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ADAPTIVITY WITH RELAXATION FOR ILL-POSED PROBLEMS ANDGLOBAL CONVERGENCE FOR A COEFFICIENT INVERSE PROBLEM ∗LARISA BEILINA† , MICHAEL V. KLIBANOV ‡ , AND MIKHAIL YU. KOKURIN §Abstrat. A new framework of the Funtional Analysis is developed for the adaptive FEM (adaptivity) for theTikhonov regularization funtional for ill-posed problems. As a result, the relaxation property for adaptive meshre�nements is established. An appliation to a multidimensional Coe�ient Inverse Problem for a hyperboli equationis disussed. This problem arises in the inverse sattering of aousti and eletromagneti waves. First, a globallyonvergent numerial method provides a good approximation for the orret solution of this problem. Next, thisapproximation is enhaned via the subsequent appliation of the adaptivity. Analytial results are omputationallyveri�edKey words. ill-posed problems, globally onvergent numerial method for a oe�ient inverse problem, two-stage numerial proedure, adaptivity for the Tikhonov funtional, relaxation property, orthogonal projetion oper-atorsAMS subjet lassi�ations. 15A15, 15A09, 15A231. Introdution. We develop a new framework of the Funtional Analysis for the Finite Ele-ment Adaptive tehnique (adaptivity for brevity) for the Tikhonov funtional for ill-posed problems.For the �rst time the so-alled relaxation property for the adaptive mesh re�nements is proved (seebelow in this setion). We use the adaptivity as a omplementary tool to a globally onvergentnumerial method, whih was reently developed in [8℄ for a Coe�ient Inverse Problem (CIP) for ahyperboli PDE (setion 5). This CIP has appliations in aoustis and eletromagnetis. CIPs forPDEs are both ill-posed and nonlinear, whih auses serious di�ulties for their numerial solutions.In partiular, least squares residual funtionals for CIPs su�er from the problem of multiple loalminima and ravines, see, e.g. [19℄ for some examples. Beause of the phenomenon of loal minima,onventional numerial methods for CIPs are loally onvergent ones. The numerial method of [8℄relies on the struture of the PDE operator and thus, is not using least squares. The onvergeneestimate in the global onvergene theorem of [8℄ depends on a small parameter η > 0. This param-eter inorporates the level of the error in the boundary data as well as some approximation errorsof the tehnique of [8℄.This paper is motivated by our reent numerial experiene. Namely, although η is small, wehave observed that it annot be made in�nitely small in pratial omputations, beause of aboveapproximation errors of the method of [8℄. On the other hand, loally onvergent numerial methodsfor CIPs are independent on these approximation errors. This led us to the idea of enhaning imagesresulting from the globally onvergent method via a subsequent appliation of a loally onvergentone. On the other hand, it is well known that a good �rst approximation for the orret solutionis one of the key inputs for any loally onvergent method. Therefore, our natural onlusion was
∗ This work was supported by US Army Researh Laboratory and US Army Researh O�e by the grant numberW911NF-08-1-0470 as well as by the grant RFBR N09-01-00273a from Russian Foundation for Basi Researh.Computations were performed in the Center for Sienti� and Tehnial Computing (C3SE) at Chalmers Universityof Tehnology, Gothenburg, Sweden.
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‡ Department of Mathematis and Statistis University of North Carolina at Charlotte, Charlotte, NC 28223,USA, (mklibanv�un.edu)
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2 L.BEILINA AND M.V.KLIBANOV and M.Y.KOKURINthat one should have a two stage numerial proedure. On the �rst stage one should get a good �rstapproximation for the solution by the globally onvergent method of [8℄. And on the seond stageone should use this approximation as a �rst guess for a further enhanement via an appropriateloally onvergent numerial method. An important point here is that sine η is small, then there isa rigorous guarantee that the globally onvergent part indeed provides the above input. This ideais arried out in numerial experiments of setion 8.The next question to ask was about the hoie of a proper loally onvergent numerial method.We have observed numerially (setion 8) that a straightforward appliation of the quasi-Newtonmethod on the same mesh where the globally onvergent part worked does not improve the solutionprovided by the �rst stage. Thus, based on the previous numerial experiene of the �rst authorfor the same CIP [5-7℄, we have onluded that a sequene of adaptive loal mesh re�nementsshould be used. It is shown numerially here that the adaptivity indeed re�nes images obtained onthe globally onvergent stage. Therefore, we study here the problem of suessive approximationsof the regularized solution via a sequene of adaptive mesh re�nements for a given value of theregularization parameter α. In our omputations α is hosen experimentally. The question of anoptimal hoie of α is outside of the sope of this publiation. We refer to [17℄ for a detailed studyof this question for the adaptivity tehnique.In this paper the Tikhonov funtional Jα is onstruted for a general nonlinear operator F, and
Jα is linked with the FEM. Our funtional analytial framework for the adaptivity is independenton a spei� proedure of the minimization of Jα. One of the key assumptions below is that a �rstgood approximation for the exat solution is available, whih is in onjuntion with the above ideaabout the two stage proedure. Sine the adaptivity is a loally onvergent numerial method, thenour analysis is inevitably an �asymptoti� one, as it is always the ase in suh senarios. In otherwords, we assume that the error in the data is su�iently small.In addition to the above framework, the following �ve (5) new results are presented in this paper:(1)We prove the strit onvexity of Jα in a small neighborhood of the regularized solution, providedthat the originating nonlinear operator F has the �rst Lipshitz ontinuous Frehet derivative. Asimilar result was proven earlier in [24,25℄ under the ondition that the nonlinear operator F hasthe seond ontinuous Frehet derivative. Note that suh a result for the ase of a bounded linearoperator is trivial. (2) We prove the relaxation property of the Tikhonov funtional with respetto adaptive mesh re�nements, see (1.1) below, whih is our main result. (3) We derive the Frehetderivative of the Tikhonov funtional for our CIP and prove that it equals to the so-alled �all-at-one� Frehet derivative of the Lagrangian used in [5-7℄. The onnetion between these twoderivatives was not lari�ed in [5-7℄. (4) Results of items 1, 2 are spei�ed for our CIP. We provea posteriori error estimate for the omputed regularized unknown oe�ient of our CIP, whih,in partiular, also approximately estimates the auray of the exat oe�ient (Lemma 2.1). Inprevious publiations on the adaptivity for CIPs only the auray of Lagrangians was estimated,see, e.g. [5-7℄. Our estimate uses the loal strit onvexity of the Tikhonov funtional instead of thetraditional apparatus of the Galerkin orthogonality. (5) In our numerial tests for the above twostage proedure the medium onsists of small inlusions embedded in a slowly varying bakground,whereas the bakground funtion was onstant in [8℄. The relaxation property (1.1) is numeriallyveri�ed.The adaptivity is about adaptive mesh re�nements in the FEM to improve the auray of thesolution. This is a lassi tool for forward problems [1℄, and it is also applied both to CIPs andparameter identi�ation problems, see, e.g. [5-7,17℄. Mesh re�nements an be either loal, i.e., insome subdomains of the original domain, or global, i.e. in the whole domain. Loal re�nements



Adaptivity with relaxation for the Tikhonov funtional 3are preferable, beause a globally �ne mesh imposes extra demands on the omputer's apaity.The following two questions are of an interest in the adaptivity tehnique: (A) Where to re�ne themesh? (B) Is it possible to estimate the distane between the solution obtained on the re�ned meshand the regularized one via that distane obtained on the previous oarser mesh? Let xα be theregularized solution and Vρ be a ertain neighborhood of xα of the radius ρ ∈ (0, α) . Let xn ∈ Vρand xn+1 ∈ Vρ be minimizers of the above Tikhonov funtional after n and n + 1 adaptive meshre�nements respetively. So, xn+1 is obtained on a �ner mesh than xn. Although the intuitionseems to be saying that xn+1 should be loser to xα than xn, the authors are unaware aboutpublished estimates of the ratio ‖xn+1 − xα‖ / ‖xn − xα‖ for a general Tikhonov funtional. Infat, beause of the ill-posedness of CIPs, previously known a posteriori estimates of the aurayof Lagrangians do not imply suh estimates for regularized oe�ients. Hene, that intuitive feelingwas not rigorously justi�ed so far. So, we prove the following relaxation property (under ertainonditions)
‖xn+1 − xα‖ ≤ r ‖xn − xα‖ , where r ∈ (0, 1) . (1.1)In the ase of forward problems the above question (A) is addressed via a posteriori erroranalysis, whih estimates the di�erene between omputed and exat solutions [1℄. It is importantthat instead of the knowledge of the exat solution, this analysis assumes only the knowledge ofan upper estimate for this solution. The latter is usually obtained on the basis of lassi a prioriestimates for solutions of these problems. In addition, the well posed nature of forward problemsenables one to obtain a posteriori error estimates for omputed solutions. Unlike this, the ill-posedness of CIPs radially hanges the situation. As a result, only the auray of Lagrangefuntionals is estimated instead of that of the unknown oe�ient [5-7,17℄. In those estimates forCIPs a priori upper bounds of solutions are imposed rather than proved. The latter is going alongwell with the Tikhonov onept for ill-posed problems, whih states that some a priori bounds anbe imposed on solutions of suh problems [3,13,26℄.In setion 2 a new framework of the Funtional Analysis for the adaptivity is introdued. Insetion 3 the loal strit onvexity of the Tikhonov funtional is proved, the main problem of theinterest of this paper is formulated and the existene of loal minimizers on subspaes is established.The relaxation property (1.1) is established in setion 4. In setion 5 we state our CIP and outlinethe globally numerial onvergent numerial method of [8℄ for it. In setion 6 Frehet derivativeswith respet to the unknown oe�ient of solutions of state and adjoint problems are derived. Insetion 7 the Tikhonov funtional for the CIP is onstruted, its Frehet derivative is derived andresults of setion 4 are spei�ed for this ase. In setion 8 numerial tests are presented.2. The Framework Of the Funtional Analysis. We work only with pieewise linear �niteelements, beause they are used in our numerial studies. An extension of our analysis on other�nite elements is outside of the sope of this publiation. Let Ω ⊂ Rm,m = 2, 3 be a boundeddomain. Consider a triangulation T0 of this domain with a rather oarse mesh. We obtain apolygonal domain σ ⊆ Ω. All subsequent mesh re�nement via other triangulations will be done viaembedding (in a ertain well known manner) smaller triangles/tetrahedra in triangles/tetrahedraforming T0. Hene, all those triangles/tetrahedra will be loated inside of the domain σ. Let Tbe one of those triangulations. Then we have assoiated pieewise linear funtions {ej (x, T )}ep

j=1 .We now onstrut a linear spae of these funtions similarly with the subsetion 7.4 of the book[15℄. The funtion ej (x, T ) is a �rst order polynomial within the triangle/tetrahedra number j,whih we denote as (Tr)j . This funtion equals 1 at one vertex (V s)j of (Tr)j and it equals zero



4 L.BEILINA AND M.V.KLIBANOV and M.Y.KOKURINat all other verties of (Tr)j . We extend the funtion ej (x, T ) outside of (Tr)j for all x ∈ σ asfollows. Let (Tr)k be another triangle/tetrahedra of T . Assume �rst that (V s)j ∈
(
(Tr)j ∩ (Tr)k

)
.Then we extend ej (x, T ) in (Tr)k as ej (x, T ) := ek (x, T ) , x ∈ (Tr)k . Suppose now that (V s)j /∈(

(Tr)j ∩ (Tr)k

)
. Then we set for the extension ej (x, T ) := 0, x ∈ (Tr)k . It is lear that if (V s)j =

(V s)k ∈
(
(Tr)j ∩ (Tr)k

)
, then so obtained funtions ej (x, T ) and ek (x, T ) are equal to eah other,

ej (x, T ) = ek (x, T ) , ∀x ∈ σ. So, we do not di�erentiate between these equal funtions. Hene, eahso obtained funtion ej (x, T ) = 1 at the vertex (Tr)j , it equals zero at all other verties and hasa loalized support in σ. In addition, eah so obtained funtion ej (x, T ) is pieewise linear in σ.Sine these funtions are linearly independent ones, we take them as the basis B (T ) := {ej (x, T )}for the linear spae Span (ej (x, T )) .Let h′ be the minimal diameter of triangles/tetrahedra whih form T and ̟′ be the radius ofthe maximal irle/sphere ontained in that triangle/tetrahedra. We assume that for all possibletriangulations T whih we onsider below
a1 ≤ h′ ≤ ̟′a2; a1, a2 = const. > 0, ∀T. (2.1)Thus, the �rst inequality (2.1) means that we do not derease the size of triangles/tetrahedrainde�nitely. The seond inequality (2.1) means that all our triangulations are regular ones, see [12℄.It follows from this onstrution that there exists only a �nite number Ñ of possible triangulationssatisfying (2.1). Denote H = ∪TSpan (B (T )) . Then H is a subspae of L2 (σ) and dimH := dH :=

dH

(
Ñ
)
<∞. Furthermore,

H ⊂
(
H1 (σ) ∩ C (σ)

) as a set, ∂xi
f ∈ L∞ (σ) , ∀f ∈ H. (2.2)We set the salar produt in H to be the same as one in L2 (σ) and denote (, ) and ‖·‖ the salarprodut and the orresponding norm in H respetively. The spae H an be viewed as an �ideal�spae of very �ne �nite elements, whih is never reahed in pratial omputations.We now onstrut subspaes Mn ⊂ H assoiated with our triangulations Tn. We need toonstrut these subspaes in suh a way that

Mn ⊂Mn+1. (2.3)First, we de�ne the subspae M0 := Span (B (T0)) ⊂ H. Next, given the pair (Tn,Mn) , thepair (Tn+1,Mn+1) is onstruted as follows. First, we re�ne the mesh and obtain Tn+1 and
B (Tn+1) . Let {en

j (x)
}pn

j=1
be the basis in Mn. To form the basis of Mn+1, we �rst take fun-tions from B (Tn+1). Next, we add to B (Tn+1) suh funtions from the set {en

j (x)
}pn

j=1
that

en
j (x) /∈ Span (B (Tn+1)), provided of ourse that suh funtions en

j (x) exist (alternatively B (Tn+1)is the basis in Mn+1). Thus, we obtain the basis {en+1
j (x)

}pn+1

j=1
of the subspae Mn+1 ⊆ H. Sine

{
en

j (x)
}pn

j=1
⊂ Span

({
en+1

j (x)
}pn+1

j=1

), then (2.3) holds.For any subspae M ⊂ H let PM : H → M be the operator of the orthogonal projetionof H onto M . Sine we use the subspae Mn many times below, we denote for brevity Pn :=
PMn

, Pn+1 := PMn+1
. Below I is the identity operator on H . Let the funtion f ∈ H1 (σ) ∩ C (σ)and its ∂xi

fxi
∈ L∞ (σ) . Let hn be the maximal diameter of the above triangles/tetrahedra whihare involved in Tn. By the onstrution of above subspaes hn+1 ≤ hn. For any funtion f ∈ H, let



Adaptivity with relaxation for the Tikhonov funtional 5
fn be its standard interpolant [15℄ on triangles/tetrahedra involved in Tn. Then by one of propertiesof orthogonal projetion operators ‖f − Pnf‖L2(σ) ≤ ‖f − fn‖L2(σ). Hene, it follows from (2.2)and formula 76.3 of the book [15℄ that with a positive onstant K = K (σ) depending only on thedomain σ

‖f − Pnf‖L2(σ) ≤ K ‖∇f‖L∞(σ) hn, ∀f ∈ H. (2.4)Let H1 be another real valued Hilbert spae, whose norm is denoted as ‖·‖1 . Let F̃ : H → H1be a ontinuous operator, whih does not neessary has a �good� ontinuous inverse. In general,even if an ill-posed problem in an in�nitely dimensional spae is �turned� into a well-posed one viaa �nite dimensional approximation, still the orresponding operator often does not have a �good�ontinuous inverse, beause of that �heritage� from the ill-posed ase. Thus, one should applyregularization. Consider the equation F̃ (x) = y. By the Tikhonov onept for ill-posed problems[26℄, we assume that there exists an �ideal� exat solution x∗ ∈ H of this equation with the �ideal�exat right hand side y = y∗, where y∗ is given without an error, i.e. F̃ (x∗) = y∗. However, inpratie the right hand side y is always given with a small error of the level δ ∈ (0, 1) , ‖y − y∗‖1 ≤ δ.Denote F (x) = F̃ (x) − y. Hene, in a small neighborhood of x∗ we should �nd an approximatesolution of the following equation
F (x) = 0, x ∈ H. (2.5)So, we assume throughout the paper that

‖F (x∗)‖1 ≤ δ, δ ∈ (0, 1) . (2.6)For any d > 0 denote Vd (x∗) = {x ∈ H : ‖x− x∗‖ < d} . We also assume throughout the paperthat the operator F has the Frehet derivative F ′ (x) for x ∈ V1 (x∗) = {‖x− x∗‖ < 1} , and thisderivative is Lipshitz ontinuous, i.e. for ertain positive onstants N1, N2

‖F ′ (x)‖ ≤ N1, ‖F ′ (x) − F ′ (y)‖ ≤ N2 ‖x− y‖ , ∀x, y ∈ V1 (x∗) . (2.7)Let xglob be a good �rst guess for the exat solution x∗. For example, for our CIP of setion 5 agood �rst guess an be obtained by a globally onvergent numerial method of [8℄. Consider theTikhonov funtional Jα with the regularization parameter α ∈ (0, 1) ,

Jα (x) =
1

2
‖F (x)‖2

1 +
α

2
‖x− xglob‖2

. (2.8)Remark 2.1. In priniple, by the Tikhonov theory [26℄, one should use a stronger norm in theseond term of the right hand side of (2.8) to ensure the existene of a minimizer of Jα. However,sine all norms in the �nite dimensional spae H are equivalent, we use a simpler L2 (σ) norm here.By our numerial experiene with the adaptivity both in setion 8 and in previous publiations[5-7℄, this norm is su�ient for our CIP.Let J ′
α (x) be the gradient (i.e. the Frehet derivative) of the funtional Jα (x) . Then by (2.4)

J ′
α (x) = (F ′ (x))

∗
F (x) + α (x− x0) . (2.9)Let N3 = N3 (N1, N2) = const. > 0 be suh that

‖J ′
α (x) − J ′

α (y)‖ ≤ N3 ‖x− y‖ , ∀x, y ∈W1. (2.10)



6 L.BEILINA AND M.V.KLIBANOV and M.Y.KOKURINBelow C = C (N1, N2) > 0 denotes a �nite number of di�erent onstants depending only on N1, N2.We now assume that
‖xglob − x∗‖ ≤ δµ1 , µ1 = const. ∈ (0, 1) , (2.11)

α = δµ2 , µ2 = const. ∈ (0,min (µ1, 2 (1 − µ1))) (2.12)We impose these assumptions on parameters µ1, µ2 to ensure that the distane between the �rstapproximation xglob and the exat solution x∗ as well as the regularization parameter α far exeedthe error in the data δ for su�iently small δ, sine one annot perform better than the level ofthe error in the data. In addition, (2.11b) ensures that points x∗, xglob belong to an appropriateneighborhood of the regularized solution, see Lemmata 2.1 and 3.2.Lemma 2.1. A minimizer xα of the funtional Jα (x) on the spae H exists for any value of theregularization parameter α. For any r > 0 denote Vr (xα) = {x ∈ H : ‖x− xα‖ < r} . Assume thatonditions (2.11), (2.12) hold. Then xglob ∈ V√2δµ1
(xα) and x∗ ∈ V(1+

√
2)δµ1

(xα) . Let β1 ∈ (0, 1)be any number. Then there exists a su�iently small number δ0 = δ0 (µ1, µ2, β1) ∈ (0, 1) suh thatif δ ∈ (0, δ0) , then x∗, xglob ∈ Vβ1α (xα) .Proof. Sine dimH <∞, then lim‖x‖→∞ Jα (x) = ∞ implies the existene of a minimizer xα.Sine Jα (xα) ≤ Jα (x∗) and by (2.6), (2.8) and (2.11), (2.12) Jα (x∗) ≤
(
δ2 + αδ2µ1

)
/2 < αδ2µ1 ,then Jα (xα) < αδ2µ1 . Hene, by (2.8) ‖xα − xglob‖ ≤

√
2δµ1 . Hene, ‖xα − x∗‖ ≤ ‖xα − xglob‖ +

‖xglob − x∗‖ ≤
(
1 +

√
2
)
δµ1 . To �nish the proof, note that by (2.12) (1 +

√
2
)
δµ1 < β1α = β1δ

µ2for su�iently small δ. �The point xα is alled the regularized solution of equation (2.3) [3,13,26℄. In general, the lassiTheorem 2 of Tikhonov on page 65 of [26℄ states that one an often hoose the regularizationparameter as α (δ) = δ̺, ̺ ∈ (0, 1) , whih implies α (δ) >> δ for su�iently small δ. Hene, (2.12)is in a good agreement with this result. The proof of the following lemma is rather standard and istherefore omitted.Lemma 2.2. Let M ⊂ H be a subspae and xM ∈ M be a point of a loal minimum of thefuntional Jα on M . Then (J ′
α (xM ) , z) = 0, ∀z ∈M. Hene,

J ′
α (xα) = 0, (2.13)

PMJ ′
α (xM ) = 0. (2.14)3. Loal Strit Convexity of Jα, Problem Statement and Minimizers on Subspaes.3.1. Convexity. Lemma 3.1 ([22℄, hapter 10). Let U ⊂ H be a onvex set and G : U → Rbe a ontinuous funtional. Let (G′ (u) , z) , ∀z ∈ H be its Frehet derivative at the point u ∈ U.Assume that G′ (u) is ontinuous for u ∈ U. Then eah of onditions (3.1) and (3.2) is bothneessary and su�ient for the strit onvexity of the funtional G on U with the strit onvexityparameter κ = const. > 0

G (u) −G (v) ≥ (G′ (v) , u− v) + κ ‖u− v‖2
, ∀u, v ∈ U, (3.1)

(G′ (u) −G′ (v) , u− v) ≥ 2κ ‖u− v‖2 , ∀u, v ∈ U. (3.2)Theorem 3.1. Assume that onditions (2.11), (2.12) hold. Then there exists numbers β1 =
β1 (N1, N2) ∈ (0, 1) and δ1 = δ1 (µ1, µ2, N2, β1) ∈ (0, 1) depending only on listed parameters suhthat if ρ = β1α, then for any δ ∈ (0, δ1) the funtional Jα is stritly onvex in the neighborhood



Adaptivity with relaxation for the Tikhonov funtional 7
Vρ (xα) of the point xα with the strit onvexity parameter κ = α/4. Furthermore, by Lemma 2.1points xglob, x

∗ ∈ Vρ (xα) .Proof. Let β1 ∈ (0, 1) be the number whih we will hoose below in this proof, ρ = β1α and
x, y ∈ Vρ (xα) be two arbitrary points. By (2.9)

(J ′
α (x) − J ′

α (y) , x− y) = α ‖x− y‖2
+ (F ′∗ (x)F (x) − F ′∗ (y)F (y) , x− y)

= α ‖x− y‖2
+ (F ′∗ (x)F (x) − F ′∗ (x)F (y) , x− y) (3.3)

+ (F ′∗ (x)F (y) − F ′∗ (y)F (y) , x− y) .Denote A1 = (F ′∗ (x)F (x) − F ′∗ (x)F (y) , x− y) , A2 = (F ′∗ (x)F (y) − F ′∗ (y)F (y) , x− y) andestimate A1, A2 from the below.Sine A1 = A1 − (F ′∗ (x)F ′ (x) (x− y) , x− y) + (F ′∗ (x)F ′ (x) (x− y) , x− y) , then
A1 = F ′∗ (x)

1∫

0

(F ′ (y + θ (x− y)) − F ′ (x)) (x− y) dθ, x− y

+ (F ′∗ (x)F ′ (x) (x− y) , x− y) .Using (2.7), we obtain
∣∣∣∣∣∣
F ′∗ (x)

1∫

0

[F ′ (y + θ (x− y)) − F ′ (x)] (x− y) dθ, x− y

∣∣∣∣∣∣

≤ ‖F ′ (x)‖
1∫

0

‖[F ′ (y + θ (x− y)) − F ′ (x)] (x− y)‖ dθ · ‖x− y‖ ≤ 1

2
N1N2 ‖x− y‖3

.Also,
(F ′∗ (x)F ′ (x) (x− y) , x− y) = (F ′ (x) (x− y) , F ′ (x) (x− y))2 = ‖F ′ (x) (x− y)‖2

2 ≥ 0.Hene, A1 ≥ N1N2 ‖x− y‖3 /2. Now we estimate A2,

|A2| ≤ ‖F (y)‖2 ‖F ′(x) − F ′ (y)‖ ‖x− y‖ ≤ N2 ‖x− y‖2 ‖F (y)‖2 .Sine ‖F (xα)‖2 ≤ ‖F (y) − F (xα)‖2 + ‖F (xα)‖2 ≤ N1 ‖y − xα‖ + ‖F (xα)‖2 , then
|A2| ≤ N2 ‖x− y‖2

(N1 ‖y − xα‖ + ‖F (xα)‖2) . (3.4)By (2.6), (2.7) and Lemma 2.1 ‖F (xα)‖2 ≤ ‖F (xα) − F (x∗)‖2 + δ ≤ αβ1N2 + δ. Hene, by (3.4)
A2 ≥ −N2 ‖x− y‖2 (N1 ‖y − xα‖ + αβ1N2 + δ) .Combining this with (3.3) and the above estimate for A1, we obtain

(J ′
α (x) − J ′

α (y) , x− y) ≥ (3.5)
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‖x− y‖2

[
α− N1N2

2
‖x− y‖ −N1N2 ‖y − xα‖ −N2 (N2αβ1 + δ)

]
.We have

N1N2

(‖x− y‖
2

+ ‖y − xα‖
)

+N2 (N2αβ1 + δ) ≤ 2αβ1N2 (N1 +N2) +N2δ. (3.6)Choose β1 = β1 (N1, N2) ∈ (0, 1) suh that 2β1N2 (N1 +N2) ≤ 1/4. Given this β1, hoose δ1 =
δ1 (µ1, µ2, N1, N2) ∈ (0, 1) so small that N2δ < δµ2/4 = α/4 and 2δµ1 < β1δ

µ2 = β1α, ∀δ ∈ (0, δ1) .Then (3.5), (3.6) and (3.2) imply that Theorem 3.1 is proven. �Lemma 3.2. Assume that onditions of Theorem 3.1 hold. Then in the neighborhood
V(1+

√
2)δµ1

(x∗) of x∗ there exists unique minimizer xα of the funtional Jα (x) . Furthermore,
V(1+

√
2)δµ1

(x∗) ⊂ Vρ (xα) . If the operator F is one-to-one, then x∗ is unique and therefore xα isunique also.Note that, unless the operator F is one-to-one, there is no guarantee that the exat solutionof equation (2.5) is unique. The proof of Lemma 3.2 follows immediately from Lemma 2.1 andTheorem 3.1. Hene, even though there might exist several exat solutions of equation (2.5), still aslong as a good �rst guess xglob about one of these solutions is available and onditions (2.11), (2.12)are satis�ed, one an guarantee uniqueness of the regularized solution in a small neighborhood ofthat exat solution. Hene, below we work only with suh an exat solution x∗ that satis�es (2.11),assuming of ourse that x∗ exists for the given vetor xglob. As to xα, all what we know about thisvetor is it exists, is unique and by Lemma 2.1 xα ∈ V(1+
√

2)δµ1
(x∗) . Thus, we denote below forbrevity Vρ (xα) := Vρ. Therefore the statement of the Problem 3.1 has no ambiguity now in termsof xα. The following problem is the main interest of our study below.Problem 3.1. Suppose that onditions of Theorem 3.1 are satis�ed and δ ∈ (0, δ1). For a�xed value of the regularization parameter α, approximate the regularized solution xα in the normof L2 (σ) via a �nite number of above desribed mesh re�nements.3.2. Loal minimizers on subspaes. In this subsetion we establish the existene anduniqueness of a minimizer xn ∈Mn∩

(
V ρ�∂V ρ

) of the funtional Jα. To do so, we �rst reformulateProposition 6.3.4 of [23℄, whih is derived there from the Leray-Shauder theorem.Proposition 3.1. Let D ⊂ Rk be an open domain, Φ : D → Rk be a ontinuous mapping and
x0 ∈ D �∂D be an arbitrary point. Assume that [Φ (x) , x− x0

]
≥ 0, ∀x ∈ ∂D, where [, ] is thesalar produt in Rk. Then there exists a point x̃ ∈ D suh that Φ (x̃) = 0.Theorem 3.2. Assume that onditions of Theorem 3.1 hold. Suppose that there exists aninteger n ≥ 1 suh that with the onstant K from (2.4)

K ‖∇xα‖L∞(σ) hn := ∆′
n <

β1α
2

√
4N2

3 + α2
=

αρ√
4N2

3 + α2
. (3.7)Let M ′ ⊆ H be any subspae suh that Mn ⊆ M ′. Then Vρ ∩M ′ 6= ∅. Furthermore, there existsa unique point xM ′ ∈

(
V ρ�∂Vρ

)
∩M ′ at whih the funtional Jα (x) attains its minimal value onthe set Vρ ∩M ′.Proof of Theorem 3.2. We �rst prove this theorem for M ′ = Mn. Denote

∆n = ‖xα − PMn
xα‖ , RMn

=
√
ρ2 − ∆2

n, Sn = {x ∈Mn : ‖x− PMn
xα‖ < RMn

} . (3.8)
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∆n ≤ ∆′

n < ρ. (3.9)Let x ∈ Mn be an arbitrary point. Sine (x− PMn
xα) ∈ Mn, then vetors (x− PMn

xα) and
(xα − PMn

xα) are orthogonal. Hene,
‖x− xα‖2

= ‖x− PMn
xα + PMn

xα − xα‖2
= ‖x− PMn

xα‖2
+ ‖PMn

xα − xα‖2

< ‖x− PMn
xα‖2

+ ∆2
n ≤ ρ2 − ∆2

n + ∆2
n = ρ2, ∀x ∈ Sn.Hene,

Sn ⊆ Vρ ∩Mn implying that Vρ ∩Mn 6= ∅. (3.10)De�ne the funtional Jα,Mn
: Mn → R as Jα,Mn

(x) := Jα (x) , ∀x ∈ Mn. Then the gradientof Jα,Mn
(x) is PMn

J ′
α (x) , ∀x ∈ Mn. Hene, it follows from (3.2), (3.10) and Theorem 3.1 thatthe funtional Jα,Mn
(x) is stritly onvex on Vρ ∩Mn. Hene, (3.10) and (2.14) imply that it issu�ient to prove the existene of a point xMn

∈ Sn suh that J ′
α,Mn

(xMn
) = 0. To make surethat the point xMn

∈ Sn�∂Sn, onsider a small number ε ∈ (0, 1) whih will be hosen later. Let
Sn (ε) = {x ∈Mn : ‖x− PMn

xα‖ = (1 − ε)RMn
} . Hene, Sn (ε) ⊂ Sn. Using (2.10), (2.13), (3.2),Theorem 3.1 and (3.8), we obtain for x ∈ Sn (ε)

(
J ′

α,Mn
(x) , x− PMn

xα

)
= (PMn

J ′
α (x) − J ′

α (xα) , x− PMn
xα)

= (J ′
α (x) − J ′

α (PMn
xα) , x− PMn

xα)

+ (J ′
α (PMn

xα) − J ′
α (xα) , x− PMn

xα)

≥ α

2
‖x− PMn

xα‖2
+ (J ′

α (PMn
xα) − J ′

α (xα) , x− PMn
xα)

≥
α (1 − ε)

2
R2

Mn

2
−N3 (1 − ε)RMn

∆n.Hene, (3.7), (3.9) and elementary alulations show that one an hoose a su�iently small ε suhthat (J ′
α,Mn

(x) , x− PMn
xα

)
> 0, ∀x ∈ Sn (ε) . Hene, Proposition 3.1 implies the existene of theabove point xMn

. By Theorem 3.1 this point is unique. Finally, if Mn ⊆M ′, then ‖xα − PM ′xα‖ ≤
‖xα − PMn

xα‖ , whih means that the above proof is appliable to M ′ as well. �4. Relaxation. In this setion we use without restating various properties of orthogonal pro-jetion operators in Hilbert spaes, whih are well known from the standard Funtional Analysisourse. In partiular, we use the following three properties
P 2

M = PM ; P ∗
M = PM ; PM (z) = z, ∀z ∈M ; (x− PMx.y) = 0, ∀x ∈ H, ∀y ∈M.In setions 4 and 7 we assume without restating that the following Assumption 4.1 is valid.Assumption 4.1. We assume that onditions of Theorem 3.2 hold, whih implies that on-ditions of Theorem 3.1 and Lemma 2.1 are also in plae. In partiular, we impose a priori upperbound on the regularized solution xα. The latter is going along well with the above mentioned(setion 1) Tikhonov onept for ill-posed problems, by whih a priori bounds should be imposed[3,13,26℄. Namely, we assume that ‖∇xα‖L∞(σ) ≤ A, where A is a given onstant. Hene, weassume below that n ≥ n and impose a little bit stronger ondition than (3.7),

hn <
β1α

2

AK
√

4N2
3 + α2

. (4.1)



10 L.BEILINA AND M.V.KLIBANOV and M.Y.KOKURINBy Theorem 3.2, there exists unique point xn ∈
(
V ρ�∂Vρ

)
∩Mn at whih the funtional Jα (x)attains its minimal value on this set. Hene, by (2.14)

PnJ
′
α (xn) = 0. (4.2)For any two vetors a, b ∈ H let An (a, b) ∈ [0, π] be the angle between them, provided that atleast one of them is non zero. If one of them is zero, then An (a, b) := 0. The number cos [An (a, b)]is de�ned via the salar produt. Lemma 4.1 is elementary.Lemma 4.1. Let u, v ∈ H be two orthogonal vetors, u+ v 6= 0 and ϕ = An (u, u+ v) . Then

ϕ ∈ [0, π/2] , ‖u‖ = ‖u+ v‖ cosϕ and ‖v‖ = ‖u+ v‖ sinϕ.Consider the funtional Jα (x) for x ∈ Vρ ∩Mn. It is reasonable to assume that
J ′

α (xn) 6= 0. (4.3)Indeed, if (4.3) is not true, then by (2.13) J ′
α (xn) = J ′

α (xα) = 0 and Theorem 3.1 implies that
xn = xα and the Problem 3.1 is solved in this ase. Assume that the subspaeMn+1 is also hosen.Reall that by (2.3) Mn ⊂Mn+1. Sine by (4.2) the gradient J ′

α (xn) is orthogonal to the subspae
Mn, then one an onsider two auxiliary subspaes,

Gn+1 = Mn ⊕ J
′

α (xn) , (4.4)
G̃n+1 = Pn+1Gn+1, (4.5)where �⊕� denotes the orthogonal sum. By (4.4) Mn ⊂ Gn+1. Also, sine Mn ⊂ Mn+1, then by(4.4) Pn+1x = Pnx+ λ (x)Pn+1J

′

α (xn) , ∀x ∈ Gn+1, where λ (x) is a ertain number depending on
x. Sine, Pnx ∈ Mn and PnMn = Mn, then by (4.5) Mn ⊂ G̃n+1. Therefore, Theorem 3.2 andAssumption 4.1 imply that there exists two auxiliary minimizers xg

n+1 ∈ Gn+1, x̃
g
n+1 ∈ G̃n+1 of thefuntional Jα (eah one of them is unique) suh that

Jα

(
xg

n+1

)
= min

V ρ∩Gn+1

Jα (x) , xg
n+1 ∈

(
V ρ�∂V ρ

)
∩Gn+1, (4.6)

Jα

(
x̃g

n+1

)
= min

V ρ∩ eGn+1

Jα (x) , x̃g
n+1 ∈

(
V ρ�∂V ρ

)
∩ G̃n+1. (4.7)Hene, by (4.6) and (4.7) there exist numbers λn+1, λ̃n+1 ∈ R suh that vetors xg

n+1, x̃
g
n+1 an berepresented as

xg
n+1 = yn+1 + λn+1J

′

α (xn) , x̃g
n+1 = ỹn+1 + λ̃n+1Pn+1J

′

α (xn) ; yn+1, ỹn+1 ∈Mn. (4.8)Lemma 4.2. Let ondition (4.3) holds. Then the following estimate is valid
∥∥xg

n+1 − xα

∥∥ ≤ r̃ ‖xn − xα‖ + r̃∆n + ∆g
n+1, (4.9)

∆n = ‖xn − Pnxα‖ , ∆g
n+1 =

∥∥xg
n+1 − PGn+1

xα

∥∥ , r̃ =

√
1 − α2

4N2
3

. (4.10)Proof. Consider the unit vetor pn = J ′
α (xn) / ‖J ′

α (xn)‖ . Then by (4.4) PGn+1
x = Pnx +

(x− Pnx, pn) pn, ∀x ∈ H. Consider vetors u = Pnxα − PGn+1
xα, v = PGn+1

xα − xα. Sine u =
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(Pnxα − xα, pn) pn ∈ Gn+1 and v is orthogonal to Gn+1, then (u, v) = 0. Sine by (4.3) and (2.13)
xα /∈Mn, then u+ v = Pnxα − xα 6= 0. Hene, by Lemma 4.1

∥∥xα − PGn+1
xα

∥∥ = gn ‖xα − Pnxα‖ , gn = sinϕn, (4.11)where ϕn = An (u, xα − Pnxα) . Using (4.11), we now estimate the norm ∥∥xg
n+1 − xα

∥∥ ,
∥∥xg

n+1 − xα

∥∥ ≤
∥∥xg

n+1 − PGn+1
xα

∥∥+
∥∥xα − PGn+1

xα

∥∥

=
∥∥xg

n+1 − PGn+1
xα

∥∥+ gn ‖xα − Pnxα‖
≤ gn ‖xn − Pnxα‖ + gn ‖xn − xα‖ +

∥∥xg
n+1 − PGn+1

xα

∥∥ .Hene, taking into aount notations (4.10), we obtain (4.9) in whih r̃ is replaed with gn.We now estimate gn from the above. By (4.2) (J ′
α (xn) , Pnxα − xn) = 0. Hene,

(J ′
α (xn) , Pnxα − xα) = (J ′

α (xn) , Pnxα − xn) + (J ′
α (xn) , xn − xα) = (J ′

α (xn) , xn − xα) .Comparing this with (4.11), we obtain ‖J ′
α (xn)‖ ‖Pnxα − xα‖ cosϕn = (J ′

α (xn) , xn − xα) . By(2.13) and Theorem 3.1
(J ′

α (xn) , xn − xα) = (J ′
α (xn) − J ′

α (xα) , xn − xα) ≥ α

2
‖xα − xn‖2 .Hene,

‖J ′
α (xn)‖ ‖xα − Pnxα‖ cosϕn ≥ α

2
‖xα − xn‖2

. (4.12)By (2.10) and (2.13) ‖J ′
α (xn)‖ = ‖J ′

α (xn) − J ′
α (xα)‖ ≤ N3 ‖xn − xα‖ . Combining this with (4.12)and using the fat that by one of the properties of orthogonal projetion operators ‖xα − xn‖ ≥

‖xα − Pnxα‖ , we obtain
cosϕn ≥ α

2N3
· ‖xα − xn‖
‖xα − Pnxα‖

≥ α

2N3
.Hene, by (4.10) and (4.11) gn = sinϕn ≤

√
1 − α2 (2N3)

−2 = r̃. �Numbers ∆n and ∆g
n+1 in (4.10) haraterize approximating properties of subspaes Mn and

Gn+1 with respet to the regularized solution xα. In the proof of Lemma 4.2 we have not usedthe fat that xg
n+1 is the minimizer of Jα (x) on Vρ ∩ Gn+1, see (4.6). We use (4.6) in Theorem4.1. In the proof of this theorem we �rst obtain an upper estimate of ‖xn+1 − xα‖ via numbers

‖xn − xα‖ ,∆n,∆
g
n+1 and ∥∥xg

n+1 − x̃g
n+1

∥∥ . Next, we estimate ∥∥xg
n+1 − x̃g

n+1

∥∥ from the above via
‖(I − Pn+1)J

′
α (xn)‖ / ‖J ′

α (xn)‖ , whih is the most tehnial part of the proof. Finally, we estimatenumbers ∆n,∆n+1 and ∆g
n+1 from the above via ‖(I − Pn) xα‖. Next, in the proof of Theorem4.2 we estimate from the above numbers ‖(I − Pn+1)J

′
α (xn)‖ / ‖J ′

α (xn)‖ and ‖(I − Pn)xα‖ via
‖xn − xα‖, thus ending up with the target estimate (1.1). By (4.3) there exists suh a subspae
Mn+1 ⊂ H, Mn ⊂Mn+1 that

Pn+1J
′
α (xn) 6= 0, whih is equivalent with (Pn+1J

′
α (xn) , J ′

α (xn)) 6= 0. (4.13)



12 L.BEILINA AND M.V.KLIBANOV and M.Y.KOKURINTheorem 4.1. Assume that ondition (4.3) holds. Then with the onstant r̃ ∈ (0, 1) of (4.10)the following estimate is valid
‖xn+1 − xα‖ ≤ r̃ ‖xn − xα‖ + C

‖(I − Pn+1)xα‖√
α

+ C
√
α
‖(I − Pn+1)J

′
α (xn)‖1/2

‖J ′
α (xn)‖1/2

. (4.14)Proof. We have
∥∥xg

n+1 − xα

∥∥ ≥
∥∥x̃g

n+1 − xα

∥∥−
∥∥xg

n+1 − x̃g
n+1

∥∥ . (4.15)Sine x̃g
n+1 ∈ G̃n+1 ⊂Mn+1, then, using (4.10), we obtain

∥∥x̃g
n+1 − xα

∥∥ ≥ ‖Pn+1xα − xα‖ ≥ ‖xn+1 − xα‖ − ‖xn+1 − Pn+1xα‖ = ‖xn+1 − xα‖ − ∆n+1.Hene, it follows from (4.15) that ∥∥xg
n+1 − xα

∥∥ ≥ ‖xn+1 − xα‖ −
∥∥xg

n+1 − x̃g
n+1

∥∥ − ∆n+1. Substi-tuting this inequality in (4.9), we obtain
‖xn+1 − xα‖ −

∥∥xg
n+1 − x̃g

n+1

∥∥− ∆n+1 ≤
∥∥xg

n+1 − xα

∥∥ ≤ r̃ ‖xn − xα‖ + r̃∆n + ∆g
n+1,whih implies that

‖xn+1 − xα‖ ≤ r̃ ‖xn − xα‖ + r̃∆n + ∆n+1 + ∆g
n+1 +

∥∥xg
n+1 − x̃g

n+1

∥∥ . (4.16)We now estimate the norm ∥∥xg
n+1 − x̃g

n+1

∥∥ of the last term of (4.16) from the above. Using(4.6), (4.9) and (2.14), we obtain
(
J ′

α

(
xg

n+1

)
, xg

n+1 − x̃g
n+1

)
=
(
J ′

α

(
xg

n+1

)
, xg

n+1 − PGn+1
x̃g

n+1

)

+
(
J ′

α

(
xg

n+1

)
, PGn+1

x̃g
n+1 − x̃g

n+1

)
=
(
J ′

α

(
xg

n+1

)
,
(
PGn+1

− I
)
x̃g

n+1

)
,

−
(
J ′

α

(
x̃g

n+1

)
, xg

n+1 − x̃g
n+1

)
= −

(
J ′

α

(
x̃g

n+1

)
, xg

n+1 − P eGn+1
xg

n+1

)

−
(
J ′

α

(
x̃g

n+1

)
, P eGn+1

xg
n+1 − x̃g

n+1

)
= −

(
J ′

α

(
x̃g

n+1

)
,
(
P eGn+1

− I
)
xg

n+1

)
.Hene, (3.2) and Theorem 3.1 imply that

α

2

∥∥xg
n+1 − x̃g

n+1

∥∥2 ≤
(
J ′

α

(
xg

n+1

)
− J ′

α

(
x̃g

n+1

)
, xg

n+1 − x̃g
n+1

)

=
(
J ′

α

(
xg

n+1

)
,
(
PGn+1

− I
)
x̃g

n+1

)
−
(
J ′

α

(
x̃g

n+1

)
,
(
P eGn+1

− I
)
xg

n+1

) (4.17)
≤
∥∥J ′

α

(
xg

n+1

)∥∥ ∥∥(I − PGn+1

)
x̃g

n+1

∥∥+
∥∥J ′

α

(
x̃g

n+1

)∥∥
∥∥∥
(
I − P eGn+1

)
xg

n+1

∥∥∥ .Sine xg
n+1, x̃

g
n+1 ∈ Vρ, ρ = β1α and the onstant β1 depends only on onstants N1, N2, we an tem-porary set β1 := C. Hene (2.10) and (2.13) imply that with another onstant C, ∥∥J ′

α

(
xg

n+1

)∥∥ =∥∥J ′
α

(
xg

n+1

)
− J ′

α (xα)
∥∥ ≤ N3

∥∥xg
n+1 − xα

∥∥ ≤ Cα. Similarly ∥∥J ′
α

(
x̃g

n+1

)∥∥ ≤ Cα. Hene, (4.17) im-plies that
∥∥xg

n+1 − x̃g
n+1

∥∥2 ≤ C
(∥∥(I − PGn+1

)
x̃g

n+1

∥∥+
∥∥∥
(
I − P eGn+1

)
xg

n+1

∥∥∥
)
. (4.18)



Adaptivity with relaxation for the Tikhonov funtional 13By (4.3) and (4.13) the following angle is properly de�ned ψn = An (J ′
α (xn) , Pn+1J

′
α (xn)) .We now prove that

∥∥(I − PGn+1

)
x̃g

n+1

∥∥ =
∥∥(I − Pn) x̃g

n+1

∥∥ sinψn, (4.19)
∥∥∥
(
I − P eGn+1

)
xg

n+1

∥∥∥ =
∥∥(I − Pn)xg

n+1

∥∥ sinψn. (4.20)First, we �gure out the form of the vetor PGn+1
x̃g

n+1. By (4.4) and (4.8)
PGn+1

x̃g
n+1 = ỹn+1 + λ̃n+1PGn+1

Pn+1J
′
α (xn) , ỹn+1 ∈Mn. (4.21)By (2.3) and (4.2) (y, Pn+1J

′
α (xn)) = (Pn+1y, J

′
α (xn)) = (y, J ′

α (xn)) = 0, ∀y ∈ Mn. Hene, by(4.4) PGn+1
Pn+1J

′
α (xn) = a · J ′

α (xn) , where a ∈ R. Compute the number a using (4.4),
a ‖J ′

α (xn)‖2
=
(
PGn+1

Pn+1J
′
α (xn) , J ′

α (xn)
)

=
(
Pn+1J

′
α (xn) , PGn+1

J ′
α (xn)

)

= (Pn+1J
′
α (xn) , J ′

α (xn)) = (Pn+1J
′
α (xn) , Pn+1J

′
α (xn)) = ‖Pn+1J

′
α (xn)‖2

.Hene, a = ‖Pn+1J
′
α (xn)‖2 ‖J ′

α (xn)‖−2. Hene, (4.21) leads to
PGn+1

x̃g
n+1 = ỹn+1 + λ̃n+1

‖Pn+1J
′
α (xn)‖2

‖J ′
α (xn)‖2 · J ′

α (xn) , ỹn+1 ∈Mn. (4.22)Let u1 = PGn+1
x̃g

n+1 − Pnx̃
g
n+1, v1 =

(
I − PGn+1

)
x̃g

n+1. First, we show that (u1, v1) = 0.Indeed, by (4.22) and (4.8)
u1 = λ̃n+1

‖Pn+1J
′
α (xn)‖2

‖J ′
α (xn)‖2 J ′

α (xn) , (4.23)
v1 = λ̃n+1

[
Pn+1J

′
α (xn) − ‖Pn+1J

′
α (xn)‖2

‖J ′
α (xn)‖2 J ′

α (xn)

]
.Hene,

(u1, v1) = λ̃2
n+1

‖Pn+1J
′
α (xn)‖2

‖J ′
α (xn)‖2

[
‖Pn+1J

′
α (xn)‖2 − ‖Pn+1J

′
α (xn)‖2

]
= 0. (4.24)Next, u1 + v1 = λ̃n+1Pn+1J

′
α (xn) . Thus, (4.23) and Lemma 4.1 imply (4.19) if λ̃n+1 6= 0. If,however, λ̃n+1 = 0, then it follows from (4.8) and (4.22) that in (4.19) (I − PGn+1

)
x̃g

n+1 =
(I − Pn) x̃g

n+1 = 0, whih again implies (4.19).To prove (4.20), denote
u2 = P eGn+1

xg
n+1 − Pnx

g
n+1, v2 =

(
I − P eGn+1

)
xg

n+1.By (4.4), (4.5) and (4.8)
P eGn+1

xg
n+1 = Pn+1x

g
n+1 = yn+1 + λn+1Pn+1J

′
α (xn) .



14 L.BEILINA AND M.V.KLIBANOV and M.Y.KOKURINHene, u2 = λn+1Pn+1J
′
α (xn) and v2 = λn+1 (I − Pn+1)J

′
α (xn) . Thus, (u2, v2) = 0. Next, by(4.4) and (4.8) u2 + v2 = (I − Pn) xg

n+1 = λn+1J
′
α (xn) . Hene, if λn+1 6= 0, then the angle betweenvetors u2 and u2 + v2 is the same as the angle between vetors J ′

α (xn) and Pn+1J
′
α (xn) , i.e., thisis the angle ψn introdued above. Hene, using Lemma 4.1, we obtain (4.20) for λn+1 6= 0. In thease λn+1 = 0 we have (I − P eGn+1

)
xg

n+1 = (I − Pn)xg
n+1 = 0, whih implies (4.20).Sine by (4.13) ‖(I − Pn+1)J

′
α (xn)‖ < ‖J ′

α (xn)‖ , then by (4.20)
sinψn =

‖v2‖
‖u2 + v2‖

=
‖(I − Pn+1)J

′
α (xn)‖

‖J ′
α (xn)‖ < 1. (4.25)Thus, (4.18)-(4.20) and (4.25) imply that

∥∥xg
n+1 − x̃g

n+1

∥∥2 ≤ C
(∥∥(I − Pn) xg

n+1

∥∥+
∥∥(I − Pn) x̃g

n+1

∥∥) · ‖(I − Pn+1)J
′
α (xn)‖

‖J ′
α (xn)‖ . (4.26)Estimate the term in the parenthesis in the right hand side of (4.26). By (4.6) and (4.7)

∥∥xg
n+1 − xn

∥∥ ,
∥∥x̃g

n+1 − xn

∥∥ ≤ Cα.Also, sine xn ∈Mn, then (I − Pn) (xn) = 0. In addition, ‖I − Pn‖ ≤ ‖I‖ + ‖Pn‖ ≤ 2. Hene,
∥∥(I − Pn)xg

n+1

∥∥+
∥∥(I − Pn) x̃g

n+1

∥∥ =
∥∥(I − Pn)

(
xg

n+1 − xn

)∥∥

+
∥∥(I − Pn)

(
x̃g

n+1 − xn

)∥∥ ≤
∥∥xg

n+1 − xn

∥∥+
∥∥x̃g

n+1 − xn

∥∥ ≤ Cα.
(4.27)Hene, (4.26) and (4.27) lead to

∥∥xg
n+1 − x̃g

n+1

∥∥ ≤ C
√
α
‖(I − Pn+1)J

′
α (xn)‖1/2

‖J ′
α (xn)‖1/2

. (4.28)Therefore, it follows from (4.16) and (4.28) that
‖xn+1 − xα‖ ≤ r̃ ‖xn − xα‖ + r̃∆n + ∆n+1 + ∆g

n+1 + C
√
α
‖(I − Pn+1)J

′
α (xn)‖1/2

‖Pn+1J ′
α (xn)‖1/2

. (4.29)We now estimate from the above terms ∆n,∆n+1 and ∆g
n+1 in (4.29). We have

Jα (x) − Jα (y) − (J ′
α (y) , x− y) =

1∫

0

(J ′
α (y + θ (x− y)) − J ′

α (y) , x− y)dθ.Hene, by (2.10)
|Jα (x) − Jα (y) − (J ′

α (y) , x− y)| ≤ C ‖x− y‖2 , ∀x, y ∈ Vρ. (4.30)Substituting in (4.30) x := Pnxα, y := xα and using (2.13), we obtain
Jα (Pnxα) − Jα (xα) ≤ C ‖Pnxα − xα‖2

= C ‖(I − Pn)xα‖2
. (4.31)



Adaptivity with relaxation for the Tikhonov funtional 15On the other hand, sine Jα (xn) ≥ Jα (xα) , then using (3.2), Theorem 3.1, (2.14) and (4.31), weobtain
C ‖(I − Pn)xα‖2 ≥ Jα (Pnxα) − Jα (xα) ≥ Jα (Pnxα) − Jα (xn) (4.32)

≥ (J ′
α (xn) , Pnxα − xn) +

α

2
‖xn − Pnxα‖2

=
α

2
‖xn − Pnxα‖2

.Sine by (2.3) and (4.4) Mn ⊂ Mn+1 and Mn ⊂ Gn+1, then ‖(I − Pn+1)xα‖ ≤ ‖(I − Pn)xα‖ and
‖(I −Gn+1)xα‖ ≤ ‖(I − Pn)xα‖ . On the other hand, two inequalities, similar with (4.32), an beproven similarly via replaing the pair (‖xn − Pnxα‖ , ‖(I − Pn)xα‖) �rst with the pair

(‖xn+1 − Pn+1xα‖ , ‖(I − Pn+1)xα‖)and then with the pair
(∥∥xg

n+1 − PGn+1
xα

∥∥ , ‖(I −Gn+1)xα‖
)
.Hene,

α

2

(
‖xn+1 − Pn+1xα‖2

+
∥∥xg

n+1 − PGn+1
xα

∥∥2
)
≤ C ‖(I − Pn)xα‖2 . (4.33)Thus, (4.10), (4.32) and (4.33) imply the following three inequalities

∆n,∆n+1,∆
g
n+1 ≤ Cα−1/2 ‖(I − Pn)xα‖ .Substitution of these three in (4.29) leads to (4.14). �It is assumed in Theorem 4.1 that the vetor J ′

α (xn) an be alulated exatly. In the ompu-tational pratie, however, this vetor is alulated with an error and the minimization proess on
Vρ ∩Mn is usually stopped at suh a point xn for whih the norm ‖PnJ

′
α (xn)‖ is su�iently small,although still non-zero. These onsiderations are re�eted in Theorem 4.2, whih establishes (1.1).Theorem 4.2. Assume that the Frehet derivative J ′

α (x) , x ∈ Vρ is alulated with a smallerror τ ∈ [0, 1). In other words, for any point x ∈ Vρ one atually alulates the vetor Sα (x) ∈ Hand ‖J ′
α (x) − Sα (x)‖ ≤ τ, ∀x ∈ Vρ. Let n be the integer of Assumption 4.1. Suppose that for anysubspae Mk with k ≥ n the minimization proess of the funtional Jα (x) on the set Vρ ∩Mk isstopped at suh a point xk,τ that ‖PMk

Sα (xk,τ )‖ ≤ τ . Let a1 be the number from (2.1). Considerthe funtion of spatial variables Sn,τ (y) := Sα (xn,τ ) , y ∈ σ. Assume that there exists a number
rn ∈ (r̃, 1) suh that

C

(
AK

hn√
α

+
√
ατ +

τ

α

)
≤ (rn − r̃) ‖Sα (xn,τ )‖ , (4.34)

a1CK
√
α
∥∥∥∇S̃ (y)

∥∥∥
L∞(eσ)

<
rn − r̃

8N3
‖Sα (xn,τ )‖3/2 . (4.35)Let δ1 = δ1 (µ1, µ2, N1, N2) be the number de�ned in Theorem 3.1. Then there exists a su�ientlysmall number δ2 ∈ (0, δ1] and a subspae Mn+1 ⊆ H,Mn ⊂Mn+1 suh that if δ ∈ (0, δ2] , then thefollowing relaxation property holds

‖xn+1,τ − xα‖ ≤ rn ‖xn,τ − xα‖ . (4.36)



16 L.BEILINA AND M.V.KLIBANOV and M.Y.KOKURINIf at least one of inequalities (4.34), (4.35) is invalid, then the mesh re�nement proess should bestopped. If τ = 0, then the above holds with the replaement of the pair {Sα (xn,τ ) , xn,τ} by thepair {J ′
α (xn) , xn} . Let r ∈ (r̃, 1) be the maximal value of orresponding numbers rn for a ertain�nite number of suh mesh re�nements . Then (4.36) is valid with the replaement of rn with r,whih turns (4.36) into (1.1).Remark 4.1. Although both onstants C and N3 depend on numbers N1, N2 introdued in(2.7), the inequality (4.35) makes sense, sine these onstants an be expliitly estimated viaN1, N2.The latter would turn both inequalities (4.34), (4.35) in more expliit forms. Following a ommontradition of the PDE theory, we are not providing suh expliit estimates for brevity only. The sameis true for Theorem 7.4 (setion 7) with respet to numbers C2 and N4.Proof of Theorem 4.2. Sine α = δµ2 , then by (2.12) one an hoose

δ2 = δ2 (µ1, µ2, N1, N2) ∈ (0, δ1] so small that C/α ≥ 2, ∀δ ∈ (0, δ2] . Hene, by (4.34) we anassume that
‖Sα (xn,τ )‖

2
≥ τ. (4.37)Using (4.2), we obtain

τ ‖xn,τ − xn‖ ≥ (Sα (xn,τ ) , xn,τ − xn) = (Sα (xn,τ ) − J ′
α (xn,τ ) , xn,τ − xn)

+ (J ′
α (xn,τ ) − J ′

α (xn) , xn,τ − xn) ≥ α

2
‖xn,τ − xn‖2 − τ ‖xn,τ − xn‖ .Hene, ‖xn,τ − xn‖ ≤ 4τ/α. Using (2.10) and (4.34), we obtain

‖J ′
α (xn)‖ = ‖J ′

α (xn,τ ) − (J ′
α (xn,τ ) − J ′

α (xn))‖ ≥ ‖J ′
α (xn,τ )‖ − ‖J ′

α (xn,τ ) − J ′
α (xn)‖

≥ ‖Sα (xn,τ )‖
2

−N3
4τ

α
≥ C ‖Sα (xn,τ )‖ > 0. (4.38)Similarly (4.34) and (4.37) lead to

‖J ′
α (xn)‖ ≤ ‖J ′

α (xn,τ )‖ + ‖J ′
α (xn,τ ) − J ′

α (xn)‖ (4.39)
≤ ‖Sα (xn,τ )‖ + τ +N3

4τ

α
≤ C ‖Sα (xn,τ )‖ ,where the onstant C is di�erent from one in (4.38).It follows from (4.38) that (4.3) holds, whih implies in turn the existene of suh a subspae

Mn+1 that (4.13) is valid. Hene, the point xn+1,τ exists and ‖xn+1,τ − xn‖ ≤ 4τ/α. Hene, by(4.14)
‖xn+1,τ − xα‖ ≤ r̃ ‖xn,τ − xα‖ +

8τ

α
+ C

‖(I − Pn+1)xα‖√
α

(4.40)
+C

√
α
‖(I − Pn+1)J

′
α (xn)‖1/2

‖J ′
α (xn)‖1/2Sine hn+1 ≤ hn, then by (2.4) ‖(I − Pn+1)xα‖ ≤ K ‖∇xα‖L2(σ) hn ≤ AKhn. Hene, by (4.39)and (4.40)

‖xn+1,τ − xα‖ ≤ r̃ ‖xn,τ − xα‖ + CAK
hn√
α

+
8τ

α
(4.41)

C
√
ατ

‖Sα (xn,τ )‖1/2
+ C

√
α
‖(I − Pn+1)Sα (xn,τ )‖1/2

‖S (xn,τ )‖1/2
.



Adaptivity with relaxation for the Tikhonov funtional 17By (2.10), (2.13) and (4.37)
‖xn,τ − xα‖ ≥ ‖J ′

α (xn,τ )‖
N3

≥ ‖S (xn,τ )‖ − τ

N3
≥ ‖S (xn,τ )‖

2N3
.By (4.34) we an assume that

CAK
hn√
α

+ C
√
ατ +

8τ

α
≤ (rn − r̃)

4N3
‖S (xn,τ )‖ . (4.42)Suppose that

C
√
α ‖(I − Pn+1)Sα (xn,τ )‖1/2 ≤ rn − r̃

4N3
‖Sα (xn,τ )‖3/2

. (4.43)Then (4.41) and (4.42) imply that (4.36) holds forMn+1. So, we now onstrut the subspaeMn+1.Let σ̃ ⊆ σ be a subdomain in whih one wants to re�ne the mesh and suppose that the mesh isnot re�ned in σ�σ̃. By re�ning the mesh in σ̃ and not re�ning it in σ�σ̃, one obtains the targetsubspaeMn+1. If meas (σ�σ̃) is not too small, then one obtains a loal mesh re�nement. We have
Pn+1Sα (xn,τ ) = Sn,τ (y) for y ∈ σ�σ̃. Hene,

‖(I − Pn+1)Sα (xn,τ )‖1/2 ≤ ‖(I − Pn+1)Sn,τ (y)‖1/2
L2(eσ) + ‖Sn,τ (y)‖1/2

L2(σ�eσ) . (4.44)Sine the limiting ase of σ̃ is simply σ̃ = σ, then one an always hoose σ̃ suh that
C
√
α ‖Sn,τ (y)‖1/2

L2(σ�eσ) ≤
rn − r̃

8N3
‖Sα (xn,τ )‖3/2

. (4.45)Sine Sα (xn,τ ) ∈ H, then Sn,τ (y) ∈ H1 (σ) and ∂yi
Sn,τ (y) ∈ L∞ (σ) . Let h̃n+1 be the maximalmesh size for the new mesh in σ̃. Then by (2.4)

‖(I − Pn+1)Sn,τ (y)‖L2(eσ) ≤ K ‖∇Sn,τ (y)‖L∞(eσ) h̃n+1. (4.46)By (4.35) we an hoose h̃n+1 ∈ (a1, 1) suh that
CKh̃n+1

√
α ‖∇Sn,τ (y)‖L∞(eσ) ≤

rn − r̃

8N3
‖Sα (xn,τ )‖3/2

. (4.47)Estimates (4.44)-(4.47) imply (4.43), whih in turn leads to (4.36). �There is no point to have errors or parameters in alulations less than the level of error δ inthe data. Hene, assuming that onditions of Theorem 4.2 hold, we now show the existene of aninterval for the number µ2 in (2.11b), whih guarantees that one indeed an hoose parameters hn, τsatisfying above onditions and suh that hn, τ >> δ for δ ∈ (0, δ2]. Estimating the right hand sideof (4.34) from the above and assuming that τ < α, we obtain, (rn − r̃) ‖Sα (xn,τ )‖ ≤ Cα3. Hene,(4.34), (4.35) and (2.12) imply that one should have CAKhn < α3.5 = δ3.5µ2 , τ ≤ Cα5 = Cδ5µ2 .The �rst of these inequalities is stronger than (4.1). Hene, if µ2 ∈ (0, 1/5) , then one an alwayshoose numbers hn, τ suh that hn, τ >> δ for δ ∈ (0, δ2] and (4.34) holds. The same is true for
h̃n+1 in (4.46), provided that a1 >> δ.



18 L.BEILINA AND M.V.KLIBANOV and M.Y.KOKURINReommendation for the mesh re�nement. By re�ning the mesh in σ̃, one atuallydereases the value of ‖(I − Pn+1)Sn,τ (y)‖L2(eσ) and therefore �paves the way� for the validity ofthe relaxation estimate (4.36). Hene, estimates (4.44)-(4.46) indiate that the mesh should bere�ned in suh a subdomain σ̃ of σ in whih values of |Sn,τ (y)| are lose to maxσ |Sn,τ (y)| , andit should not be re�ned in subdomains where these values are rather low. This is exatly what isdone in setion 8 as well as in the past publiations [5-7,17℄.Remark 4.2. While Theorem 4.2 establishes the existene of suh a subspae Mn+1 thatrelaxation property (4.36) is valid, one an pose the question on how to omputationally deidewhether this subspae exists. A simple reipe for this follows from (4.36) and we atually use thisapproah in our omputations in setion 8, also see [5-7℄. Namely, having found the point xn,τ , oneshould re�ne the mesh and minimize the funtional Jα on the re�ned mesh. It follows from (4.36)that if the hange in the resulting solution is signi�ant ompared with the previous mesh, then thesubspae Mn+1 exists, it is represented by this new mesh and the mesh re�nement proess shouldbe ontinued. Otherwise it should be stopped.5. The Coe�ient Inverse Problem. In this setion we state our Coe�ient Inverse Prob-lem and outline the globally onvergent numerial method of [8℄ for it. We refer to [8℄ for moredetails about this method. In addition, we outline in subsetion 5.2 some disrepanies between ourtheory and numerial implementation. Consider the Cauhy problem for the hyperboli equation
c(x)utt = ∆u in Rm × (0,∞) ,m = 2, 3, (5.1)
u (x, 0) = 0, ut (x, 0) = δ (x− x0) . (5.2)Equation (5.1) governs a wide range of appliations, inluding, e.g. propagation of aousti andeletromagneti waves. In the aoustial ase 1/

√
c(x) is the sound speed. In the 2-D ase of EMwaves propagation in a non-magneti medium, the dimensionless oe�ient is c(x) = εr(x), where

εr(x) is the spatially distributed dieletri onstant of the medium, see [11℄, where this equationwas derived from Maxwell's equations in the 2-D ase. Let d1 and d2, be two positive numbers,
d1 < d2. We assume that the oe�ient c (x) of equation (5.1) is suh that

c (x) ∈ [d1, d2] , c (x) = d1 for x ∈ Rm�Ω, (5.3)
c ∈ C2

(
R3
) (5.4)Coe�ient Inverse Problem (CIP). Let Ω ⊂ Rm,m = 2, 3 be a onvex bounded domain withthe boundary ∂Ω ∈ C3. Suppose that the oe�ient c (x) satis�es onditions (5.3) and (5.4), wherethe numbers d1 and d2 are given. Assume that the funtion c (x) is unknown in Ω. Determine thefuntion c (x) for x ∈ Ω, assuming that the following funtion g (x, t) is known for a single soureposition x0 /∈ Ω

u (x, t) = g (x, t) , ∀ (x, t) ∈ ∂Ω × (0,∞) . (5.5)The reason why we assume here that the soure x0 /∈ Ω is that we do not want to deal withsingularities near the soure loation, see an applied senario for this in, e.g. [2℄. In appliations theassumption c (x) = d1 for x ∈ R3�Ω means that the target oe�ient c (x) has a known onstantvalue outside of the domain of interest Ω. Sine we do not impose any �smallness� onditions onnumbers d1 and d2, the numerial method is not a loally onvergent one. The funtion g (x, t)models time dependent measurements of the wave �eld at the boundary of the domain of interest.Pratial measurements are performed at a number of detetors, of ourse. In this ase the funtion
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g (x, t) an be obtained via one of standard interpolation proedures, whih is outside the sope ofthis publiation. Uniqueness theorem for this inverse problem is a long standing and well knownopen question, whih is addressed positively only in the ase when the δ− funtion in (5.2) isreplaed with a funtion, whih is non vanishing in the entire domain Ω [18,19℄. It is an opinion ofthe authors that it is still worthy to develop numerial methods for this CIP beause of appliations.5.1. Outline of the globally onvergent numerial method of [8℄. Let the funtion
w (x, s) be the Laplae transform of the funtion u (x, t) with respet to t with the parameter
s > s = const. > 0. We all s �pseudo frequeny�. One an prove that w (x, s) > 0. Let q (x, s) =
∂s

[
s−2 lnw(x, s)

]
. The funtion q solves the following boundary value problem for a nonlinearintegral di�erential equation in whih the unknown oe�ient is not present

∆q − 2s2∇q ·
s∫

s

∇q (x, τ) dτ + 2s




s∫

s

∇q (x, τ) dτ




2 (5.6)

+2s2∇q∇V − 2s∇V ·
s∫

s

∇q (x, τ) dτ + 2s (∇V )
2

= 0, q |Ω= ψ (x, s) , (x, s) ∈ ∂Ω × [s, s] .where the funtion ψ is generated by the funtion g in (5.5). Here s is the trunation pseudofrequeny, it is one of regularization parameters here and it is assumed to be large. Numbers s and
s should be hosen in numerial experiments. The trunation of integrals at a large value of thepseudo frequeny s is similar to a routine trunation of high frequenies in siene and engineering,and so our trunation is natural in this sense. In (5.6) V (x, s) = s−2 lnw (x, s) is the so-alled �tail�funtion, and it is unknown. The presene of s-integrals as well as of the tail funtion implies thenonlinearity and thus, leads to the main di�ulty of the globally onvergent stage of our method.One an prove that, under ertain onditions,

|V (x, s)|2+γ = O

(
1

s

)
, s→ ∞, (5.7)Here |·|k+γ is the norm in the H	older spae Ck+γ

(
Ω
)
. Although (5.6) implies that the tail is smallfor large s, it was found in numerial experiments in setion 8 that resulting solutions have a betterquality if we approximate the tail via the proedure desribed below, rather than simply neglet it.Equation (5.6) has two unknown funtions q and V . The reason why we an aurately approximateboth these funtions is that we treat them di�erently, see below.We onsider a layer stripping proedure with respet to s partitioning the interval [s, s] into Nsmall subintervals with the step size κ = sn−1−sn, s = sN < sN−1 < ... < s0 = s. Approximate thefuntion q(x, s) as a pieewise onstant funtion with respet to s, q(x, s) = qn(x) for s ∈ [sn, sn−1) .Let Cn,λ (s) = exp [ν (s− sn−1)] be the s-dependent Carleman Weight Funtion (CWF), where

ν > 1 is a large parameter, whih is hosen in numerial experiments. Multiplying both sides ofequation (5.6) by Cn,λ (s) and integrating over [sn, sn−1) , we obtain the following �nite sequeneof nonlinear seond order ellipti equations for funtions qn(x) with Dirihlet boundary onditions
ψn(x), whih are derived from the funtion ψ (x, s),
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Ln (qn) : = ∆qn −A1,n

(
h

n−1∑

i=1

∇qi
)
∇qn +A1n∇qn∇Vn − κqn (5.8)

= Bn (∇qn)
2 −A2,nh

2

(
n−1∑

i=1

∇qi (x)

)2

+ 2A2,n∇Vn

(
h

n−1∑

i=1

∇qi
)

−A2,n (∇Vn)
2
,

qn | ∂Ω = ψn(x), n = 1, ..., N.Here A1,n, A2,n, Bn are ertain numbers depending on ν, κ, n and κ > 0 is a small parameterof ones hoie. We use in (5.8) Vn instead of V for onveniene of notations, see below in thisparagraph. It is important that limν→∞Bn = 0 uniformly for all n due to the presene of theCWF. Hene, the presene of the CWF with ν >> 1 mitigates the in�uene of the nonlinear term
(∇qn)

2
, whih enables us to solve the boundary value problem for eah qn iteratively via solvinga linear ellipti problem on eah step. Still, the omputational experiene shows that we annottake ν exeedingly large, whih would e�etively turn equations (5.8) into linear ones. Startingfrom n = 1, we solve problems (5.8) sequentially with respet to n. For eah n we have inneriterations with respet to the tail funtion and alulate funtions qn,i until onvergene ours.We set q0 := 0. The �rst approximation V1,1 for the tail was V1,1 ≡ 0 in [8℄, and in setion 8 weuse V1,1 (x, s) = s−2 lnw0 (x, s) , where wd1

(x, s) is the Laplae transform of the solution of theproblem (5.1), (5.2) for the ase c0 (x) ≡ d1. Substituting Vn,1 ∈ C2+γ (Rm) in (5.8) for Vn, we �ndthe �rst approximation qn,1 ∈ C2+γ
(
Ω
) for qn via solving the boundary value problem (5.8). Thisis our inner iteration, in whih we set (∇qn)

2
:= (∇qn−1)

2. To �nd the next approximation for thetail via the outer iteration, we �rst �nd the new approximation cn,1 ∈ Cγ (Rm) , cn,1 (x) = d1 in
Rm�Ω via a simple bakwards alulation. Next, we solve the problem (5.1), (5.2) with c := cn,1,alulate the Laplae transform wn,1 and set Vn,2 (x, s) = s−2 [lnwn,1 (x, s)] . Then we �nd a newapproximation qn,2 for qn, et.. Suppose that onvergene of inner iterations ours at qn,mn

.Then we set (qn,mn
, cn,mn

, Vn,mn
) := (qn, cn, Vn+1,1) ∈ C2+γ

(
Ω
)
× Cγ (Rm) × C2+γ (Rm) , where

cn (x) = d1 in Rm�Ω, and repeat the above proess for n := n + 1. The onvergene for both
qn,i (with respet to i) and qn is evaluated via evaluating the residuals at a part of the boundary,see setion 8. We have added the term −κqn to the left hand side of equation (5.8) to improvethe stability property of the Dirihlet value problem (5.8) beause of the maximum priniple [20℄(Chapter 3).Now we brie�y outline the global onvergene theorem of [8℄. Beause of (5.7), we assumethat |Vn (x, s)|2+γ ≤ ξ, ∀n, where ξ is a small number. Let δ be the level of the error in the data
g. Denote η = 2 (κ+ δ + κ + ξ) . Hene, η is a small parameter, whih, in partiular, depends ontwo regularization parameters of our method, κ and s. It is important that the seond stage ofour two stage proedure, the adaptivity, is independent on parameters κ,κ, ξ, also see the seondparagraph of setion 1. Let c∗ (x) be the exat solution of our CIP. Let N ∈ [1, N ] be the totalnumber of funtions qn we have alulated, and β2 = κN be the length of the interval s ∈ [s− β2, s]overed this way. We assume that the number β2 is small. Indeed, equations (5.8) are generated byequation (5.6), whih ontains Volterra integrals in nonlinear terms. It is well known from, e.g. thelassi ODE ourse that one an guarantee a �good� behavior of solutions of suh equations only ona small interval. Hene, for a given thikness of the s-layer κ, the number N of omputed funtions
cn is another regularization parameter here, and we set cN := cglob. This is going along well withone of main ideas of the theory of Ill-Posed Problems, by whih the iteration number an serve as a



Adaptivity with relaxation for the Tikhonov funtional 21regularization parameter, see pages 156 and 157 in [13℄. The following global onvergene estimatewas proven in [8℄
|cn − c∗|γ ≤ B1η, ∀n ∈

[
1, N

]
, (5.9)with a ertain positive onstant B1. Sine η is small, then (5.9) guarantees that one obtains a goodapproximation for the solution for eah n. On the other hand, although η is small, we see in ournumerial experiments that it is impossible to make it in�nitely small in pratial omputations.The latter two fators pave the way for a subsequent appliation of the adaptivity tehnique,whih enhanes the solution cglob. This tehnique uses the funtion cglob as its starting point for asubsequent enhanement.5.2. Some disrepanies between our theory and omputational experiments. Sinethe above CIP is a quite omplex problem with many yet unknown fators, it is hard to antiipatethat pratial omputations would not have any deviations from the theory and also that thetheories of two stages of our numerial method would exatly math eah other. So, as it is oftenthe ase when numerial methods for some ompliated nonlinear ill-posed problems are bakedup analytially, some disrepanies of this sort take plae in this paper. We list them in thissubsetion. Still, the main point is that, regardless on these disrepanies, the above theory of theglobally onvergent numerial method still works, inluding the onvergene estimate (5.9).The 1st disrepany is that, beause of some onvenienes of our past omputational pratie [5-8℄ and beause the main fous of this paper is analytial rather than numerial, we use a generatingplane wave instead of the point soure in (5.2). We launh this plane wave outside of the targetdomain Ω. Note that we have used the point soure only to justify the asymptoti behavior (5.6),see Lemma 2.1 in [8℄. We verify this asymptoti behavior omputationally, see subsetion 7.2 of [8℄.The 2nd disrepany is that we solve boundary value problems (5.8) in a square, whose boundaryis non-smooth. In priniple, this might result in singularities near the orners. However, we havenot observed suh singularities in our omputations. Although the boundary of this square is notsmooth, as required in subsetion 5.1, a modi�ation of the onvergene estimate (5.9) an beproven in this ase if onsidering solutions of FEM analogs of (5.8) with a step size bounded frombelow and applying the Lax-Milgram theorem instead of the Shauder theorem, also see subsetion7.2 of [8℄.The 3rd disrepany is that in order to �gure out the Frehet derivative of the Tikhonov fun-tional for the above CIP for the adaptivity, we need to assume that solutions of ertain hyperboliinitial boundary value problems are su�iently smooth. These onditions annot be guaranteedfor the fundamental solution of the hyperboli equation (5.1). Still, they an be guaranteed if thefuntion δ (x− x0) in (5.2) is replaed with

δθ (x− x0) =

{
Cθ exp

(
1

|x−x0|2−θ2

)
, |x− x0| < θ

0, |x− x0| > θ

}
,

∫

Rm

δθ (x− x0) dx = 1,for a su�iently small θ > 0. Hene, sine x0 /∈ Ω, then δθ (x− x0) = 0 for in Ω as well as in a smallneighborhood of ∂Ω outside of Ω. Here the onstant Cθ > 0 is suh that the above integral equalsunity. We stress that we have introdued this funtion only to show that the required smoothnessof setions 6 and 7 an indeed be ensured for an initial ondition, whih is lose to (5.2) in thedistribution sense. The theory of the globally onvergent numerial method works for this ase,inluding (5.9).



22 L.BEILINA AND M.V.KLIBANOV and M.Y.KOKURINTo onsider the Frehet derivative in setions 6,7, we need to vary the oe�ient c. To do this,it is onvenient to introdue the set of funtions Z = Z (d1, d2, ω,H) ,

Z =

{
c : c (x) ∈ H for x ∈ σ, c (x) ∈ (d1 − ω, d2 + ω) for x ∈ Ω,
c ∈ C (Rm) , c− d1 ∈ H1 (Rm) , c (x) = d1 in Rm�σ

}
, (5.10)where ω ∈ (0, d1) is a small positive number. Beause of (5.10), denote Z ′ the set of all funtions

b ∈ H1 (Rm) ∩ C (Rm) suh that
b (x) ∈ H for x ∈ σ, ∂xi

b ∈ L∞ (Rm) , b (x) = 0 for x ∈ Rm�σ. (5.11)By (5.10) and (5.11) c1 − c2 ∈ Z ′, ∀c1, c2 ∈ Z. Sine H is a �nite dimensional spae, then we anestimate C (σ) norms via L2 (σ) norms, whih is important for our derivations in setion 6,
‖c1 − c2‖C(σ) ≤ C̃1 ‖c1 − c2‖L2(σ) , ∀c1, c2 ∈ Z; ‖b‖C(σ) ≤ C̃1 ‖b‖L2(σ) , ∀b ∈ Z ′, (5.12)for a positive onstant C̃1 = C̃1 (Z) . Hene, Z an be onsidered as an open subset of the spae

L2

(
Ω̃
) for any bounded domain Ω̃ suh that σ ⊂ Ω̃. While onditions (5.10), (5.11) are suitablefor our theory of setions 2-4, ondition (5.4) is violated for funtions c ∈ Z, and this is our 4thdisrepany. Still, we need the adaptivity only on the seond stage of our proedure, and also inatual omputations of the �rst stage we obtain the funtion cglob ∈ Z.6. Frehet Derivatives. In this setion we derive Frehet derivatives of solutions of ertainhyperboli initial boundary value problems for equation (5.1) with respet to the oe�ient c ∈ Z.Let T = const > 0. Let Ω1 be a onvex bounded domain suh that Ω ⊂ Ω1, ∂Ω ∩ ∂Ω1 = ∅, ∂Ω1 ∈

C∞. Denote QT = Ω1×(0, T ) , ST = ∂Ω1×(0, T ) .We replae in setions 6,7 the δ (x− x0) funtionin (5.2) with the funtion δθ (x− x0) de�ned in setion 5 and assume that x0 /∈ Ω1 and θ is so smallthat δθ (x− x0) = 0 in Ω1. Using results of Chapter 4 of [21℄, one an prove that the funtion
u ∈ C∞ (Rm × [0, T ]) . We also assume that there exists a funtion a (x) ∈ C∞ (

Ω1

) suh that
∂na |∂Ω1

= 1, a |∂Ω1
= 0, a (x) = 0 in Ω. For example, if Ω1 = {x : |x| < R} , then one an hoose

a (x) = χ (x)
(
|x|2 −R2

)
/ (2R) , where the funtion χ ∈ C∞ (Ω1

)
, χ |∂Ω1

= 1 and χ (x) = 0 in Ω.Although the existene of suh funtions a (x) might also be established for more general domains,we are not doing this here for brevity.Sine the funtion c (x) = d1 in Rm�Ω and the onstant d1 is known, we an uniquely solve theresulting initial boundary value problem (5.1), (5.2), (5.5) in the domain (Rm�Ω)× (0, T ) . Hene,the following two funtions g̃, p an be uniquely determined: g̃ (x, t) = u |ST
, p(x, t) = ∂nu |ST

. Weassume that there exist two funtions P,G suh that
P,G ∈ Hm+2 (QT ) , (6.1)

∂nP |ST
= p (x, t) , ∂nG |ST

= g̃ (x, t) (6.2)
P (x, t) = G (x, t) = 0 for x ∈ Ω, (6.3)

∂j
tP (x, 0) = 0 in Ω1, j = 0, ..., 3. (6.4)We impose these assumptions beause the funtion g in (5.5) might be given with an error, meaningthat the solution of the initial boundary value problem (5.1), (5.2), (5.5) in (Rm�Ω)× (0, T ) wouldnot neessarily belong to C∞ then. Next, we onsider solutions u and λ of the following initialboundary value problems (6.5) and (6.6) (we do not use a new notation for u for brevity),
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c (x)utt = ∆u in QT ,

u (x, 0) = ut (x, 0) = 0,

∂nu |ST
= p (x, t) ;

(6.5)
c (x) λtt = ∆λ in QT ,

λ (x, T ) = λt (x, T ) = 0,

∂nλ |ST
= (g̃ − u |ST

) ζε2
(t) .

(6.6)We all problems (6.5) and (6.6) the �state problem� and the �adjoint problem� respetively. So,(6.6) is the problem with the reversed time, and the boundary ondition for it is known only if thefuntion u |ST
is known. Hene, for a given oe�ient c (x) , one should �rst solve the state problemand next solve the adjoint problem. In (6.6) ζε2

(t) is a ut-o� funtion, whih is introdued toensure that the ompatibility ondition is satis�ed at ST ∩{t = T } , where ε2 > 0 is a small number.So, we hoose suh a funtion ζε2
that ζε2

∈ C∞ [0, T ], ζε2
(t) = 1 for ∈ [0, T − ε2] , ζε2

(t) = 0 for
t ∈ (T − ε2/2, T ] and ζε2

(t) ∈ [0, 1] for t ∈ (T − ε2, T − ε2/2] .We now remind a result from the lassi theory of hyperboli PDEs with the Neumann boundaryondition, see Theorems 5 and 6 in setion 7.2 of [16℄. We formulate it for our spei� needs ratherthan providing a more general formulation of [16℄. Although those Theorems 5 and 6 are provenfor the Dirihlet boundary data, extensions of those proofs to the ase of Neumann boundary dataare rather straightforward, see, e.g. Theorem 5.1 of Chapter 4 in [21℄. Consider the following initialboundary value problem
c (x) vtt = ∆v + f in QT ,

v (x, 0) = vt (x, 0) = 0,

∂nv |ST
= v(n) (x, t) ∈ L2 (ST ) ,

(6.7)where the funtion f ∈ Hk (QT ). By the de�nition, the weak solution v ∈ H1 (QT ) of the problem(6.7) should satisfy the following integral identity (see an analogue for y = 0 in �5 of Chapter 4 in[21℄) for all funtions z ∈ H1 (QT ) suh that z (x, T ) = 0

∫

QT

(−c (x) vtzt + ∇v∇z) dxdt−
∫

ST

v(n)zdS −
∫

QT

fzdxdt = 0. (6.8)Assume that there exists suh an extension W (x, t) of the funtion v(n) from the boundary ST inthe domain QT that ∂nW |ST
= y (x, t) ,W ∈ Hk+2 (QT ) ,W (x, t) = 0 for x ∈ Ω, ∂j

tW (x, 0) =
0, j = 0, ..., k. In the ase k ≥ 2 we also assume that ∂i

tf (x, 0) = 0, i = 0.., k − 2. Consider thefuntion v −W. Let the funtion c ∈ Z. Dividing both sides of equation (6.7) by c (x) and using
c−1∆v = ∇ ·

(
c−1∇v

)
− ∇

(
c−1
)
∇v, we obtain that v ∈ Hk+1 (QT ) and the following estimateholds

‖v‖Hk+1(QT ) ≤ C1

[
‖W‖Hk+2(QT ) + ‖f‖Hk(QT )

]
. (6.9)Here and below C1 = C1 (Z,QT , a (x)) and



24 L.BEILINA AND M.V.KLIBANOV and M.Y.KOKURIN
C2 = C2

(
Z,QT , ζε2

, a (x) , ‖P‖Hm+2(QT ) , ‖G‖Hm+2(QT )

) denote di�erent positive onstantsdepending on listed parameters. Consider funtions û = u−P, λ̂ = λ− (G− a (x)u) and substitutethem in (6.5), (6.6). Then, using (6.1)-(6.4), (6.7) and (6.9), we obtain that u, λ ∈ Hm+1 (QT ) and
‖u‖Hm+1(QT ) ≤ C1 ‖P‖Hm+2(QT ) , ‖λ‖Hm+1(QT ) ≤ C1

(
‖P‖Hm+2(QT ) + ‖G‖Hm+2(QT )

)
. (6.10)Theorem 6.1. Let domains Ω,Ω1 be those spei�ed above. Assume funtions P,G satisfyingonditions (6.1)-(6.4) exist. Consider the set Z as an open set in the spae L2 (Ω1) (see (5.12)).Let operators A1 : Z → H2 (QT ) and A2 : Z → H2 (QT ) map every funtion c ∈ Z in the solution

u (x, t, c) ∈ H2 (QT ) of the problem (6.5) and the solution λ (x, t, c) ∈ H2 (QT ) of the problem (6.6)respetively, where in (6.7) u |ST
:= u (x, t, c) |ST

. Let ε3 ∈ (0, 1) be a number and the funtion
c ∈ Z be suh that d1 − ω (1 − ε3) ≤ c (x) ≤ d2 + ω (1 − ε3). Then eah of the operators A1, A2has the Frehet derivative at this point c, A′

i (c) (b) = ũ (x, t, c, b) , A′
2 (c) (b) = λ̃ (x, t, c, b), where

b(x) ∈ Z ′ ⊂ L2 (Ω1) is an arbitrary funtion. Funtions ũ,λ̃ ∈ H2 (QT ) and they are solutions ofthe following initial boundary value problems
c (x) ũtt = ∆ũ− b (x) utt (x, t, c) , in QT ,

ũ (x, 0) = ũt (x, 0) = 0, ∂nũ |ST
= 0;

(6.11)
c (x) λ̃tt = ∆λ̃− b (x)λtt (x, t, c) , in QT ,

λ̃ (x, T ) = λ̃t (x, T ) = 0, ∂nλ̃ |ST
= −ζε2

ũ |ST
.

(6.12)Proof. Sine m = 2, 3, then by the embedding theorem Hm+1 (QT ) ⊂ C1
(
QT

) and ‖f‖C1(QT ) ≤
B2 ‖f‖Hm+1(QT ) , ∀f ∈ Hm+1 (QT ) , where the positive onstant B2 = B2 (QT ) depends only on thedomain QT . Let the funtion b ∈ Z ′ be suh that ‖b‖C(Ω1) < ε3ω. Then c+ b ∈ Z. It follows from(6.10) that

‖u‖C1(QT ) ≤ B2 ‖u‖Hm+1(QT ) ≤ C1 ‖P‖Hm+2(QT ) . (6.13)By (5.12), (6.9)-(6.11) and (6.13) ũ ∈ H2 (QT ) and
‖ũ‖H2(QT ) ≤ C1 ‖P‖Hm+2(QT ) · ‖b‖L2(σ) . (6.14)Consider now the funtion w1 (x, t, c, b) = u (x, t, c+ b) − u (x, t, c) − ũ (x, t, c, b) . Then w1 ∈

H2 (QT ) . Using (6.5), we obtain
(c+ b)w1tt = ∆w1 − bũtt; w1 (x, 0) = w1t (x, 0) = 0, ∂nw1 |ST

= 0.Hene, by (5.12), (6.9) and (6.14) ‖w1‖H2(QT ) ≤ C2 ‖b‖2
L2(σ) . Sine the funtion ũ (x, t, c, b) dependslinearly on b, then the latter inequality proves that the funtion ũ is indeed the Frehet derivativeof the operator A1 at the point c. Hene, we now an onsider ũ (x, t, c, b) for all funtions b ∈ Z ′.The proof for the operator A2 is similar. �Theorem 6.2. Let onditions of Theorem 6.1 be satis�ed. Consider the operator A3 : Z →

L2 (σ) de�ned as
A3 (c) (x) =

T∫

0

(utλt) (x, t, c) dt, x ∈ σ, ∀c ∈ Z,



Adaptivity with relaxation for the Tikhonov funtional 25where funtions u, λ ∈ Hm+1 (QT ) are solutions of initial boundary value problems (6.5), (6.6).Then the funtion A3 (c) (x) ∈ C
(
Ω
) and the operator A is Lipshitz ontinuous,

‖A3 (c1) −A3 (c2)‖L2(σ) ≤ C2 ‖c1 − c2‖L2(σ) , ∀c1, c2 ∈ Z.Proof. Sine by (6.10) and the embedding theorem funtions u, λ ∈ C1
(
QT

)
, then A3 (c) ∈ C (σ) .For i = 1, 2 let ui = u (x, t, ci) , λi = λ (x, t, ci) . Denote U = u1 − u2,Λ = λ1 − λ2. Then

c1Utt = ∆U − (c1 − c2)u2tt, U (x, 0) = Ut (x, 0) = 0, ∂nU |ST
= 0, (6.15)

c1Λtt = ∆Λ − (c1 − c2)λ2tt, Λ (x, T ) = Λt (x, T ) = 0, ∂nΛ |ST
= −ζε2

U |ST
. (6.16)Hene, using (5.12) and (6.10), we obtain from (6.15) and (6.16)

‖A3 (c1) −A3 (c2)‖L2(σ) ≤ T ‖λ1‖C1(QT ) ‖U‖H2(QT ) + T ‖u2‖C1(QT ) ‖Λ‖H2(QT )

≤ C2 ‖c1 − c2‖L2(σ) . �7. The Tikhonov Funtional for the CIP. To apply results of setions 2-4 to our CIP, wespeify in this setion the Tikhonov funtional for this CIP and derive the Frehet derivative for it.We assume in this setion that onditions of Theorem 6.1 hold and onsider now the set Z as anopen subset of the spae H (see the paragraph after (5.12)). Reall that the norm in H is L2 (σ)and the set Z ⊂ H. Let c ∈ Z be an arbitrary funtion and u = u (x, t, c) ∈ Hm+1 (QT ) be thesolution of the problem (6.5). Denote H1 := L2 (ST ) . Consider the operator F : Z → H1 de�nedas
F (c) (x, t) := (g̃ − u (x, t, c) |ST

) ζε2
(t) . (7.1)Sine the funtion g̃ (x, t) , (x, t) ∈ ST is atually generated by the data g (x, t) in (5.5) for our CIP,we assume that g̃ (x, t) = g̃∗ (x, t)+ g̃δ (x, t) , where g̃∗ orresponds to the exat solution c∗ (setion5) and g̃δ orresponds to the error in the data with a su�iently small level of error δ ∈ (0, 1).Hene, g̃∗ (x, t)− u (x, t, c∗) |ST

≡ 0 and by (7.1) F (c∗) = g̃δ (x, t) . Following (6.1)-(6.4), we assumethat there exist funtions G∗, Gδ, suh that
G∗, Gδ ∈ Hm+2 (QT ) , G = G∗ +Gδ, G

∗ (x, t) = Gδ (x, t) = 0, for x ∈ Ω,

∂nG
∗ |ST

= g∗, ∂nGδ |ST
= gδ, ‖Gδ‖Hm+2(QT ) ≤ δ.

(7.2)Obviously one an take, e.g. G∗ = a (x)u (x, t, c∗) . Hene, we assume that
‖F (c∗)‖L2(ST ) ≤ δ, (7.3)whih is required by (2.6). In addition, by Theorem 6.1 and the trae theorem the operator F hasthe Frehet derivative F ′ (c) (b) at every point c ∈ Z,

F ′ (c) (b) = −ζε2
(t) ũ (x, t, c, b) |ST

, ∀b ∈ Z ′. (7.4)Lemma 7.1. Assume that onditions of Theorem 6.1 and onsider Z is a subset of H. Thenthe Frehet derivative F ′ (c) satis�es the Lipshitz ondition
‖F ′ (c1) − F ′ (c2)‖ ≤ C2 ‖c1 − c2‖L2(σ) , ∀c1, c2 ∈ Z.



26 L.BEILINA AND M.V.KLIBANOV and M.Y.KOKURINProof. For i = 1, 2 denote ui = ui (x, t, ci) and ũi = ũi (x, t, ci, b) solutions of problem (6.13) and(6.15) respetively with c = ci. Similarly with the proof of Theorem 6.2 let U = u1−u2, Ũ = ũ1−ũ2.Hene, U ∈ Hm+1 (QT ) , Ũ ∈ H2 (QT ) . By (6.11)
c1Ũtt = ∆Ũ − bUtt − (c1 − c2) ũ2tt, Ũ (x, 0) = Ũt (x, 0) = 0, ∂nŨ |ST

= 0. (7.5)It follows (5.12), (6.9), (6.11) and (6.15) that
‖bUtt‖L2(QT ) + ‖(c1 − c2) ũ2tt‖L2(QT ) ≤ C2 ‖c1 − c2‖L2(σ) ‖b‖L2(σ) .Hene, by (6.9), (7.4), (7.5) and the trae theorem

‖F ′ (c1) (b) − F ′ (c2) (b)‖H1
≤ C2 ‖c1 − c2‖L2(σ) ‖b‖L2(σ) . �Reall that the funtion cglob ∈ Z (subsetion 5.2) and onsider the Tikhonov funtional Yα :

Z → R for the operator F (c) in (7.1) (also, see Remark 2.1),
Yα (c) =

1

2
‖F (c)‖2

H1
+
α

2
‖c− cglob‖2

L2(σ) , (7.6)In order to �nd the Frehet derivative Y ′
α (c) , onsider the Lagrange funtional L (c) ,

L (c) = Yα (c) +

∫

QT

(−c (x) utλt + ∇u∇λ) dxdt −
∫

ST

pλdSdt, (7.7)where funtions u (x, t, c) , λ (x, t, c) ∈ Hm+1 (QT ) are solutions of initial boundary value prob-lems (6.5), (6.6). By (6.5), (6.6) and (6.8) the integral term in (7.7) equals zero. Hene, L (c) =
Yα (c),∀c ∈ Z. However, it is not straightforward to �gure out the analyti expression for (F ′ (c))∗ F (c)for the operator F in (7.1). The latter is required by (2.9) for the alulation of the Frehet deriva-tive Y ′

α (c). The reason why L (c) is introdued is that it is easier to alulate its Frehet derivative
L′ (c) ompared with the one of Yα (c) . To obtain the expliit expression for L′ (c), we need, sim-ilarly with setion 6, to vary the funtion c via onsidering c + b ∈ Z for b ∈ Z ′ and then tosingle out the term, whih is linear with respet to b. When varying c, we also need to onsiderrespetive variations of funtions u and λ in (7.7), sine these funtions depend on c as solutionsof state and adjoint problems. And linear, with respet to c, parts of these variations will be fun-tions ũ (x, t, c, b), λ̃ (x, t, c, b) . Unlike this, the �all-at-one� approah of [5-7℄, assumes that in (7.7)
L := L̃ (c, u, λ) , where funtions c, u, λ are treated as mutually independent ones with variations(
b, u, λ

) of (c, u, λ) satisfying
u, λ ∈ H1 (QT ) , u (x, 0) = λ (x, T ) = 0. (7.8)The resulting expression L̃′ (c, u, λ)

(
b, u, λ

) is onsidered as the �all-at-one� Frehet derivative ofthe Lagrangian L̃ (c, u, λ) rather than the one of the Tikhonov funtional Yα (c). One of assertionsof Theorem 7.1 is that these two derivatives are equal to eah other.Theorem 7.1. Assume that onditions of Theorem 6.1 hold. Then
Y ′

α (c) (b) = L′ (c) (b) =

∫

Ω



α (c− cglob) −
T∫

0

utλtdt



 b (x) dx, ∀c ∈ Z, ∀b ∈ Z ′. (7.9)
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Y ′

α (c) (x) = α (c− cglob) (x) −
T∫

0

(utλt) (x, t, c) dt, x ∈ σ, ∀c ∈ Z, (7.10)and by Theorem 6.2 Y ′
α (c) ∈ C (σ) . The same expression (7.9) holds for the all-at-one Frehetderivative of the Lagrangian, L̃′ (c, u, λ)

(
b, u, λ

)
= Y ′

α (c) (b) , ∀c ∈ Z, ∀b ∈ Z ′, i.e. the all-at-oneFrehet derivative of the Lagrangian equals the Frehet derivative of the Tikhonov funtional.Proof. Considering in (7.7) L (c+ b)−L (c), singling out the term, whih is linear with respetto b and using (7.4), (7.6) and Theorem 6.1, we obtain
L′ (c) (b) = Y ′

α (c) (b) =

∫

Ω


α (c− cglob) −

T∫

0

utλtdt


 b (x) dx

+

∫

QT

(
−cutλ̃t + ∇u∇λ̃

)
dxdt−

∫

ST

pλ̃dSdt (7.11)
+

∫

QT

(−cλtũt + ∇λ∇ũ) dxdt−
∫

ST

(g − u |ST
) ζε2

(t) ũdSdt, ∀c ∈ Z, ∀b ∈ Z ′,where ũ and λ̃ are solutions of problems (6.11) and (6.12) respetively. Sine ũ (x, 0) = λ̃ (x, T ) = 0,then (6.8), (6.11) and (6.12) imply that seond and third lines in (7.11) equal zero, whih proves(7.9). Consider now the all-at-one Frehet derivative via onsidering L̃
(
c+ b, u+ u, λ+ λ

)
−

L̃ (c, u, λ) and singling out in this expression the term, whih is linear with respet to (b, u, λ) .Then we obtain the same expression as in (7.11) where funtions ũ, λ̃ are replaed of with u, λ.Hene, (6.5)-(6.8) and (7.8) imply that seond and third lines in the latter expression equal zero.
� Remark 7.1. We refer to the earlier work [10℄ where the Frehet derivative for the Tikhonovfuntional for the parameter identi�ation problem (whih is di�erent from a CIP) was derived,although the proof was not presented: by the rules of that journal. The forward problem in [10℄ isthe Cauhy problem for a hyperboli equation. A private ommuniation with the author of [10℄has revealed that the omplete proof was presented in his Ph.D. thesis (1971). Sine the Lagrangianwas not introdued in [10℄, then the above equality of two derivatives was not proved in [10℄.Now we are ready to reformulate theorems of setions 2-4 for our CIP. To do this, it is onvenientto onsider another set Z1 ⊂ H, whih is the set of restritions of all funtions c ∈ Z on the polygonaldomain σ. Hene, when onsidering solutions u and λ of state and adjoint problems in the funtional
Yα (c) , we assume that the oe�ient c ∈ Z. However, when subsequently applying the theory ofsetions 2-4 to this funtional, we assume that c ∈ Z1. Sine we always work with the gradient
Y ′

α (c) in that theory, then (7.9) and (7.10) imply that this theory is not a�eted this way.There is no guarantee that the funtion Y ′
α (c) ∈ H, beause of the integral term in (7.10).Hene, in order to apply the theory of setion 4, we should onsider the funtion PY ′

α (c) instead of
Y ′

α (c) , where P : L2 (σ) → H is the operator of the orthogonal projetion of L2 (σ) ontoH . In pra-tial omputations we atually ompute the interpolant of Y ′
α (c) on the orresponding mesh instead
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α (c) , and this is one of soures of error, see Theorems 7.3 and 7.4. Inreasing the smoothnessof funtions P,G by 1 in (6.1), one an prove that in Theorem 6.2 A (c) ∈ C1 (σ), whih leads toan estimate of this error via (2.4). We keep in mind below that (PY ′

α (c) , f) = (Y ′
α (c) , f) , ∀c ∈

Z1, ∀f ∈ H. It follows from Lemma 7.1 that there exists a number N4 = N4 (C2) > 0 suh that
‖Y ′

α (c1) − Y ′
α (c1)‖L2(σ) ≤ N4 ‖c1 − c2‖L2(σ) , ∀c1, c2 ∈ Z1. Obviously, lemmata and theorems of se-tions 2 and 3 are appliable now with the natural replaement of the vetor (x∗, xglob, xα, N3) withthe vetor (c∗, cglob, cα, N4) and assuming that onditions (2.11), (2.12) hold. Hene, below we stillregard, without restating, Assumption 4.1 as a standing one. Also, in Lemma 3.2 and Theorems3.1, 3.2 we now have β1 = β1 (C2) ∈ (0, 1) , ρ = β1α = β1δ

µ2 , δ1 = δ1 (µ1, µ2, C2) , δ ∈ (0, δ1) and
V(1+

√
2)δµ1

(c∗) : =
{
f ∈ H : ‖f − c∗‖L2(σ) <

(
1 +

√
2
)
δµ1

}
,

Vρ : =
{
f ∈ H : ‖f − cα‖L2(σ) < ρ

}
.In addition, (4.1) holds where A is a given positive onstant and ‖∇cα‖L∞(σ) ≤ A. The proof ofTheorem 7.2 follows immediately from (5.10)-(5.12), (6.1)-(6.4), Lemmata 2.1, 3.2 and Theorems3.1, 3.2.Theorem 7.2. Assume that onditions of Theorem 6.1 hold, funtions c∗, cglob ∈ Z1 and inpartiular ‖cglob − c∗‖L2(σ) ≤ δµ1 . Then one an hoose the number δ2 = δ2 (µ1, µ2, C2) ∈ (0, δ1]so small that for δ ∈ (0, δ2) we have: V(1+√

2)δµ1
(c∗) ⊂ Vρ ⊂ Z1, the funtional Yα (c) is stritlyonvex on Vρ with the strit onvexity parameter κ = α/4 and there exists the unique minimizer cαof Yα (c) on the set V(1+√

2)δµ1
(c∗) as well as the unique minimizer cn on the set (∂V ρ�Vρ

)
∩Mn.Theorem 7.3. Let onditions of Theorem 7.2 hold. Suppose that the funtion PY ′

α (c) ∈ His alulated with an error. That is, one alulates the funtion Sα (c) ∈ H instead of PY ′
α (c) and

‖PY ′
α (c) − Sα (c)‖L2(σ) ≤ τ, ∀c ∈ Vρ, where the number τ ∈ [0, 1) is su�iently small. Supposethat the minimization proess of the funtional Yα (c) on the set Mn ∩ Vρ with n ≥ n is stopped atsuh a point cn,τ that τ ≤ ‖PnSα (cn,τ )‖L2(σ) /2. Then the following a posteriori error estimate ofthe reonstrution of the regularized oe�ient holds

‖cn,τ − cα‖L2(σ) ≤
3

α
‖Sα (cn,τ )‖L2(σ) .In partiular, if τ = 0, then

‖cn − cα‖L2(σ) ≤
3

α
‖PY ′

α (cn)‖L2(σ) ≤
3

α
‖Y ′

α (cn)‖L2(σ) .Proof. Sine Y ′
α (cα) = 0, then by (3.2) and Theorem 7.2

α ‖cn,τ − cα‖L2(σ) ≤ 2 ‖Y ′
α (cn,τ ) − Y ′

α (cα)‖L2(σ) ≤ 2 ‖S (cn,τ )‖L2(σ) + 2τ ≤ 3 ‖S (cn,τ )‖L2(σ) . �We now reformulate the relaxation Theorem 4.2 for our CIP. This is Theorem 7.4, whihimmediately follows from Theorems 4.2, 7.2 and 7.3.Theorem 7.4. Denote r̂ =

√
1 − α2 (2N4)

−2
. Assume that onditions of Theorem 7.3 holdand n is the integer of Assumption 4.1. Suppose that for any subspae Mk with k ≥ n the min-imization proess of the funtional Yα (c) on the set Vρ ∩Mn is stopped at suh a point ck,τ that
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‖PMk

S (ck,τ )‖L2(σ) ≤ τ . Let n ≥ n and a1 be the number from (2.1). Assume that there exists anumber rn ∈ (r̃, 1) suh that
C2

(
AK

hn√
α

+
√
ατ +

τ

α

)
≤ (rn − r̂) ‖S (cn,τ )‖L2(σ) , (7.12)

a1C2K
√
α ‖∇S (cn,τ )‖L∞(eσ) ≤

rn − r̂

8N4
‖S (cn,τ )‖3/2

L2(σ) . (7.13)Let δ2 ∈ (0, δ1] be the number of Theorem 7.2. Then there exists suh a subspae Mn+1 of thespae H that Mn ⊂Mn+1 and for δ ∈ (0, δ2) the following relaxation property holds
‖cn+1,τ − cα‖L2(σ) ≤ rn ‖cn,τ − cα‖L2(σ) . (7.14)If at least one of inequalities (7.12), (7.13) is invalid, then the mesh re�nement proess should bestopped. If τ = 0, then the above holds with the replaement of the pair {S (cn,τ ) , cn,τ} by the pair

{PY ′
α (cn) , cn} . Let r ∈ (r̂, 1) be the maximal value of orresponding numbers rn for a ertain �nitenumber of suh mesh re�nements . Then (7.14) is valid with the replaement of rn with r, whihturns (7.14) into (1.1).Remark 7.2. In referene to numbers C2 and N4 in (7.13), see Remark 4.1. Sine the loalstrit onvexity of the funtional Yα on the set Vρ in ombination with Assumption 4.1 impliesonvergene of gradient-like methods of minimization of Yα on sets Vρ ∩Mn, a orresponding globalonvergene theorem for the entire two-stage proedure for the above CIP to the above de�nedregularized solution cα an be proven, unlike the urrent �rst stage only of [8℄. This an be done,provided that the globally onvergent stage would be modi�ed for the smooth initial ondition

δθ (x− x0) (see setion 5).8. Numerial Studies.8.1. Computation of the forward problem. In this paper we work with the omputa-tionally simulated data. That is, the data for the CIP are generated by omputing the forwardproblem with the given funtion c(x) := c∗ (x). To solve the forward problem, it is onvenientto use the hybrid FEM/FDM method desribed in [4℄. The omputational domain for the for-ward problem is G = [−4.0, 4.0] × [−5.0, 5.0]. This domain is split into a �nite element domain
GFEM := Ω = [−3.0, 3.0] × [−3.0, 3.0] and a surrounding domain GFDM with a strutured mesh,
G = GFEM ∪GFDM , see 8.1-a). The reason of the onveniene of the hybrid method is that thereis no need to have the unstrutured mesh in the domain G�Ω, sine c (x) = 1 in this domain. Thespae mesh in Ω onsists of triangles and in GFDM - of squares with the mesh size h̃ = 0.125 bothin the overlapping regions and in G�Ω. At the top and bottom boundaries of G we use �rst-orderabsorbing boundary onditions [14℄. At the lateral boundaries, mirror boundary onditions allowus to assume an in�nite spae domain in the lateral diretion. The oe�ient c(x) is unknown onlyin the square Ω ⊂ G,

c(x) =






1 := d1 in G�Ω
1 + k(x) in Ω,

c̃ = 4 in small squares  , (8.1)
k(x) =

{
0.5 sin2

(
πx1

2.875

)
sin2

(
πx2

2.875

)
, for |x1| , |x2| < 2.875

0 otherwise, inluding small squares }
.
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(a) G = GFEM ∪GFDM (b) c7,9 () ||cn − cα||L2Fig. 8.1. a) The omputational domain for the forward problem is the retangle. The dark blue square isthe domain Ω. b) The spatial distribution of the funtion c7,9 (x) := c7 (x) := cglob (x) resulting from the globallyonvergent stage of our method. The maximal value of this funtion within imaged inlusions is 3.1 (orret maximalvalue is 4). Also, cglob (x) = 1 outside of imaged inlusions. Hene, it is desirable to enhane the image in twoways: (1) it would be good to inrease the value of the funtion c within imaged inlusions from 3.1 to 4, and (2) itis desirable to move up the loation of the left imaged inlusion. This paves the way for the subsequent appliationof the adaptivity tehnique. ) Computed norms ‖cn − cα‖L2(σ) on �ve (5) adaptively re�ned meshes inludingthe initial oarse mesh. Two ases are presented: (1) ς = 0.02 ≈ δ, α = 0.15 ≈ ς0.48 and (2) ς = α = 0.01, seeexplanations in the text. The relaxation property (7.14) is evident from this �gure. In the �rst ase the relaxationis more pronouned on the 4 th mesh re�nement with r4 ≈ 0.79, although it is also lear that 0.95 < r1, r2,r3 < 1.In the seond ase r1 ≈ 0.82, r2 ≈ 0.89, r3 ≈ r4 ≈ 0.71.

Hene, (8.1) means that c(x) = 1 both near the boundary of the square Ω and outside of this squareand c(x) ≥ 1 := d1 everywhere. The onstant c̃ haraterizes the inlusion/bakground ontrastin small squares. The number 0.5 is the maximal amplitude of the slowly hanging bakgroundfuntion. We point out that our goal is to image small squares of Figure 8.1 () rather than to imagethe slowly hanging bakground funtion. Another approah to imaging of small inlusions an befound in, e.g. [2℄. The trae of the solution of the forward problem is reorded at the boundary
∂Ω as the funtion g (x, t) , see (5.5). Next, the oe�ient c(x) is �forgotten�, and our goal is toreonstrut this oe�ient for x ∈ Ω from the data g (x, t) . The boundary of the domain G is
∂G = ∂G1 ∪ ∂G2 ∪ ∂G3. Here, ∂G1 and ∂G2 are respetively top and bottom sides of the largestdomain of 8.1-a) and ∂G3 is the union of left and right sides of this domain. Let t1 := 2π/s, T =
17.8t1. We initialize the plane wave f(t) on the top boundary ∂G1 (also, see subsetion 5.2), where
f(t) = 0.1 (sin (st−π/2) + 1) , 0 ≤ t ≤ t1, f(t) = 0, t ∈ (t1, T ) . Hene, it is initialized for t ∈ (0, t1]and propagates into G. In the integral of the Laplae transform (subsetion 5.1) we integrate for
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t ∈ (0, T ) . Thus, the forward problem in our numerial test is

c (x)utt −△u = 0, in G× (0, T ),

u(x, 0) = ut(x, 0) = 0, in G,
∂nu

∣∣
∂G1

= f (t) , on ∂G1 × (0, t1],

∂nu
∣∣
∂G1

= −∂tu, on ∂G1 × (t1, T ),

∂nu
∣∣
∂G2

= −∂tu, on ∂G2 × (0, T ),

∂nu
∣∣
∂G3

= 0, on ∂G3 × (0, T ).

(8.2)
To see how our algorithm works with the noisy date, we introdue the multipliative random noisein the data g. thus onsidering the following funtion gς

gς

(
xi, tj

)
= g

(
xi, tj

)
[1 + ςαj (gmax − gmin)] , (8.3)where xi ∈ ∂Ω, tj ∈ [0, T ] are mesh points at the boundary of the square Ω and in the time interval

[0, T ] , αj ∈ [−1, 1] is the random number taken from the uniform distribution, ς ≈ δ is the noiselevel, where gmax and gmin are maximal and minimal values of the funtion g. However, we havedi�erentiated the Laplae transform w (x, s) with respet to s using the �nite di�erene, beausethe Laplae transforms smooths out the noise.8.2. Reonstrution result on the globally onvergent stage. In our numerial studieswe have used the interval s ∈ [s, s] = [6.95, 7.45] , whih is a part of the interval [6.7, 7.45] used in[8℄. We have taken its partition step size κ = 0.05, whih means that N = 10. We have taken thefollowing values of parameters: ν = 20,κn = 0 for n = 1, 2 and κn = 0.0001 for n ∈ [3, 10] , ς = 0.05.Thus, the noise level on the �rst stage of our two stage proedure was 5%. We have solved Dirihletboundary value problems (5.8) by the FEM. If in our omputations we saw that cn,i (x′) ≤ 0.5for any point x′ ∈ Ω, then we have set a new value as cn,i (x′) := 1 = d1 in order to ensure thatthe operator cn,i (x′) ∂2
t − ∆ is a hyperboli one when solving the forward problem (8.2) with thefuntion cn,i, whih we need for iterations with respet to tails (subsetion 5.1). The latter ut-o�proedure prevents us from imaging the slowly hanging bakground, whih is not our goal anyway(see subsetion 8.1).To monitor the onvergene of our method, we have evaluated norms

Fn,i =
‖qn,i |Γh

−ψn‖L2(∂Ω)

‖ψn‖L2(∂Ω)

. (8.4)In (8.4) values of alulated funtions qk
n,i are taken at the points h-inside from the lower boundary,where h = 0.125. We stop inner iterations with respet to tails (i.e., with respet to i), when either

Fn,i+1 ≥ Fn,i or |Fn,i+1 − Fn,i| ≤ 0.0005. One an see from Table 8.1 that norms Fn,i deay �rstwith the grow of n ∈ [1, 7] . Next, they start to grow at n = 8 and grow sharply at n = 9. Hene, westop the globally onvergent part at c7,9 := c7 := cglob, see label for Table 8.1. Another reason ofthe growth at n = 8 might be that the s-interval overed at n = 7 has the length of 0.35, and thismight be the limit for the number β2 of subsetion 5.1. Figure 8.1-b) displays the resulting imageand its legend explains details.
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i n = 1 n = 2 n = 3 n = 4 n = 5 n = 6 n = 7 n = 8 n = 91 1.07519 0.979843 0.957188 0.960068 0.840414 0.799041 0.188793 0.380556 0.5630632 0.98301 0.978974 0.955977 0.934431 0.763071 0.826884 0.197357 0.397676 1.5630633 0.98301 0.978574 0.957078 0.931403 0.753745 0.826884 0.203472 0.3992974 0.956932 0.931034 0.768198 0.21208 0.4007145 0.956501 0.931012 0.768198 0.214845 0.4140136 0.955725 0.1983 0.4356637 0.955006 0.201933 0.4261218 0.954221 0.19723 0.4205269 0.953986 0.195233 0.42052610 0.953287 0.19914511 0.952856 0.19914512 0.952856 Table 8.1Values of numbers Fn,i in (8.4). One an see that they generally derease until n = 7. And stabilization withrespet to i is also observed. Next, they start to inrease at n = 8 and grow sharply at n = 9. Therefore, we stopthe globally onvergent part at n := N = 7 and set c7,9 := c7 := cglob. This is going along well with one of basiideas of the theory of Ill-Posed Problems by whih the iteration number an be one of regularization parameters, seepages 156, 157 of [13℄.8.3. The seond stage of the two-stage proedure. In this seond stage of our two stageproedure we use the adaptivity tehnique, whih is the main fous of the analytial study of thispubliation. We take the above funtion cglob (Figure 8.1-b)) as the �rst guess for our method.On eah mesh we use the quasi-Newton method to �nd an approximate solution of the equation

(Y ′
α)

I
(c) = 0, where the funtion Y ′

α (c) is given in (7.10), see [7℄ for details of our implementationof the quasi-Newton method. Here the supersript �I� stands for the standard interpolant of thefuntion Y ′
α (c) on this mesh (see setion 7 for some details). On eah mesh we stop iterations ofthe quasi-Newton method on suh a funtion c(n) that either ∥∥∥(Y ′

α)
I (
c(n)

)∥∥∥
L2(σ)

≤ 10−5 or thesenorms are stabilized. Usually norms are stabilized and the resulting norm ∥∥∥(Y ′
α)

I (
c(n)

)∥∥∥
L2(σ)

6= 0.Hene, we re�ne the mesh in suh subdomains of σ that
∣∣∣(Y ′

α)
I
(
c(n)

)
(x)
∣∣∣ ≥ υmax

σ

∣∣∣(Y ′
α)

I
(
c(n)

)
(x)
∣∣∣ ,where υ = 0.6 was hosen in numerial experiments. This orresponds to the mesh re�nementreommendation presented after the proof of Theorem 4.2. In our ase is the domain Ω1 =

{x2 > −3} ∩ G (setion 6). We do not use the ut-o� funtion ζε2
(t) in (6.6) and (7.1), sine wehave observed omputationally that u (x, T ) ≈ 0. Sine the onvergene estimate (5.9) guaranteesthat the orret solution is not far from cglob, then we use some onstrains for the reonstrutedoe�ient. We impose these onstraints using the solution obtained on the globally onvergentstage. The idea is that the solution obtained on the seond stage should not be too far from thefuntion cglob. Thus, in all adaptive meshes we enfore that the oe�ient c(x) belongs to thefollowing set of admissible parameters, c(x) ∈ {c ∈ H : 1 ≤ c(x) ≤ 4}. The solution omputedon the mesh, whih was obtained after n re�nements, is denoted here as c(n), for onveniene. In
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a) 4776 elements b) 5272 elements ) 6174 elements
d) 7682 elements e) 11068 elements f) chα ≈ 3.99Fig. 8.2. Computational results for the seond stage of our two stage numerial proedure. We have taken onthis stage the noise level in (8.3) ς = 0.02 ≈ δ and the regularization parameter α = 0.15 ≈ ς0.48. Hene, µ2 ≈ 0.48,where the number µ2 is de�ned in (2.12). Adaptively re�ned meshes on �ve onsequtive mesh re�nements are shownon a)-e). Fig. 8.2 f) displays the resulting image of the oe�ient c(5) (x) after �ve (5) mesh re�nements, see detailsin the text. Loations of both inlusions are aurately imaged (ompare with Fig. 8.1 a)). The maximal value ofthe funtion c(5) (x) = 4 inside of eah imaged inlusion, whih means that the inlusion/bakground ontrast isalso aurately imaged. In addition, c(5) (x) = 1 outside of imaged inlusions. We set cα (x) := c(5) (x) .addition, we use a ut-o� parameter Ccut for the reonstruted oe�ient c(n),

c(n) (x) =

{
c(n) (x) , if c(n) (x) ≥ Ccut maxσ c

(n)(x)
cglob, elsewhere. .In our numerial experiments we have taken Ccut = 0.75 and in the adaptivity tehnique wehave taken in (8.3) ς = 0.02 ≈ δ whih orresponds to 2% of the noise level, and we have taken

α = 0.15 ≈ δ0.48, whih means that in (2.12) µ2 ≈ 0.48. First, we use the quasi-Newton method onthe same oarse mesh where the globally onvergent method worked and have obtained the sameimage quality (not shown) as on Figure 8.1b. Next, we have performed our testing on 5 timesre�ned meshes. As a result, the image was stabilized. This stabilization basially means that thenorm ∥∥∥(Y ′
α)

I (
c(5)
)∥∥∥

L2(σ)
beame too small, indiating that at least one of onditions (7.12), (7.13)is likely invalid at n = 5 and thus, the mesh re�nement proess should be stopped (Theorem 7.4).Figure 8.2 displays those mesh re�nements as well as the resulting image on the �nally re�ned



34 L.BEILINA AND M.V.KLIBANOV and M.Y.KOKURINmesh. One an see that the image quality is signi�antly enhaned ompared with Figure 8.1-b).Namely, the maximal value of the imaged oe�ient within both inlusions is now 4, whih is theorret value, and loations of both imaged inlusions are also imaged aurately.An important additional point is to omputationally verify the relaxation property (7.14). As
cα we have taken the funtion obtained on the �nally re�ned mesh (see Figure 8.1-)). Next, weompute norms ∥∥c(n) − cα

∥∥
L2(σ)

, where c(n) is the approximation for the funtion c obtained after
n mesh re�nements. Eah funtion c(n) is linearly interpolated on the �nally re�ned mesh. Sine
c(n) is a pieewise linear funtion, this interpolation does not hange it. Figure 8.1-d) displaysomputed values of norms ∥∥c(n) − cα

∥∥
L2(σ)
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