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Abstract
Motivated by the fact that both relevancy of class
labels and unlabeled data can help to strengthen
multi-modal correlation, this paper proposes a nov-
el method for cross-modal retrieval. To make each
sample moving to the direction of its relevant la-
bel while far away from that of its irrelevant ones,
a novel dragging technique is fused into a unified
linear regression model. By this way, not only the
relation between embedded features and relevant
class labels but also the relation between embedded
features and irrelevant class labels can be exploit-
ed. Moreover, considering that some unlabeled da-
ta contain specific semantic information, a weight-
ed regression model is designed to adaptively en-
large their contribution while weaken that of the
unlabeled data with non-specific semantic informa-
tion. Hence, unlabeled data can supply semantic
information to enhance discriminant ability of clas-
sifier. Finally, we integrate the constraints into a
joint minimization formulation and develop an effi-
cient optimization algorithm to learn a discrimina-
tive common subspace for different modalities. Ex-
perimental results on Wiki, Pascal and NUS-WIDE
datasets show that the proposed method outper-
forms the state-of-the-art methods even when we
set 20% samples without class labels.

1 Introduction
As a hot spot of big data era, multimedia data have vastly
emerged in search engines and social media. Since multi-
modal data may be assigned with the semantic association [Li
and Tang, 2017], it is imperative to exploit the correlation a-
mong different modalities. Hence, the study of cross-modal
retrieval has attracted increasing attention because it can sup-
port the similarity computation across different modalities.

Since different modalities lie on different feature spaces,
the key idea of cross-modal retrieval is to develop techniques
which can realize the calculation of heterogeneous similari-
ty. A lot of works have been proposed to alleviate this prob-
lem by learning a common subspace. According to the fact
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whether the class labels are used or not, classical cross-modal
learning methods can be categorized into unsupervised meth-
ods, semi-supervised methods and supervised methods.

Unsupervised cross-modal methods learn the common sub-
space by uniting paired samples from two different modali-
ties [Rasiwasia et al., 2010; Andrew et al., 2013]. Canoni-
cal correlation analysis (CCA) [Hardoon et al., 2004] learns
a common subspace by maximizing the correlation between
the projected vectors of two different modalities. Rasiwasi-
a et al.adopt CCA to match the heterogeneous samples. Deep
CCA [Andrew et al., 2013] learns a set of flexible nonlinear
transformations by combining the autoencoder with CCA.

Semi-supervised cross-modal methods use labeled and un-
labeled data to model multi-modal correlation. Since manu-
ally annotating data is expensive, a large amount of unlabeled
data should be handled. Some methods have been proposed
to exploit unlabeled data [Peng et al., 2016; Zhai et al., 2014;
Li et al., 2015; Gong et al., 2016; Xu et al., 2015]. Most
of these methods construct labeled and unlabeled data into
a unified graph model and then the label information can be
propagated from labeled data to unlabeled data.

Supervised cross-modal methods utilize class information
to learn a discriminative subspace. Since labels directly re-
veal the semantic of multi-modal data, a lot of methods use
labels as interlinkage to model the correlations among dif-
ferent modalities [Sharma et al., 2012; Wang et al., 2013;
Kang et al., 2015; Rasiwasia et al., 2014; Ranjan et al., 2015].
For example, generalized multiview analysis (GMA) [Shar-
ma et al., 2012] applies the class information to learn a dis-
criminant latent space. Wang et al.propose a half quadrat-
ic optimization to learn the coupled feature spaces for two
modalities. Since multi-modal data may naturally be anno-
tated with multiple labels, Ranjan et al.propose multi-label
CCA (ml-CCA) by adopting the multi-labeled data to learn a
shared subspace. Besides, many deep models have been de-
veloped to enhance correlations among the multimedia data
using the class information. Multi-modal auto-encoders [N-
giam et al., 2011] and deep boltzmann machines [Srivastava
and Salakhutdinov, 2012] are designed to exploit the discrim-
inative information of two modalities by learning the deep-
based shared representation.

Though the above methods can achieve relatively good per-
formances, they cannot exploit relation between embedded
features and irrelevant class labels. In practice, we are usu-
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Figure 1: Working mechanism of AUSL. Different shapes denote
different modalities. Red and green shapes indicate relevant labeled
data. All gray shapes denote unlabeled data.

ally faced with abundant multi-labeled data because a single
class label cannot sufficiently describe the content of multi-
modal data. Some multi-label methods [Ranjan et al., 2015;
Wang et al., 2013; Kang et al., 2015] enhance the relation be-
tween embedded features and relevant class labels such that
each sample is pushed toward the direction of its relevan-
t class label. They neglect the relation between embedded
features and irrelevant class labels. In fact, the irrelevance is
also indispensable because it can make each sample far away
from the directions of its irrelevant class labels.

Classical semi-supervised methods cannot consider the di-
versity among unlabeled data. In fact, compared with labeled
data, some unlabeled data mainly focus on describing the spe-
cific semantic content. In this paper, we call these unlabeled
data as specific points, like the gray shapes inside the dashed
bounding boxes in Fig. 1(b). The specific points can easily re-
search many relevant samples with class labels. Hence, these
data can actually help to discriminate samples from the differ-
ent classes. Conversely, some others usually reflect multiple
aspects of semantic content. These unlabeled data can disturb
the learned classifier since their content are relevant to multi-
ple classes. We call these data as non-specific points, like the
gray shapes outside the dashed bounding boxes in Fig. 1(b).

Besides, existing semi-supervised methods mainly focus
on constructing graph models using labeled and unlabeled da-
ta from all modalities [Zhai et al., 2014; Peng et al., 2016;
Li et al., 2015]. When a new testing sample comes, they need
to introduce this new datum into the existing dataset, and then
reconstruct the graph model. Therefore, such strategy is very
inefficient in processing the out-of-sample problem.

To overcome the aforementioned problems, this paper pro-
poses a novel semi-supervised framework, named Adaptively
Unified Semi-supervised Learning (AUSL) for cross-modal
retrieval. To utilize both the relevance and irrelevance be-
tween embedded features and class labels, a dragging tech-
nique is fused into a unified linear regression, by which the
embedded feature of each sample will be close to its relevan-
t class labels while far away from its irrelevant class labels.
To enlarge the contribution of specific points while eliminate
the interference of non-specific points, we design a weight-
ed regression model to adaptively exploit the discriminative
information from unlabeled data in learning the classifier.

Meanwhile, our linear regression model can also deal with
the out-of-sample problem. Finally, we integrate the different
constraints into a joint minimization formulation and design
an efficient optimization algorithm to learn a discriminative
common subspace for different modalities. Experimental re-
sults on three cross-modal datasets show that AUSL outper-
forms the state-of-the-art methods even when AUSL uses part
of unlabeled data but the others apply all labeled data.

In Fig. 1, we provide the working mechanism of the pro-
posed AUSL. Fig. 1(a) shows the data distribution of the o-
riginal features from two modalities. Each modality consists
of labeled data from two classes (red and green colors with
the same shapes) as well as some unlabeled data (shapes with
gray color). Fig. 1(b) represents the learned common sub-
space. After learning, we hope that different shapes with
same color are gathered together, while same shapes with
different colors are far away from each other. Meanwhile,
the specific points are correctly classified into their relevan-
t classes, while non-specific points are located between the
boundary of the two classes.

2 The Proposed Method
In this section, we first present the proposed AUSL to model
the correlations among the multi-modal data. Then we intro-
duce an iterative algorithm to optimize the objective function.

2.1 Preliminaries
Assume we have m modalities {X1,X2, · · · ,Xm}, where
Xr denotes the rth modality. The rth modality Xr consists of
nl labeled data Xrl = [xr1,xr2, ...,xrnl

] and nu unlabeled
data Xru = [xr(nl+1), ...,xrn], where xri ∈ Rdr×1 denotes
the ith sample of the rth modality. Sample xri is assigned
with a c-dimensional binary-valued vector yi ∈ Rc×1, where
c is the class number. If xri is classified into the kth class,
yik is set to 1, otherwise 0. The class indicator matrix for the
labeled data is constructed as Yl = [y1,y2, ...,ynl

]T , which
is applicable for all modalities. For unlabeled data, we learn
the class probability matrices P = {P1, · · · ,Pm} for multi-
modal data, where Pr is learned for the rth modality.

2.2 Objective Function
Obviously, different modalities lie on different feature spaces,
which lead to difficulty in measuring the similarity of two
heterogeneous samples. Therefore, we focus on learning
multiple projection matrices U = {U1, · · · ,Um} to trans-
form the different features into a common subspace, where
Ur ∈ Rdr×c is the transformation for the rth modality.

Least square regression has achieved great success in learn-
ing transformations [Wang et al., 2014; Kang et al., 2015].
Taking the rth modality as example, traditional least square
regression obtains the transformation Ur ∈ Rdr×c and the
bias br ∈ Rc×1 by solving the following formulation:

min
Ur,br

n∑
i=1

‖UT
r xri + br − yi‖2F (1)

It is interesting to note that br can be merged into Ur when
we add the constant value 1 as an additional dimension for
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each data point. Then we formulate the mapping as a linear
transformation from the feature space to the label space, and
optimize the labeling approximation error between the given
data xri and the label vector yi:

min
Ur,br

n∑
i=1

‖UT
r xri − yi‖2F (2)

Henceforth, Ur and xri are augmented as Ur ∈
R(dr+1)×c and xri ∈ R(dr+1)×1.

However, the traditional regression model is suitable for
handling single modality. To model the correlations among
the multi-modal data, we extend it and propose an adaptively
unified semi-supervised learning framework:

min
U,W,P

L(U,W) + ϕ(U,P) + λΩ(U) (3)

where L(U,W) is a linear regression with dragging to make
each sample close to its true label and far away from its irrele-
vant labels after transforming. ϕ(U,P) is a weighted regres-
sion which can effectively exploit unlabeled data with spe-
cific semantic information and weaken unlabeled data with
non-specific semantic information. Ω(U) is a regularization
to select discriminative features from the original features and
avoid overfitting problem. λ > 0 is the tradeoff parameter.

Labeling loss: This constraint item is defined to embed the
class label information into a unified linear regression mod-
el with dragging to force the regression targets of different
classes moving along with the opposite directions.

Considering that class labels directly reveal the semantic
information of multimedia data, it would be feasible using the
label space as the linkage of different feature spaces. Hence,
we embed the class label information into a unified linear re-
gression model to link different modalities. Furthermore, the
ε-dragging technique [Xiang et al., 2012] is fused into the
proposed model to enhance the relevance and irrelevance be-
tween embedded features and class labels:

L(U,W) =
1

2

m∑
r=1

nl∑
i=1

‖UT
r xri − yi − zi ·wi‖2F (4)

where · denotes the Hadamard product operator between vec-
tors, wi ∈ Rc×1 is the ε-dragging factor, which is used to
adaptively adjust the relevant and irrelevant degree between
embedded features and class labels. zi ∈ Rc×1 is defined as:

zji =

{
+1 if yi = j
−|ŷi|/|y̆i| otherwise (5)

where |ŷi| and |y̆i| represent the number of irrelevant and rel-
evant labels of xri. |ŷi|/|y̆i| is used to adjust the imbalance
between the number of relevant and irrelevant labels. If the
number of irrelevant labels is greater than that of relevant la-
bels, we give more penalty to the irrelevant labels so the em-
bedded features can easily establish correlation with relevant
labels. Specially, for the ith sample of arbitrary modalities,
their wi shared the same value. So does zi.

Unlabeling loss: We define this item to adaptively han-
dle unlabeled data from multiple modalities such that specific

points can contribute more than non-specific points in learn-
ing the classifier.

In practice, some unlabeled data actually contain discrim-
inative information for they focus on describing specific se-
mantic content, while some others usually involve multiple
directions of description such that they will bring ambiguity
in learning the classifier. Hence, we should pay more atten-
tion to the specific points and ignore the non-specific points.
Based on this, we design a unified weighted regression model
to learn a adaptive probability matrix for unlabeled data:

ϕ(U,P) =
m∑
r=1

n∑
i=nl+1

c∑
k=1

psrik‖UT
r xri − tk‖2F (6)

where prik is the probability of the ith unlabeled data of the
rth modality belonging to the kth class, which should be a
value between [0, 1]. tk ∈ Rc×1 is the class indicator vector
for the kth class, where the kth entry of tj is set to 1, and the
remaining entries are all zeros. When prik is a large value
near to 1, it implies that xri is likely to be a specific point and
contains discriminative information. s ∈ [1,∞] is the power
exponent to control the effect of unlabel data. When r in-
creases, psrik decreases for specific points and non-specific
points. Moreover, the weights of non-specific points are
weakened much faster than those of specific points. Besides,
compared with constructing graph model [Zhai et al., 2014;
Peng et al., 2016; Li et al., 2015], the computational com-
plexity is greatly reduced.

Regularization: This constraint item aims to avoid overfit-
ting problem induced by the sparse features Xr and select the
discriminative features from the original feature. We utilize
`2,1-norm to formulate this item as follows:

Ω(U) =
m∑
r=1

‖Ur‖2,1 (7)

2.3 Optimization
From the above description, we know that the objective func-
tion is difficult to be directly solved since it is non-smooth.
Hence, we design an efficient and iterative algorithm to opti-
mize transformations U, shared dragging matrix W and the
class probability matrices P.

Update U: We solve the transformations U by fixing P
and W. The second term in Eqn. (3) sums over nu unlabeled
points and c classes. If we directly solve the derivative with
respect to Ur, it would be slow since the resulting formula
would need to iterate over nu and c.

To simplify the optimization, we rewrite Eqn. (3) into the
compact matrix representation in the following way:

min
Ur

Tr((XT
rlUr −Yl − Z ·W)T (XT

rlUr −Yl − Z ·W))

+Tr(UT
r XruSrX

T
ruUr − 2PrU

T
r Xru) + λTr(UT

r QrUr)
(8)

where Pr ∈ Rnu×c (each element of Pr is defined as psrik),
Sr ∈ Rnu×nu is a diagonal matrix with Sii

r =
∑c

k=1 P
ik
r .

Based on the definition of `2,1-norm, Qr is a diagonal matrix
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with Qii
r = 1

2‖Ui
r‖2

, i = 1, ..., dr. Each row of Z ∈ Rnl×c

and W ∈ Rnl×c is defined in Eqn. (4).
Setting the derivative of Eqn. (8) with respect to Ur to zero,

we obtain the solution of Ur as follows:

Ur =(XrlX
T
rl + XruSrX

T
ru + λQr)−1

(Xrl(Yl − Z ·W) + XruPr)
(9)

Update W: When U and P are fixed, we solve the shared
dragging matrix W. Let Tr = XT

rlUr −Yl, the solution of
W can be obtained from the following objective function:

min
W

1

2

m∑
r=1

‖Tr − Z ·W‖2F s.t.W ≥ 0 (10)

Based on the Frobenius norm of matrix, Eqn. (10) can be
separated into nl × c subproblems, which have the unified
optimization formulation:

min
Wij

(T ij
r − ZijW ij)2 s.t. W ij ≥ 0 (11)

where T ij
r denotes the element locating in the i-th row and j-

th column, so do W ij and Zij . Considering the nonnegative
constraint on Zij , the optimal solution of W ij is:

W ij = max{
m∑
r=1

ZijT ij
r , 0} (12)

Therefore, the final optimal solution to Eqn. (12) is:

W = max{
m∑
r=1

Z ·Tr, 0} (13)

Update P: After solving U and W, we turn to the solution
of P. Since the class probability matrices of different modal-
ities can be solved independently, we give the derivation of
Pr for the ith modality as follows:

min
Pr

n∑
i=nl+1

c∑
k=1

psrik‖UT
r xri − tk‖2F

s.t. ∀i, pik ∈ [0, 1],
c∑

i=1

pik = 1

(14)

Denote qrik = ‖Urxri − tk‖2F , the objective function in
Eqn. (3) can be rewritten as:

min
Pr

n∑
i=nl+1

c∑
k=1

psrikqrik s.t. prik ∈ [0, 1],
c∑

k=1

prik = 1

(15)
Eqn. (15) can be simplified to nu subproblems, and the

sub-objective function of each subproblem is defined as:

min
pri

c∑
k=1

psrikqrik (16)

Concretely, we should consider two cases for solving Pr:

Case1: When s = 1, the optimal solution is:{
prik = 1, if k = k∗

prik = 0, if k 6= k∗
(17)

where k∗ = arg mink qrik.
Case 2: When s > 1, we apply the Lagrangian function to

solve the objective function:

c∑
k=1

psrikqrik − β(
c∑

k=1

prik − 1) (18)

where β is the Lagrangian multiplier. Differentiating Eqn.
(18) with respect to prik and setting it to zero, we get:

prik = (
β

sqrik
)

1
s−1 (19)

Substituting Eqn. (19) into the constraint
∑c

k=1 prik = 1,
we obtain the closed form solution of prik as follows:

prik = (
1

qrik
)

1
s−1 /

c∑
k=1

(
1

qrik
)

1
s−1 (20)

To search an optimal solution, we alternatively optimize
U, W and P. To the best of our knowledge, it is novel to
make three variables depending on each other for exploit-
ing the multi-modal correlation. The convergence criterion of
AUSL is that the change between two consecutive iterations
is sufficiently small (0.001) or the maximal number (20) of it-
erations is reached. These convergence values are determined
by experimental observation.

In each iteration, the proposed method achieves the mini-
mum after updating U, W and P. Hence, the value of ob-
jective function will decrease after each update. It is easy
to understand that our method will converge because our ob-
jective function is constrained no less than zero. The ma-
jor computational complexity of AUSL is to update U. For
the rth modality, the matrix inverse has the complexity of
O((dr + 1)3), and the matrix multiplication has O(n× (dr +
1)2 + c× (dr + 1)2 + n2u × (dr + 1) + c× nu × (dr + 1)).
Considering that in practice c is much smaller than dr and
nl. Hence, the total cost on calculating m modalities is
O(
∑m

r=1N × ((dr + 1)3 +n× (dr + 1)2 +n2u× (dr + 1))),
where N is the number of iterations.

3 Experimental Results
In this section, we present extensive experiments to demon-
strate the effectiveness of the proposed method for text-image
retrieval, i.e., image-query-texts and text-query-images.

3.1 Datasets
Wiki dataset is collected from Wikipedia feature arti-
cles [Rasiwasia et al., 2010]. It contains 2,866 image-text
pairs belonging to 10 semantic classes, and each pair belongs
to a unique class. Our image features are represented by 4,096
dimensional output from the fc7 layer of CNN [Jia et al.,
2014]. For text features, we first adopt word2vec model to
learn the 100 dimensional skip-gram word vectors [Mikolov
et al., 2013]. Then we calculate a mean vector of the word

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

3409



0 0.2 0.4 0.6 0.8 1
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Recall

Pr
ec

is
io

n

 

 

CCA
SCM
LCFS
MvDA
LGCFL
ml−CCA
GMLDA
GMMFA
AUSL

(a) Wiki: Image-query-texts
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(b) Wiki: Text-query-images
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(c) Pascal: Image-query-texts
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(d) Pascal: Text-query-images
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(e) NUS: Image-query-texts
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(f) NUS:Text-query-images

Figure 2: Precision-recall curves on the three datasets.

vectors of the words appearing in each text document. On
this dataset, we randomly select 2,000 pairs of the data for
training and 866 pairs for testing.
Pascal dataset consists of 5,011/4,952(training/testing)
images-tag pairs [Everingham et al., 2010]. All pairs belong
to one or more of 20 semantic classes. We use the publicly
available 512-dimensional GIST features for images. For
texts, we use the 399-dimensional word frequency features.
We use the original training-test split and remove some pairs
since their text features are all zeros. Finally, 5,000 pairs are
used for training and 4,919 pairs for testing.
NUS-WIDE dataset consists of 40,834/27,159 (train-
ing/testing) image-tag pairs, which are pruned from the
training-test split of the NUS dataset [Chua et al., 2009] by
keeping the pairs belonging to one or more of the 10 largest
classes. Each text is represented by an 1,000-dimensional
word frequency vector based tag features, and each image is
represented as an 500-dimensional SIFT feature.

3.2 Experimental Settings
We compare AUSL with several related methods, including
CCA & SCM [Rasiwasia et al., 2010], GMLDA & GMM-

Table 1: MAP score comparison of text-image retrieval on three
benchmark datasets. Note that AUSL sets 20% labeled samples from
training set as unlabeled ones.

Method Text query Image query Average Dadaset
CCA 0.1872 0.2160 0.2016

Wiki

SCM 0.2336 0.2759 0.2548
LCFS 0.2043 0.2711 0.2377
MvDA 0.2319 0.2971 0.2645
LGCFL 0.3160 0.3775 0.3467
ml-CCA 0.2873 0.3527 0.3120
GMLDA 0.2885 0.3159 0.3022
GMMFA 0.2964 0.3155 0.3060

AUSL 0.3321 0.3965 0.3643

CCA 0.2945 0.3073 0.3009

Pascal
LCFS 0.3355 0.4278 0.3816

LGCFL 0.3440 0.4362 0.3901
ml-CCA 0.3885 0.4303 0.4094
AUSL 0.4653 0.4033 0.4343

CCA 0.2667 0.2869 0.2768

NUS
LCFS 0.3363 0.4742 0.4053

LGCFL 0.3907 0.4972 0.4440
ml-CCA 0.3908 0.4689 0.4299
AUSL 0.4128 0.5690 0.4909

FA [Sharma et al., 2012], LCFS [Wang et al., 2013], Mv-
DA [Kan et al., 2016], LGCFL [Kang et al., 2015] and ml-
CCA [Ranjan et al., 2015]. For fairness, we ensure that the
total number of training samples is equal for all methods. The
training set of the compared methods consists of all labeled
samples. But for AUSL, 20 percent samples in the training set
are set to the unlabeled data. At the testing stage, we adopt
the cosine distance to measure the similarity of features.

The mean average precision [Rasiwasia et al., 2010] is
used to evaluate performance. On Wiki dataset, we define
that a retrieved sample is relevant to a query if they be-
long to the same semantic class. On Pascal and NUS-WIDE
datasets, a retrieved sample is relevant if it shares at least one
concept with a query. We also display the precision-recall
curve [Rasiwasia et al., 2010] for all the methods.

Considering that CCA, SCM, GMLDA, GMMFA and Mv-
DA focus on learning the common subspace, principal com-
ponent analysis is performed on the original features to re-
move redundant features, and 95% information energy is p-
reserved. For all methods, parameters are set by 5-fold cross
validation on the training set. After cross validation, the pa-
rameters s and λ of AUSL are set to 2 and 0.1 in all the ex-
periments. The dimension of the common subspace is set to
10, 20 and 10 for Wiki, Pascal and NUS-WIDE, respectively.

3.3 Cross-Modal Retrieval
The MAP scores of all the methods are shown in Table 1.
On Pascal and NUS-WIDE datasets, AUSL is compared with
CCA, LCFS, ml-CCA and LGCFL because the other methods
cannot handle the multi-labeled data. From Table 1, we can
draw the following conclusions:

First, AUSL outperforms the compared methods which use
all labeled training data. Since the training set of AUSL in-
cludes 20% unlabeled data, this improvement is more ap-
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Figure 3: Demonstration on handling the unlabeled data: (a)-(d) denote two-dimensional t-SNE feature visualization on the NUS-WIDE
dataset; (e) shows the probability weight of each unlabeled sample learned by AUSL.

plicable in practice. The reason is that the proposed mod-
el effectively discriminates the specific points and the non-
specific points. Then it maximally exploits the discriminative
information and eliminates the ambiguous semantic informa-
tion from the unlabeled data. Hence, both labeled and unla-
beled data can help to explore the correlations among differ-
ent modalities in our framework.

Second, on Pascal dataset, the average MAP score of AUS-
L is 0.4343, which is about 6.08% higher than the second best
result from ml-CCA. ml-CCA adopts the multi-label data to
exploit the semantic correlation but they cannot enhance the
relation between embedded features and irrelevant class la-
bels. This phenomenon validates that the irrelevance can also
help to enhance multi-modal correlation.

Third, AUSL achieves the best average MAP of 0.3643 and
0.4909 on Wiki and NUS-WIDE, respectively. These results
are higher than the second best results from LGCFL (0.3467
and 0.4440). Since LGCFL has used the label space to link
the image space and text space, this improvement of AUSL
depends on exploiting the relevance and irrelevance between
embedded features and class labels.

Finally, the precision-recall curves of the image-query and
text-query are plotted in Fig. 2. From this figure, we observe
that with the same recall rate, AUSL obtains the higher preci-
sion than all compared methods on three datasets.

3.4 Demonstration on Exploiting Unlabeled Data
We also show the working mechanism of AUSL on exploit-
ing unlabeled data from different modalities. To demonstrate
this, we construct a dataset using some data from the NUS-
WIDE dataset. The constructed dataset consists of 500 paired
samples from the ‘clouds’ class, 500 paired samples from the
‘animal’ class and 200 paired samples without class labels.
Note that, to directly reflect discriminative ability of the un-
labeled data, they are composed of 150 paired samples from
the ‘clouds’ class and ‘animal’ class while the rest 50 paired
samples come from the other classes for each modality, i.e.,
the unlabeled data of each modality contains 150 specific se-
mantic points and 50 non-specific points.

In Fig. 3, we adopt the t-SNE [Maaten and Hinton, 2008]
to project original features and embedded features into a
two-dimensional visualization space. Fig. 3(a)&(c) illustrate
the two-dimensional distribution of original features showing
that samples from different classes are mixed. We embed the
original features into low-dimensional feature spaces by us-
ing the learned transformations. In Fig. 3(b)&(d), the embed-

ded features are displayed in a two-dimensional coordinate
plane by t-SNE. From it, we conclude that AUSL can sepa-
rate the labeled samples from different classes and most of
the specific points are also classified into their relevant cate-
gories. Besides, the distance between different classes of text
query is larger than that of image query. We note that AUSL
directly optimizes the labeling error between given data and
class labels. Since class labels apply more directly on textual
features than image features, this phenomenon is reasonable.

Fig. 3(e) shows the probability weight of each unlabeled
sample from two modalities. The weight of the ith sample is
defined as

∑c
k=1 p

s
rik. If the weight of a sample is large, it

will contribute more to the learned classifier. Experimental
results show that image query and text query correctly recov-
er 99 and 128 specific points, respectively. We observe that
the weights of those specific points are much larger than the
others. In conclusion, our model can adaptively control the
weight for each sample, and effectively exploit the discrimi-
native information from unlabeled data.

4 Conclusion
In this paper, we propose AUSL for cross-modal retrieval.
We first propose a unified linear regression model with drag-
ging factor to maximally differentiate samples from various
categories. Then, we design a weighted regression to adap-
tively exploit the unlabeled data with specific semantic in-
formation and weaken the unlabeled data with non-specific
semantic information. Finally, we combine two constraints
with `2,1-norm based regularization and design an efficient
optimization algorithm, by which the subspace learning, fea-
ture selection and label prediction can be simultaneously re-
alized. Extensive experiments demonstrate that the proposed
method outperforms the state-of-the-art methods on the three
cross-modal datasets.
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