi and Aik, k = 1, . . . , t, can be computed publicly. Finally, each player Pi

computes

y =
n∏

i=1

yi = e(g, g)x

as the output of the key generation protocol. Each player Pi also keeps all the
values he received during the above steps.

4.2. Security Proof of the DKG Protocol

Next, we prove that the above DKG protocol Thresh-Key-Gen is adaptively secure. We
adopt the standard simulation paradigm for the security proof of protocols. Thus we first
construct a simulator SIM for the Thresh-Key-Gen protocol.

This simulation is the crux of the proof of secrecy in the protocol, namely, that nothing
is revealed by the protocol beyond the value y = e(g, g)x. To show this, we provide the
value of y as input to the simulator and require it to simulate a run of the Thresh-Key-
Gen protocol that ends with y as its public output. We denote by G (resp. B) the set of
currently good (resp. bad) players. The simulator executes the protocol for all the players
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in G except one. The state of the special player P (selected at random) is used by the
simulator to “fix” the output of the simulation to y, the required public key. Since the
simulator does not know the discrete logarithm of y to e(g, g), it does not know the x∗

P

that this player contributes to the secret key corresponding to the public key y. However,
by predetermining shares for a random subset of size t of the X-coordinates {1, . . . , n},
together with the implicit point (0, y∗

P ), SIM can compute the desired public values which
are indistinguishable from the real execution of the protocol through “interpolation in
exponent” or solving the system of equations. SIM can also simulate the secret values that
P generates and privately sends to the other players. (The detailed method is presented
in the algorithm of SIM and the proof of Theorem 1.) But, if the adversary corrupts P

during the simulation (which happens with probability <1/2) the simulator will not be
able to provide the internal state of this player. Thus, the simulator will need to rewind
the adversary and select another player P ′. The simulation will conclude in expected
polynomial time. The above proof techniques are called rewinding the adversary and the
single-inconsistent-player (SIP) in Canetti et al. (1999), and SIP is also used in Abe and
Fehr (2004), Jarecki and Lysyanskaya (2000).

Simulator SIM for Thresh-Key-Gen Protocol

We denote by B the set of players currently controlled by the adversary, and by G the
set of currently honest parties (run by the simulator). Without loss of generality, assume
B = {Pj1 , . . . , Pjt′ } and G = {Pjt′+1

, . . . , Pjn }, t′ � t.

Input: Parameters (G, GT, g, p, e) and the public key y ∈ GT.
Steps:

SK-0. SIM chooses τj ∈ Zp at random, computes hj = gτj and broadcast it for each
Pj ∈ G.

SK-1. SIM performs Step K-1 on behalf of the uncorrupted players in G exactly as in
protocol Thresh-Key-Gen.

SK-2. SIM performs Step K-2 on behalf of the uncorrupted players in G exactly as in
protocol Thresh-Key-Gen.

SK-3’. SIM performs the following pre-computation:

− chooses at random one uncorrupted player P ∈ G;
− computes yi = e(g, g)xi and Aik = e(g, g)aik , k = 1, . . . , t, for each player

Pi except P ;
− sets y∗

P = y ·
∏

Pi �=P (yi)−1;
− sets x∗

Pjk
= xPjk

= fP (αPjk
), k = 1, . . . , t′. Randomly chooses t − t′ un-

corrupted players Pjt′+1
, . . . , Pjt from G and sets x∗

Pjk
= xPjk

= fP (αPjk
),

k = t′ + 1, . . . , t. Stores the set

S =

{
(αPj1 , xPj1 , x

′
Pj1

), . . . , (αPjt′ , xPjt′ , x
′
Pjt′ ),

(αPjt′+1
, xPjt′+1

, x′
Pjt′+1

), . . . , (αPjt , xPjt , x
′
Pjt

)

}
;
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− computes A∗
Pk, k = 1, . . . , t, by solving the following system of equations:

⎧⎪⎨
⎪⎩

e(g, g)x∗
P j1 = y∗

P ·
∏t

k=1(A
∗
Pk)αk

P j1 ,

· · ·
e(g, g)x∗

P jt = y∗
P ·

∏t
k=1(A

∗
Pk)αk

P jt .

(7)

SK-3. SIM broadcasts yi, Aik for Pi ∈ G \{P }, and y∗
P , A∗

Pk for k = 1, . . . , t. SIM
also performs the verification of Eq. (6) for each uncorrupted player on the val-
ues yi, Aik of Pi ∈ B, broadcasted by the players controlled by the adversary.
If the verification fails for some Pi ∈ B and Pj ∈ G, SIM broadcasts a com-
plaint (αij , xij , x

′
ij). (Notice that the corrupted players can publish a valid com-

plaint only against one another.) For every Pi complained validly, SIM performs
reconstruction on behalf of the uncorrupted parties to compute xi, yi and Aik for
k = 1, . . . , t.

REMARK 1. The system of equations (7) can be easily solved adopting the method used
in the proof of Proposition 1 of Abe and Fehr (2004). The A∗

Pk for k = 1, . . . , t, can also
be computed by “interpolation in the exponent” as follows. For each k = 1, . . . , t,

A∗
Pk = (y∗

P )λk0

t∏
i=1

(
e(g, g)λkixP ji

)
,

where λk0, . . . , λkt are constants such that
∑t

i=0 λkifP (αPji) equals the coefficient aPk

of the random polynomial fP (z).

Theorem 1. Simulator SIM for Thresh-Key-Gen on input (G, GT, g, p, e, y) ends in ex-
pected polynomial time and computes a view for the adversary that is indistinguishable
from a view of the protocol Thresh-Key-Gen on input (G, GT, g, p, e) and output y.

Proof. First we show that SIM outputs a probability distribution which is identical to
the distribution the adversary sees in an execution of Thresh-Key-Gen that produce y as
output.

1. The SK-0 step is carried out by choosing τj ∈ Zp at random, computing and
broadcasting hj = gτj for each Pj ∈ G. Thus, hj is a random element in G and
has the required distribution.

2. The SK-1 step is carried out according to the protocol, thus values (αij , rij , ηij)
for Pi ∈ G, Pj ∈ B, and Iij , Dik for Pi ∈ G, j = 1, . . . , n, k = 0, . . . , t, have the
required distribution.

3. The SK-2 step is carried out according to the protocol, thus values fi(αij), f ′
i(αij)

for Pi ∈ G, Pj ∈ B, and Cik for Pi ∈ G, k = 0, . . . , t, have the required distribu-
tion.
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4. The values yi, Aik for Pi ∈ G \{P }, k = 1, . . . , t, broadcasted in SK-3 step are
distributed exactly as in the real protocol. The value

y∗
P = y ·

∏
Pi �=P

(yi)−1

is distributed uniformly in GT and independently from the values yi for all i. This is
because y is random and uniformly distributed and the yi for Pi ∈ B are generated
independently from the other ones. The values A∗

Pk for k = 1, . . . , t, are com-
puted with respect to the t points (αPj1 , xPj1), . . . , (αPjt , xPjt) and the implicit
points (0, x∗

P ), which satisfy the verification Eq. (6). Thus they have the required
distribution.

We have shown that the public view of the adversary during the simulation is identical
to the one he would see during a real execution. Now we must proceed to show that the
simulator can produce a consistent view of the internal states for the players corrupted by
the adversary. For the adversary may adaptively corrupt the players, we consider all the
cases as follows.

Case 1. If a player is corrupted by the adversary before K-0 Step, it is no need to simulate.
(For the current internal state of the corrupted player is null and the action of
the corrupted player in the real execution of the protocol is instructed by the
adversary.)

Case 2. If a player Pj is corrupted by the adversary after K-0 Step, SIM reveals τj to the
adversary, which is consistent with the public value hj .

Case 3. If a player Pj is corrupted after Step K-1 or after Step K-2, then SIM reveals
all the secret values generated on behalf of this player and secret values received
from the other players to the adversary.

Case 4. If a player Pj �= P is corrupted after Step K-3, SIM reveals all the secret values
generated on behalf of this player, and all the secret values received from the other
players except P . SIM simulates the values (αPj , rPj , xPj , x

′
Pj) received from

P as follows: Let t′ ← t′ + 1, pick (αPjt′ , xPjt′ , x
′
Pjt′ ) from set S; Assume the

commitment in αPjt′ -th is IPi, then compute

rPjt′ = (i + rPiτi − j)/τj .

Reveal (αPjt′ , rPjt′ , xPjt′ , x
′
Pjt′ ) to the adversary as the values received from P .

It is obvious that the simulated values (αPjt′ , xPjt′ , x
′
Pjt′ ) satisfy the verification

Eqs. (5), (6). On the other hand, due to

I ′
Pj = e(g, g)j · e(g, hj)

rP j
t′ = e(g, g)j · e(g, g)τj ·((i+rP iτi −j)/τj)

= e(g, g)i · e(g, g)rP iτi = e(g, g)i · e(g, hi)rP i = IPi,

thus (αPjt′ , rPjt′ , xPjt′ , x
′
Pjt′ ) may be seen as the correct assignment and shares

for Pj and they are indistinguishable from the values seen by the adversary in the
real execution.
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Case 5. If the player P is corrupted after Step K-3, the simulator rewinds the adversary to
the beginning of Step K-3 and selects at random a different special honest player.
Then, the simulator continues performing the pre-computation (Step SK-3’) and
Step SK-3.

For the probability that P is corrupted after Step K-3 is <1/2, thus in order to produce
the desired view, the simulator needs to rewind the adversary only once in expectation.
In summary, the simulator SIM for Thresh-Key-Gen on input (G, GT, g, p, e, y) ends in
expected polynomial time and computes a view for the adversary that is indistinguishable
from a view of the protocol Thresh-Key-Gen on input (G, GT, g, p, e) and output y. Thus
we complete the proof.

5. Threshold Waters’ Signature Scheme

5.1. The Proposed Threshold Signature Scheme

We present the threshold Waters’ signature protocol as follows. This signature protocol
generates a signature by combining the partial signatures. These partial signatures are
produced by each player signing the message with his additive secret-key share. If one
player cannot provide the correct partial signature, then the other players reconstruct the
partial signature through Lagrange interpolation. The system parameters are identical
with the Waters’ signature scheme, that is (G, GT, g, p, e) and u′, u1, . . . , uk ∈ G. Like
Waters’ signature scheme, here we assume the message M is a bit string of the form
{0, 1}k for some fixed k. However, in practice one could apply a collision-resistant hash
function H: {0, 1}∗ → {0, 1}k to sign messages of arbitrary length.

Threshold Signature Protocol Thresh-Sig

Inputs: Message M = (m1, . . . , mk) ∈ {0, 1}k to be signed and the shares of x gener-
ated by the initial Thresh-Key-Gen protocol.
Outputs: A Waters’ signature σ = (σ1, σ2) on M .
Steps:

1. Each player Pi generates his partial signature σi = (σi1, σi2) by choosing ri ∈ Zp

at random and computing

σi1 = gxi ·
(

u′
k∏

i=1

umi

i

)ri

, σi2 = gri . (8)

Then he broadcasts his partial signature σi.
2. Each partial signature is verified by checking if

e(σi1, g) · e

(
σi2, u

′
k∏

i=1

umi

i

)−1

= yi

holds. If Pi’s partial signature is verified invalid, then it is reconstructed by all
players through Lagrange interpolation following the sub-protocol below.
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− Each player Pj chooses rij ∈ Zp at random and computes σij = (σij1, σij2),
where σij1 = gxij (u′ ∏k

l=1 uml

l )rij , σij2 = grij . Then he broadcasts
(σij , αij), i.e., the share of a partial signature of Pi on message M and the
assignment of Pj given by Pi.

− Each player verifies σij by checking whether

e(σij1, g) · e

(
σij2, u

′
k∏

l=1

uml

l

)−1

= yi ·
t∏

k=1

(Aik)αij
k

(9)

holds. If so, it is valid. Finally, a set R is formed which contains t + 1 valid
partial signature shares and assignments.

− The partial signature of Pi is reconstructed by Lagrange interpolation:

σi1 =
∏
j∈R

(σij1)Lij , σi2 =
∏
j∈R

(σij2)Lij ,

where Lij =
∏αil ∈R

αil �=αij

αil

αil −αij
are the Lagrange interpolation coefficients.

3. The protocol outputs signature σ = (σ1, σ2), where

σ1 =
n∏

i=1

σi1, σ2 =
n∏

i=1

σi2.

Signature Verification Algorithm Ver

The verification algorithm is identical with Waters’ signature scheme. That is, for
signature σ = (σ1, σ2) on message M = (m1, . . . , mk), verifying whether the equation

e(σ1, g) · e

(
σ2, u

′
k∏

i=1

umi
i

)−1

= y (10)

holds. If it holds, then the signature is valid, otherwise it is invalid.

5.2. Security Proof of the Proposed Scheme

We firstly prove the correctness of the scheme, then prove the security of it, that is the
scheme is robust and unforgeable.

Theorem 2. The signature σ = (σ1, σ2) on message M = (m1, . . . , mk) generated by
protocol Thresh-Sig is correct, that is it can be verified valid by Eq. (10).

Proof. Firstly, we show if each partial signature σi = (σi1, σi2), i = 1, . . . , n is valid
then the threshold signature σ = (σ1, σ2) is valid. Due to the protocols Thresh-Sig and
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Thresh-Key-Gen, we have

e(σ1, g) · e

(
σ2, u

′
k∏

i=1

umi

i

)−1

= e

( n∏
i=1

σi1, g

)
· e

( n∏
i=1

σi2, u
′

k∏
i=1

umi

i

)−1

=
n∏

i=1

e(σi1, g) ·
n∏

i=1

e

(
σi2, u

′
k∏

i=1

umi

i

)−1

=
n∏

i=1

(
e(σi1, g) · e

(
σi2, u

′
k∏

i=1

umi

i

)−1
)

=
n∏

i=1

yi = y.

So, the threshold signature σ = (σ1, σ2) is valid.
Then, we show each partial signature σi = (σi1, σi2), i = 1, . . . , n must be valid.

Due to the protocols Thresh-Sig, if the partial signature σi = (σi1, σi2) generated and
broadcasted by player Pi is invalid, it will be checked out in Step 2. Then player Pi’s
partial signature σi is reconstructed through Lagrange interpolation and the correct par-
tial signature is generated publicly. Thus, the threshold signature generated by protocol
Thresh-Sig is correct.

Theorem 3. Under the CDH assumption, the threshold Waters’ signature scheme
(Thresh-Key-Gen, Thresh-Sig) is an unforgeable t-threshold signature scheme for
t < n/2 against any adaptive adversary in the secure channel and erasure-free model.

Proof. Assume that the proposed threshold signature scheme is not unforgeable. Then
there exists a t-threshold adversary A through participating in the initial execution of
Thresh-Key-Gen and repeatedly executing Thresh-Sig on messages M1, M2, . . . , of his
choice, with a non-negligible probability ε, A outputs a valid Waters (message, signature)
pair (M ∗, σ∗) under the public key (G, GT, g, p, e, y) produced by Thresh-Key-Gen. Fur-
thermore, none of Mi is equal to M ∗. Using such adversary A, we show how to construct
an algorithm F to produce gab given an instance (g, ga, gb) ∈ G

3 of the CDH prob-
lem. Let B be the set of currently corrupted players controlled by the adversary, and G
be the set of currently good players (run by the algorithm). Without loss of generality
assume that B = {Pj1 , . . . , Pjt′ } and G = {Pjt′+1

, . . . , Pjn }, t′ � t. Let q be the upper
bound on the number of signature queries that the adversary makes. F is constructed as
follows.

Setup. Let λ = 2q. F picks l
R←− {0, . . . , k}, α′, α1, . . . , αk

R←−Zλ = {0, . . . , λ − 1}
and β′, β1, . . . , βk

R←−Zp, sets g1 = ga, g2 = gb and computes

u′ ← gα′ −λl
2 gβ′

, ui ← gαi
2 gβi , i = 1, . . . , k.
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F gives A the system parameters (g, u′, u1, . . . , uk). From the perspective of the
adversary the distribution of the public parameters is identical to the real construc-
tion.

Then F runs an interaction between SIM and A on inputs (G, GT, g, p, e) and
y = e(ga, gb). For (g, ga, gb) is an instance of the CDH problem, thus y is a ran-
dom element in GT. By theorem 1, the simulation ends in expected polynomial time
and A receives a view that is identical to A’s view of a random execution of Thresh-
Key-Gen that outputs y. F stores all the values produced by this interaction. No-
tice after this interaction, F knows all the secret shares xi for i = 1, . . . , n ex-
cept the random selected honest player P by SIM, where xi for Pi ∈ B is recon-
structed by F utilizing the Lagrange interpolation (as it controls a majority of play-
ers).

Signing Queries. When A requests a threshold signature on M = (m1, . . . , mk)
∈ {0, 1}k about the public key y, F processes as follows.

1. Define F = −λl + α′ +
∑k

i=1 αimi and J = β′ +
∑k

i=1 βimi. If F �= 0 mod p,

F picks r
R←−Zp and sets

σ1 ←− g
−J/F
1

(
u′

k∏
i=1

umi

i

)r

, σ2 ←− g
−1/F
1 gr.

This is a valid Waters’ signature corresponding to the public key y = e(g, g)ab

with randomness r̃ = r − a/F : observing that u′ ∏k
i=1 umi

i = gF
2 gJ , we see

that

σ1 = g
−J/F
1

(
u′

k∏
i=1

umi
i

)r

= ga
2 (gF

2 gJ)−a/F (gF
2 gJ)r = gab

(
u′

k∏
i=1

umi
i

)r̃

,

where for the second equality we have multiplied and divided by ga
2 . Additionally, we

have

σ2 = g
−1/F
1 gr = gr−a/F = gr̃.

Thus the signature σ = (σ1, σ2) can pass the verification Eq. (2) of Waters’ signature
scheme.

2. F randomly chooses ri ∈ Zp for i = 1, . . . , n except P , computes σi = (σi1, σi2)
using Eq. (8). Then F computes σP = (σP1, σP2) as follows:

σP1 = σ1 ·
( n∏

i=1
i �=P

σi1

)−1

, σP2 = σ2 ·
( n∏

i=1
i �=P

σi2

)−1

.
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Notice σP is a valid Waters’ signature corresponding to the partial public key y∗
P of

the player P generated in SIM. Because

e(σP1, g) · e

(
σP2, u

′
k∏

j=1

u
mj

j

)−1

= e

(
σ1 ·

( n∏
i=1
i �=P

σi1

)−1

, g

)
· e

(
σ2 ·

( n∏
i=1
i �=P

σi2

)−1

, u′
k∏

j=1

u
mj

j

)−1

= e(σ1, g) · e
(
σ2, u

′
k∏

j=1

u
mj

j

)−1

·
n∏

i=1
i �=P

(
e(σi1, g) · e

(
σi2, u

′
k∏

j=1

u
mj

j

)−1
)−1

= y ·
n∏

i=1
i �=P

y−1
i = y∗

P .

3. F runs the Thresh-Sig protocol on behalf of the good players with A. In Step 1
of the protocol, F broadcasts σi computed above for Pi ∈ G \{P } as well as σP for
the good player P . In Step 2 of the protocol, F checks the partial signatures broad-
casted by A. If an invalid one is checked out, F generates t + 1 shares of the par-
tial signature and broadcasts, then the partial signature is reconstructed by Lagrange
interpolation. In Step 3 of the protocol, F computes σ. This execution of the Thresh-
Sig protocol is identical to the real execution by all players and the obtained sig-
nature σ′ = (σ′

1, σ
′
2) is also a valid signature corresponding to the public key y.

If F ≡ 0 mod p in Step 1, F declares failure and halts.
Due to the construction of F and theorem 1, we can see the public view of

the adversary during the simulation of the Thresh-Key-Gen protocol and the simu-
lation of the Thresh-Sig protocol in Step 3 of Signing Queries is identical to the
one he would see during a real execution of the protocols. Due to theorem 1, we
can also see that the simulator of the Thresh-Key-Gen protocol can produce a con-
sistent view of the internal states for the players corrupted by the adversary before
the Thresh-Sig protocol executed. If a player Pj �= P is corrupted after Step 1 of
the Thresh-Sig protocol, by using the same process as Case 4 in proof of theorem
1 and revealing the random rj used in generating the partial signature, F can pro-
duce a consistent view of the internal state for Pj . If the player P is corrupted af-
ter Step 1 of the Thresh-Sig protocol, it is processed just as Case 5 in proof of theo-
rem 1.

Output. Finally, since its view of the simulations is indistinguishable from that of the
real ones, A outputs a signature σ∗ = (σ∗

1 , σ∗
2) on a message M ∗ = (m∗

1, . . . , m
∗
k);

it must not have queried F on M ∗. Define F ∗ = −λl + α′ +
∑k

i=1 αim
∗
i and
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J ∗ = β′ +
∑k

i=1 βim
∗
i . If F ∗ �= 0 mod p, F declares failure and exits. Otherwise,

we have u′ ∏k
i=1 u

m∗
i

i = gJ ∗
, so that

y = e(σ∗
1 , g) · e

(
σ∗

2 , u′
k∏

i=1

u
m∗

i
i

)−1

= e(σ∗
1 , g) · e(σ∗

2 , gJ ∗
)−1 = e

(
σ∗

1(σ∗
2)−J ∗

, g
)
.

Since y = e(ga, gb) = e(gab, g), thus σ∗
1(σ∗

2)−J ∗
equals gab, which is the solution of the

instance (g, ga, gb) of the CDH problem. F outputs it and halts.
The probability that F does not abort in any signing query is at least 1 − 1/λ;

since there are at most q = λ/2 such queries, F manages to answer all queries
without aborting with probability at least 1/2. Having done so, F then receives a
forgery such that F ∗ = 0 mod p with probability at least 1/(λl) � 1/(2kq). The
probability that A outputs a valid Waters (message, signature) pair is ε. Thus F
succeeds with probability at least ε/(4kq). F ’s run-time overhead is O(1) to an-
swer each of A’s queries and to compute the final output. Thus we have the con-
clusion: the threshold Waters signature scheme is (t, q, ε)-unforgeable if Computa-
tional Diffie–Hellman is (t + O(q), 4kqε)-hard on G, here q is the number of signing
queries.

It is obviously that the threshold Waters’ signature scheme (Thresh-Key-Gen, Thresh-
Sig) is robust against t-limited adaptive adversary for t < n/2. In the Thresh-Key-Gen
protocol, after Step K-2, each player’s contribution to secret key x is fixed. If some player
Pi broadcasts invalid yi and Aik, k = 1, . . . , t, then it will be checked out by Eq. (6) and
the values will be reconstructed by Lagrange interpolation. In the Thresh-Sig protocol,
if some player Pi broadcasts invalid partial signature, it will be checked out and recon-
structed in Step 2. Combining this point and theorem 3, we have the following conclu-
sion.

Theorem 4. Under the CDH assumption, the threshold Waters’ signature scheme
(Thresh-Key-Gen, Thresh-Sig) is an secure (unforgeable and robust) t-threshold signa-
ture scheme for t < n/2 against adaptive adversary in the secure channel and erasure-
free model.

REMARK 2. Based on Waters’ scheme, Xu proposed a provably secure threshold signa-
ture schemes (Xu, 2006). The design and security proof of her scheme mainly follows
the notion of simulatable threshold signature scheme defined in Gennaro et al. (2001)
and adopts the same method used in Gennaro et al. (2001). We found her scheme could
tolerate t < n/2 malicious parties also for the validity of every partial signature σi could
be checked, while she understated that it could tolerate t < n/4 ones. But her scheme is
still not proved adaptively secure.

Though also based on Waters’ scheme, our scheme is proved adaptively secure with-
out random oracles, and no need to securely erase local data or to use the interactive
zero-knowledge proofs. Our scheme can tolerate t < n/2 malicious parties, which is
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the optimal resilience. Further, our proof combines the simulation method (for proving
the security of the DKG protocol) and the direct reduction to the hardness of the under-
lying mathematical problem method (for proving the security of the threshold signature
protocol).

The main drawback of our scheme is the cost to achieve adaptive security and optimal
robustness. Firstly, each party should keep all the values he receives in the run of Thresh-
Key-Gen protocol, thus the storage is linear with n, the number of players. Second, when
an invalid partial signature is checked out in threshold signature generating, it should be
reconstructed through Lagrange interpolation, thus the computation is also linear with n.
Currently, the efficiency of adaptively secure threshold cryptosystems is still an open
problem. We will continue the related study.

6. Conclusions

We have presented a secure, i.e., robust and unforgeable, threshold Waters’ signature
scheme against the adaptive adversary, who chooses which players to corrupt at any time
and based on any information he sees during the key generation and signature generation,
in the secure channel model. The scheme does not need the players to securely erasing
values generated during the run of the protocols. And it has been implemented completely
avoiding the use of the interactive zero-knowledge proofs. The scheme achieved the opti-
mal resilience t < n/2. We have proved its security by exhibiting a direct reduction of its
security to the hardness of the Computational Diffie–Hellman problem without random
oracles. Furthermore, to the best of our knowledge, the Thresh-Key-Gen protocol is the
first adaptively secure distributed key generation protocol for pairing-based cryptosys-
tems and it may be applied to other distributed pairing-based signature schemes.
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Standartinio modelio saugus adaptyvusis slenkstinis parašas

Zecheng WANG, Haifeng QIAN, Zhibin LI

Pasiūlytas paskirstytasis rakt ↪u generavimo protokolas porinėms kriptosistemoms, kuris yra
adaptyviai saugus ir nereikalauja interaktyvi ↪u nulini ↪u žini ↪u ↪irodym ↪u. Pateikiama saugi slenkstinė
parašo schema, pagr↪ista Waters parašo schema. ↪Irodyta, kad ši schema yra nesuklastojama ir atspari

↪isilaužėlio veiksmams, kuris gali protokolo vykdymo metu pasirinkti dalyvius ir adaptyviai atakuoti
pasirinktus pranešimus. Ši schema yra optimali funkcinio atsparumo prasme.


