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Abstract—In a Body Sensor Network (BSN) activity recog-
nition system, sensor sampling and communication quickly
deplete battery reserves. While reducing sampling and com-
munication saves energy, this energy savings usually comes
at the cost of reduced recognition accuracy. To address this
challenge, we propose AdaSense, a framework that reduces
the BSN sensors sampling rate while meeting a user-specified
accuracy requirement. AdaSense utilizes a classifier set to do
either multi-activity classification that requires a high sampling
rate or single activity event detection that demands a very low
sampling rate. AdaSense aims to utilize lower power single
activity event detection most of the time. It only resorts to
higher power multi-activity classification to find out the new
activity when it is confident that the activity changes. Further-
more, AdaSense is able to determine the optimal sampling rates
using a novel Genetic Programming algorithm. Through this
Genetic Programming approach, AdaSense reduces sampling
rates for both lower power single activity event detection and
higher power multi-activity classification. With an existing
BSN dataset and a smartphone dataset we collect from eight
subjects, we demonstrate that AdaSense effectively reduces
BSN sensors sampling rate and outperforms a state-of-the-art
solution in terms of energy savings.

Keywords-Activity Recognition, Sampling Rate Reduction,
Body Sensor Network.

I. INTRODUCTION

Body Sensor Networks (BSNs) consist of a group of wire-
less sensors with various monitoring capacities and different
modalities. Data collected by body sensors is transmitted to
an aggregator (e.g., a PC or a smartphone) and then is either
analyzed by the aggregator or reliably delivered to a data
center (e.g., a hospital) for future analysis. The most classic
application based on a BSN is activity recognition, upon
which more complex human-centered real-time applications,
such as personal health monitoring [7], assisted living [5]
and physical fitness assessment [3], can be built. To provide
both high accuracy and real-time recognition, the activity
recognition system must continuously fetch sensor data from
sensor nodes. However, the intensive sensing and communi-
cation workload can quickly deplete the energy of sensor
nodes, which is usually battery powered. Consequently,
energy efficiency concerns are paramount in BSN system
design.

One widely used method to reduce the energy consumed
by sensing and communication is to decrease the number

of raw samplings the sensors generate per unit time, i.e.,
sampling rate. Although reducing the sampling rate can
prolong the BSN lifetime, this reduction is usually achieved
at the expense of sacrificing recognition accuracy [16]. In
this paper, we propose AdaSense, a framework that reduces
BSN sensors sampling rate while maintaining high accuracy
(or meeting a user-specified accuracy requirement). The
three main contributions of AdaSense are:

First, through experiments and analysis, we demonstrate
that to fulfill any accuracy requirement, detecting whether a
specific activity happens or not (single activity event detec-
tion through activity binary classification) requires a lower
sampling rate than classifying multiple activities (multi-
activity classification). Moreover, we notice that a human
being’s activity (e.g., sitting, lying down or walking) is a
continuous process that lasts for a time period, which enables
us to pursue system optimization through activity-specific
design. Specifically, in AdaSense, we design the Efficient
Activity Recognition (EAR) that performs either lower power
single activity event detection or higher power multi-activity
classification. When the current activity does not change
(comparing to the previous activity), EAR performs single
activity event detection with a lower sampling rate. When
an activity change is detected, EAR performs multi-activity
classification with a higher sampling rate to identify the
new activity. After identifying the new activity, it switches
back to event detection of the new activity with a lower
sampling rate. As a result of combining both lower power
single activity event detection and higher power multi-
activity classification in runtime, the sensors sampling rate
is reduced on average compared to only using higher power
multi-activity classification.

Second, to amplify the sampling rate reduction brought
by EAR, we propose a second method, Sampling Rate Opti-
mization (SRO), which aims to reduce the sensors sampling
rates of both single activity event detection and multi-activity
classification under any accuracy requirement. This approach
uses a novel Genetic Programming based (GP-based) algo-
rithm to explore the feature set space and attempts to find
an optimal feature set that effectively reduces the optimal
(or the minimally necessary) sampling rate of multi-activity
classification under any accuracy requirement. Moreover, the
corollary that we prove in this paper guarantees that the



optimal sampling rate of single activity event detection is
no larger than that of multi-activity classification under any
accuracy requirement. Therefore, this GP-based algorithm
not only reduces the optimal sampling rate of multi-activity
classification, but also has the potential to minimize the op-
timal sampling rate of single activity event detection without
extra effort. This potential is validated in our evaluation.

Third, we evaluate AdaSense with an existing BSN dataset
and a smartphone dataset we collected from eight subjects.
The results demonstrate that AdaSense is able to effectively
reduce the optimal sampling rates of both multi-activity
classification and single activity event detection. Through the
energy emulation method in [27], we also demonstrate that
AdaSense achieves energy saving, ranging from 39.4% to
51.0%, on smartphone compared to the most recent sampling
rate reduction method [27].

In literature, many methods have been proposed to reduce
the energy overhead of sensing. Some works [16] [21]
[23] benchmark several system parameters (e.g., sampling
rate and sampling length (how long each sampling takes))
to identify thresholds that balance computation cost with
accuracy. However, none considers combining detection
(binary classification) with multi-classification to further
reduce sensors sampling rate. Many works [12] [13] [24]
[26] pursue energy savings through either static or dynamic
sensor cluster selection. These approaches rarely consider
adjusting other system parameters such as sampling rate that
we focus on in this paper.

The rest of the paper is organized as follows. Related
work is given in Section II. The motivation and design of
AdaSense are given in Sections III and IV, respectively.
Section V presents the evaluation results. Finally, Section
VI concludes the paper.

II. RELATED WORK

Reducing sampling rates to save energy is a well studied
research topic. Some works such as [11] point out that to
achieve high classification accuracy, it is not necessary for
sensors to work at full sampling rate. The paper [16] stat-
ically addresses the tradeoff between accuracy and energy
consumption. For both time and frequency domain features,
it reports that in the sampling rate dimension an accuracy
knee exists. Below the knee, there is a significant accuracy
degradation. It suggests using the sampling rate at the knee
to save energy while enjoying a relative high accuracy. In ad-
dition, Kobe [8] tries to achieve an optimal energy-latency-
accuracy tradeoff for mobile sensor data classification. In
contrast, AdaSense proposed in this paper considers the
situation in which users wearing on-body sensors have an
explicit accuracy requirement and uses single activity event
detection sampling rate to reduce system energy overheads
without violating user accuracy requirements. Compared to
A3R [27], an independent and very recent work that also
uses a lower sampling rate of single activity event detection

to reduce system energy overheads, AdaSense explores the
feature set space by Genetic Programming techniques and
finds the optimal feature set that effectively reduces both
the classification and detection sampling rates. In addition,
AdaSense achieves more fine-grained sampling rate adaption
instead of only utilizing the 4 fixed sampling rates (5Hz,
16Hz, 50Hz, and 100Hz) exploited by A3R.

Some works have been proposed to adjust sensors sam-
pling rate in different contexts. EmotionSense [23] uses
declarative rules to adapt the sampling length of phone
sensors. However, it does not consider reducing sampling
rate. SpeakerSense [19] uses a low sampling rate to detect
whether a speaker exists. It switches to a high sampling rate
when a speaker is detected. Similarly, SociableSense [22]
lets the sensors operate at a high sampling rate only when
interesting events happen. If there are no interesting events,
the sensors are put to operate at a low sampling rate. Al-
though both SpeakerSense and SociableSense use different
sensors sampling rates for different contexts, AdaSense is
different from the following two aspects: first, instead of
binary context categories such as interesting/non-interesting
events, AdaSense uses more fine-grained context categories
such as walking or lying down and hence enjoys more fine-
grained sampling rate adaption; second, AdaSense quantifies
the optimal sampling rate for each context category when
considering user accuracy requirements.

Instead of controlling the sampling rate, many works
achieve energy savings through sensor cluster selection.
WolfPack [13] implements an online sensor clustering proto-
col that pursues high sensing confidence. Works such as [24]
express the accuracy of context estimation through a quality
of inference (QoINF) function that captures the dependence
of estimation accuracy on the selected sensors. With QoINF,
they develop a heuristic algorithm to calculate the sensor set
which maximizes the estimation accuracy.

Some works save energy through optimizing sensor duty
cycles. Systems using either state-related (EEMSS [26]) or
context-based (SeeMon [12]) sensor subset are represen-
tatives of this group. Mercury [18] reduces energy con-
sumption by disabling and enabling sensors dynamically. In
terms of saving energy, AdaSense is orthogonal to both the
duty cycling methods and the aforementioned sensor cluster
selection methods.

III. MOTIVATION

In this section, we demonstrate how to reduce sensors
sampling rate without sacrificing user accuracy require-
ments. We illustrate how accuracy changes as the sampling
rate varies. For this purpose, we use the Opportunity dataset
[4] that contains naturalistic human activities recorded in
a sensor rich environment. It comprises 72 sensors of 10
modalities, deployed in physical environments and on human
bodies. It also includes an annotated dataset of complex, in-
terleaved, and hierarchical naturalistic activities, with a par-



ticularly large number of atomic activities (around 30,000).
Data is collected from 3 subjects with 4 locomotion activities
(standing, walking, sitting, and lying down), labeled when
being recorded and later reviewed by at least two different
persons. Since this paper aims to reduce sampling rate for
on-body sensing, we only use the data recorded by on-body
sensors in the Opportunity dataset. We select 8 sensors (4
triaxial accelerometers and 4 triaxial gyroscopes) with the
maximal sampling rate of 30Hz.

In experiment, all sensor data is grouped by one second
window, and statistical features (such as mean, variance, etc.)
are extracted at the full sampling rate (30Hz). Then, the
feature selection algorithm based on the Sequential Forward
Selection (SFS) strategy [6] is applied to these features. The
selected features are used to train a classifier. We use the
Support Vector Machine (SVM) with RBF Kernel [6] as the
classifier. It is worth of emphasizing that which classifier and
which feature selection algorithm we use are not the novel
parts of this paper. We have tried several other classifiers
(such as the decision tree and Artificial Neural Network)
and several other feature selection algorithms (such as the
Sequential Backward Selection and Random Selection algo-
rithms). The combination of SVM and SFS strategy based
feature selection algorithm achieves the highest accuracy
among all the combinations of classifier and feature selection
algorithm we have tried. In addition, we choose SVM
because [6]: (i) it is able to achieve high accuracy with a
relatively small number of training examples; (ii) it scales
well with data dimensionality; (iii) it is in a simple form
and hence fast to execute in runtime; (iv) it is one of the
best classifiers and has been successfully applied in activity
recognition [16]. We choose RBF kernel since it achieves the
highest accuracy compared to other kernels we have tried,
such as polynomial kernel.

The selected features are extracted at each sampling rate
from the data grouped by one second window and used as
training and testing data at that sampling rate. We obtain the
accuracy at each sampling rate following the 10-fold cross-
validation routine [6]. In each round of cross validation,
all data is divided into 10 subsets, 9 of which are used
for training and the remaining 1 is used for testing, so
that the testing data is different from the training data. We
balance the number of instances for different activities in
the training data. This process is repeated 10 times and each
of the 10 subsets is used exactly once as the testing data.
The estimated accuracy at each sampling rate is the average
testing accuracy over 10 rounds. We calculate the accuracy at
each sampling rate for single activity event detection by (true
positive + true negative)/(true positive + false positive+ true
negative + false negative). Figure 1 illustrates the accuracies
of both multi-activity classification and single activity event
detection for subject one with different sampling rates. Here,
we only give the detection accuracies of sitting and lying
down. The results for the other two activities (walking and

standing) are similar.
In Figure 1, the curve with circle points summarizes the

accuracies of doing multi-activity classification for the four
activities with different sensors sampling rates. We first
observe that the accuracy decreases as the sampling rate
decreases and is also stable until the sampling rate drops
below a threshold. For example, in Figure 1 the accuracy
is above 93% until the sampling rate decreases to 24Hz.
This observation is consistent with what has been reported
in [16]. Second, we observe that different accuracy require-
ments have different optimal (or the minimal necessary)
sampling rates for multi-activity classification. In Figure 1,
for instance, the optimal sampling rates for achieving 93%
and 90% accuracies are 25Hz and 6Hz, respectively. This
observation tells us that, to save energy, different sampling
rates can be used to meet different user-specified accuracy
requirements.

In Figure 1, the curves with cross points and square points
illustrate the detection accuracies of the sitting and lying
down activities, respectively. We observe that the detection
accuracy is always greater than the classification accuracy at
each sampling rate. This observation motivates us to present
the following Lemma:

Lemma 1. In an activity recognition system, suppose the
set of features are fixed. At any sampling rate, a classifier
is trained with the features extracted at this sampling rate.
Then, the classifier accuracy of any activity event detection
is always greater than or equal to that of multi-activity
classification.

Proof: Suppose N is the number of instances being
classified and A is the activity set. We fix the sampling rate
and set of features. A multi-activity classifier is trained with
the features extracted at the current sampling rate. It is worth
emphasizing that only one classifier exists at the current
sampling rate in our problem setting and we use the classifier
to do both multi-activity classification and single activity
event detection. The classifier works as an activity-specific
classifier when it is used to perform the event detection for
any single activity in A. Thus, every activity in A has an
activity-specific classifier at the current sampling rate.

We use TP , FP , TN , FN to denote the instance
sets of True Positive, False Positive, True Negative, False
Negative in the classification result, respectively. For the
event detection of a single activity, a, the accuracy is:

(TPa + TNa)

(TPa + FPa + TNa + FNa)
(1)

For multi-activity classification, the total accuracy is [9]:∑
a∈A TPa

N
(2)

For an activity a, TNa ≥
∑

a′ 6=a&&a′∈A TPa′ since for
every instance of the other activities (A\a) that is correctly
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Figure 1. Accuracies of sitting and lying down event
detections as well as multi-activity classification vs
Sampling rate.
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Figure 2. AdaSense architecture. Note: The sampling rate optimization and classifier training are
performed on the server offine. No communication occurs between aggregator and server in runtime.

classified, it should be an instance in TNa. In addition, TNa

also contains the misclassified instances among the other
activities.

Thus, (TPa + TNa) ≥
∑

a∈A TPa (1).
Since (TPa + FNa) is the number of instances of activity

a and (FPa+TNa) is the number of instances of the other
activities.

Thus, (TPa + FPa + TNa + FNa = N) (2).
With (1) and (2), the Lemma is proved.
Also, previous works such as [14] have already obtained

experimental results that support (but not prove) this Lemma.
Henceforth, we refer to the optimal sampling rate of multi-

activity classification under a certain accuracy requirement
as classification sampling rate. In Figure 1, we can see the
classification sampling rate is 25Hz under 93% accuracy
requirement. In the same way, we refer to the optimal
sampling rate of single activity event detection under a
certain accuracy requirement as detection sampling rate.
For example, the detection sampling rate for sitting is 5Hz
under 93% accuracy requirement (See Figure 1). A corollary
of Lemma 1 is:

Corollary 1. Given a feature set, the classification sampling
rate is no smaller than the detection sampling rate of any
activity.

The following questions arise from the corollary: (1) Can
we combine multi-activity classification with single activity
event detection in the activity recognition system to reduce
sensors sampling rate? (2) If we can, to amplify the sampling
rate reduction, can we develop a method that reduces both
the classification sampling rate and all activities’ detection
sampling rates under any accuracy requirement? According
to the corollary, the classification sampling rate is an upper
bound of the detection sampling rates. Heuristically, when
the classification sampling rate is reduced, the detection
sampling rates could also be reduced potentially. Thus, it is
reasonable to rewrite this question as: can we find a method
that reduces the classification sampling rate?

To sum up, we need a design that exploits the above

corollary and answers the above two questions. The BSN
activity recognition system can benefit from such a design
in terms of reducing sensing and communication workload
while at the same time meeting user-specified accuracy.

IV. ADASENSE DESIGN

Motivated by the observations and questions discussed in
Section III, we propose AdaSense, a framework that aims
to reduce the sensors sampling rate in activity recognition
systems. Its architecture is depicted in Figure 2, where the
core components are highlighted in the shaded areas.

The Efficient Activity Recognition (EAR) is located on the
aggregator (e.g., a smartphone). It exploits the corollary in
Section III and performs either lower power single activity
event detection or higher power multi-activity classification.
In runtime, EAR periodically decides whether the current
activity changes or not through single activity event de-
tection with a lower sampling rate. When a change is
detected, EAR classifies the new activity through multi-
activity classification with a higher sampling rate. After
classifying the new activity, EAR switches back to event
detection of the new activity with a lower sampling rate.

To reduce the classification sampling rate as well as the
detection sampling rates, EAR uses the optimal feature set
and the classifier set trained on this feature set, which
are generated by the Sampling Rate Optimization (SRO)
on the server in the offline training phase. In runtime, no
communication occurs between the aggregator and server.

In order to get the optimal feature set, SRO on the
server obtains the training data from the aggregator and uses
Feature Generator II to generate the basic statistical features.
For energy concerns, the aggregator sends the training data
to the server only when it is plugged into a power source.
Then, based on these features, SRO utilizes a novel variant
of Genetic Programming (GP) [15] to generate an optimal
feature set, which effectively reduces the classification sam-
pling rate under any accuracy requirement.

With the optimal features, SRO linearly searches the
classification sampling rate and the detection sampling rates



and sends them to the Sampling Controller on the aggregator.
The Linear Search means: (i) starting from the full sampling
rate and following its decreasing order; (ii) estimating the
accuracy following the 10-fold cross validation routine de-
scribed in Section III; (iii) selecting the sampling rate i as the
optimal one if the resulting accuracy when using i can meet
the requirement but the resulting accuracy when using i− 1
cannot. The linear search stops after the optimal sampling
rate is selected.

With the optimal features and sampling rates, SRO trains
the classifier set, which contains a multi-activity classifier for
multi-activity classification and activity-specific classifiers
for each single activity event detection. The multi-activity
classifier is trained with the optimal features extracted at the
classification sampling rate. Each activity-specific classifier
is trained with the optimal features extracted at the activity’s
detection sampling rate. SRO passes the optimal feature set
and the trained classifier set to the EAR on the aggregator.

The Sampling Controller provides data for both the train-
ing and runtime phases. Under its control, sensors sample at
the system default (usually full) rate in the training phase and
at the optimal rates in the runtime phase. Feature Generator
I extracts the optimal features from raw data and feeds them
to the classifier that is currently used in runtime. Sampling
Controller ensures that data is sampled at the correct rate.
All sensors used by the optimal feature set should be active.

A. Efficient Activity Recognition

The Efficient Activity Recognition (EAR) aims to exploit
the corollary of the proved Lemma by effectively combining
lower power single activity event detection and higher power
multi-activity classification to save energy.

At the very first time, EAR uses the multi-activity clas-
sifier to identify the current activity with a higher sampling
rate and informs Sampling Controller of the current activ-
ity. When the current activity does not change, Sampling
Controller controls sensors sampling at the current activity’s
detection sampling rate, i.e., the optimal sampling rate
of current activity’s event detection. The single activity
event detection is performed by the current activity-specific
classifier periodically with the optimal features, which are
extracted from the most recent raw data by Feature Gen-
erator I and ensure that the detection meets user accuracy
requirements. To minimize the number of false positive
reports for activity change, EAR determines that the current
activity has changed when at least four out of five (an
experimentally chosen value) continuous event detection
results of the current activity are negative.

When the current activity changes, EAR first informs
Sampling Controller of the detected change. Then, Sampling
Controller increases the sampling rate to be the classi-
fication sampling rate, i.e., the optimal sampling rate of
multi-activity classification. After collecting raw data for
adequate time (one second is enough for the datasets in

our evaluation), Feature Generator I extracts the optimal
features from the newly sampled data, with which the multi-
activity classifier classifies the new activity. After classifying
the new activity, EAR switches back to event detection of
the new activity. Again, the optimal features ensure that the
classification meets user accuracy requirements.

It is necessary to point out that EAR introduces a time
delay for detecting an activity change and also classifying
the new activity. This delay includes the data collection
time for both detection and classification. Here, we argue
that this time delay is acceptable. It is because we find that
a short time period (e.g., 7.12 seconds on average for the
smartphone dataset) is enough to achieve high accuracy (e.g.,
87.38% on average for the smartphone dataset). This delay
is shorter than that of 10 seconds in the previous work [14].

B. Sampling Rate Optimization

With EAR, activity recognition system works at a lower
sampling rate most of the time while not violating user
accuracy requirements. If we further reduce both the classi-
fication sampling rate and the detection sampling rates, we
can amplify the sampling rate reduction brought by EAR.
As stated in the corollary of Lemma 1, under the same
accuracy requirement, the classification sampling rate is an
upper bound of the detection sampling rates. Heuristically,
if we effectively reduce the classification sampling rate, the
detection sampling rates also have the potential of being
reduced. To achieve that purpose, we design the Sampling
Rate Optimization (SRO).

We notice that the classification sampling rate depends
on the feature set, upon which the classifier is built. Under
a user accuracy requirement, we call a feature set that has
enough discriminative capacity an adequate feature set. To
reduce the classification sampling rate is equivalent to find
an adequate feature set that has a low classification sampling
rate. Therefore, the design challenge of SRO is transformed
to exploring the possible feature set space, searching an
adequate one that has a low classification sampling rate.
To address the challenge, we design the following two
components.

Feature Generator II is on the server side (Figure 2).
From the aggregator, it receives training data that is sampled
at full sampling rate and extracts the basic statistical features
such as mean, variance, median, etc.

Optimization Algorithm Design. The design goal of
SRO is to develop a method that explores the feature set
space with the objective of minimizing the classification
sampling rate. When it comes to exploring a feature space,
Genetic Programming (GP) [15] is a good choice. It is
an evolution-based approach and usually used to find ap-
proximate solutions for hard optimization problems. It starts
from an initial generation composed of a certain number of
individuals, and then stochastically transforms the current
generation into a new and improved generation. Although it



cannot guarantee that the results are optimal, GP can escape
traps which deterministic methods may be captured in [15].

Algorithm 1 GP-based Algorithm
Input: Initial generation I , a user specified accuracy requirement A, and the total
number of generations G.
Output: The optimal feature set (OFS), the optimal sampling rates (OSR), and the
classifier set C that is trained upon OFS.
1: /*BEST stores the best individual set in each generation*/

BEST = the best individual set that is selected by the feature selection algorithm
from the initial generation, I .

2: OFS = BEST /*OFS stores the individual set with the minimal classification
sampling rate so far.*/

3: Linearly search the classification sampling rate of the OFS under the accuracy
requirement A

4: if A cannot be met then
5: /*Do best efforts when the required accuracy can not be met*/

A = the maximal accuracy that OFS can achieve
6: end if
7: SR = the classification sampling rate of OFS under the accuracy requirement

A /*SR stores the classification sampling rate of OFS*/
8: Assign the reciprocal of OFS’s classification sampling rate as the fitness value

of the individuals in BEST and 0 as the fitness value of the individuals not in
BEST

9: for g=2 to G do
10: Use the individuals with higher fitness values to create a new generation

through recombination and mutation [10]
11: BEST = the best individual set that is selected by the feature selection

algorithm from the current generation
12: Linearly search the classification sampling rate of BEST under the accuracy

requirement A
13: if SR > BEST ’s classification sampling rate then
14: OFS = BEST
15: SR = OFS’s classification sampling rate
16: end if
17: Assign the reciprocal of BEST ’s classification sampling rate as the fitness

value of the individuals in BEST and 0 as the fitness value of the individuals
not in BEST

18: end for
19: Linearly search the detection sampling rates, DSR, of all activities for OFS

while the detection accuracy ≥ A
20: OSR = {SR} ∪ {DSR};
21: Train the multi-activity classifier with OFS extracted at the classification

sampling rate
22: Train each activity-specific classifier with OFS extracted at the activity’s

detection sampling rate
23: All classifiers form a classifier set C
24: return (OFS, OSR, C)

In GP, individuals (or computer programs) are the func-
tions that extract features from the time series sensor data.
They are encoded as tree structure with the non-leaf nodes
being mathematical operations and the leaf nodes being the
functions that extract basic features. The tree is calculated
from the bottom up. At the bottom, the leaves extract the
basic features. After that, the non-leaf nodes are executed
level by level until the root is reached. Finally, the root’s
calculation result is the value of the feature represented by
the tree (or the individual). The most important two steps
of GP are the validation and survival steps [25]. In the
validation step, GP evaluates individuals’ fitness and assigns
higher values to those with better fitness. In the survival
step, GP ranks all individuals’ fitness and selects those with
higher ranks as the parents of the next generation.

However, our goal is slightly different from the traditional
aim of GP. Instead of finding an optimal individual, we aim
to develop an algorithm that can find an optimal feature set
(or individual set). Thus, we design a variant of GP and

describe it in Algorithm 1, which runs on the server.
In the algorithm, one set of individuals is said to be better

than the other when it has more discriminative capacity.
Different from traditional GP, in the validation step of our
algorithm, feature selection [17] is used to select the best
individual set for each generation. The algorithm assigns
the reciprocal of the selected set’s classification sampling
rate (found by the linear search method stated in Section
IV) as the fitness value of all individuals in the selected set.
In addition, the algorithm assigns 0 as the fitness value of
the individuals not in the selected set. In the survival step,
individuals with higher fitness values are elected and used to
create next generation through recombination and mutation
[10]. SRO runs this algorithm with the following inputs:
the initial generation (all the basic statistical features, I),
user accuracy requirement (A), and a given number of total
generations (G).

V. EVALUATION

In this section, we evaluate AdaSense’s performance for
sampling rate reduction on the Opportunity dataset [4] and
a smartphone dataset we collected from eight subjects. With
the smartphone dataset, we also evaluate AdaSense’s energy
consumption and compare AdaSense’s energy consumption
with that of one state of the art sampling rate reduction meth-
ods [27] through power measurement and energy emulation.
The classifier we use in the evaluation is the SVM with RBF
kernel [6]. The classifier set is trained for each subject as
indicated in Algorithm 1. As stated in previous sections, we
follow the 10-fold cross-validation routine to obtain classifier
accuracy. GP-based algorithm is implemented upon GPLAB
[25]. To limit the complexity of each individual (or tree) in
the algorithm, we set the height limit of each individual to be
3. We also set the number of individuals in each generation
to be 100, which is large enough for the algorithm to obtain
promising results.

A. Performance of On-body Sensing

In this subsection, we demonstrate the performance of
AdaSense for sampling rate reduction on on-body sensors
with the Opportunity dataset [4]. In the evaluation, we
use the same accelerometers and gyroscopes mentioned in
Section III and group the data with one second window. The
basic statistical features (extracted by Feature Generator II
in Figure 2) we consider are the max, min, max-min, mean,
var, median, zero crossing rate, number of peaks, values of
the histgram with 10 bins, and interquartile range. We select
the best feature set from all these features and call it the
Basic Feature Set (BFS), whose results will be compared
with what AdaSense’s optimal feature set achieves.

GP-based Algorithm Convergence. Figure 4 demonstrates
how fast GP-based algorithm converges to the optimal
classification sampling rate. In the experiments, we run
the algorithm for three accuracy requirements on different
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Figure 3. The optimal features for subject one. Xis are the basic statistical features. X1: the mean of Back-AccelerometerX (AccX); X2: the (max-min)
of Back-AccY; X4: the zero crossing rate of LWR-AccY; X5: the Hist10(4) of LWR-AccY; X6: the Hist10(3) of LShoe-AccY. Hist10(i) represents the
value of ith bin of the histgram with 10 bins.

Activities Lying Down Sitting Standing Walking
Subjects 1 2 3 1 2 3 1 2 3 1 2 3

BFS Classi. SR (Hz) 24 30 25 24 30 25 24 30 25 24 30 25
BFS Detection SR (Hz) 1 4 1 5 4 2 3 6 11 9 8 6

SRO Optimal Classi. SR (Hz) 3 12 9 3 12 9 3 12 9 3 12 9
SRO Optimal Detection SR (Hz) 1 1 1 2 1 2 3 3 5 3 4 5

Table I
THIS TABLE SUMMARIZES THE SENSORS SAMPLING RATES FOR ACHIEVING BFS’S MAXIMAL ACCURACY WHEN DIFFERENT SAMPLING STRATEGIES
ARE USED. THE BFS’S MAXIMAL ACCURACIES OF SUBJECT ONE, TWO, AND THREE ARE 93%, 91%, AND 93%. SR STANDS FOR SAMPLING RATE.

numbers of generations (20, 40, 60, 80, and 100). To obtain
each data point on the curves, we run the algorithm 5
times on each subject’s data and average the results over
all runs and subjects. From this figure, we see that 60
generations are enough for GP-based algorithm to converge
on the optimal classification sampling rates under different
accuracy requirements. After 60 generations, no obvious
improvement is found.
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Figure 4. Optimal sampling rate vs.
Number of generations. Different ac-
curacy requirements are considered.

From Figure 4, we also
observe that a higher ac-
curacy requirement con-
verges at a higher clas-
sification sampling rate.
For example, for the ac-
curacy requirements of
90%, 93%, and 95%,
the average classification
sampling rates converge
at 5Hz, 8Hz, and 13Hz,
respectively. It is be-
cause activity recognition
is harder when the accu-

racy requirement is higher. To meet the increased accuracy
requirement, it is necessary to collect more information by
increasing sampling rates.

Sampling Rate Reduction. To obtain the sampling rate
reduction results for each subject in the dataset, we set
each subject’s accuracy requirement to the maximal accu-
racies (93%, 91%, and 93%) achieved by BFSs at high
sampling rates. This requirement demonstrates how our GP-
based algorithm can generate a feature set that achieves
the maximal accuracy of BFS while at the same time
effectively reduces both the classification sampling rate and
the detection sampling rates. We run our GP-based algorithm
for 60 generations for each subject and illustrate subject
one’s optimal feature set in Figure 3.

There are four features in the set. All the features are in
the form of trees whose heights are equal to or smaller than

3. The leaves of each tree are the basic statistical features
extracted from on-body sensors. The non-leaf nodes are the
arithmatic operations applied between their child nodes. The
optimal features depend on three on-body sensors (Back,
LWR, LShoe), whose deployment positions are listed in
[2]. The optimal feature sets of the other two subjects have
similar number of features, whose heights are also equal to
or smaller than 3. Since the number of optimal features is
small and the structure of them is not complex, they can
be easily extracted in real-time with limited computational
cost.

We summarize the sampling rate reduction results of each
subject in Table I. From Table I, we first observe that
single activity event detection requires a lower sampling
rate than multi-activity classification. For instance, in order
to determine the sitting activity with 93% accuracy for
subject one using BFS, the classification sampling rate is
24Hz while the detection sampling rate is only 5Hz. The
experimental results agree with the corollary of Lemma 1.
Compared to the method that only uses the classification
sampling rate [16], the results demonstrate that EAR reduces
the sampling rate on average in activity recognition systems
by combining lower power single activity event detection
and higher power multi-activity classification.

From Table I, we also observe that SRO further reduces
both the classification sampling rate and detection sampling
rates for each subject. For example, with BFS, the detection
sampling rates of sitting and walking for subject one are
5Hz and 9Hz, respectively. With the optimal feature set,
the detection sampling rates are further reduced to 2Hz and
3Hz, respectively. Thus, the sampling rate reduction brought
by EAR is amplified by SRO.

Therefore, from Table I, we conclude that the optimal
feature set generated by GP-based algorithm enjoys both
lower classification and detection sampling rates, which
result in lower sensing and communication workloads for
on-body sensor nodes and hence reduce energy overheads.
Moreover, the optimal feature sets guarantee the system is



Activities Lying Down Sitting Standing Running Walking Cycling
Subjects 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

BFS Classi. SR (Hz) 18 15 19 15 18 15 19 15 18 15 19 15 18 15 19 15 18 15 19 15 18 15 19 15
BFS Detection SR (Hz) 4 3 4 1 6 9 9 7 10 7 7 6 7 6 7 5 8 5 6 7 6 6 8 7

SRO Optimal Classi. SR (Hz) 9 10 12 8 9 10 12 8 9 10 12 8 9 10 12 8 9 10 12 8 9 10 12 8
SRO Optimal Detection SR (Hz) 2 1 2 1 3 5 6 3 5 4 4 3 4 6 3 2 4 2 4 5 3 4 5 5

Subjects 5 6 7 8 5 6 7 8 5 6 7 8 5 6 7 8 5 6 7 8 5 6 7 8
BFS Classi. SR (Hz) 22 20 17 19 22 20 17 19 22 20 17 19 22 20 17 19 22 20 17 19 22 20 17 19

BFS Detection SR (Hz) 2 1 3 2 8 9 8 6 11 10 9 8 7 9 8 6 10 8 7 6 12 6 11 7
SRO Optimal Classi. SR (Hz) 11 10 9 7 11 10 9 7 11 10 9 7 11 10 9 7 11 10 9 7 11 10 9 7

SRO Optimal Detection SR (Hz) 1 1 3 2 4 3 4 3 6 5 4 5 3 3 4 2 4 5 2 4 5 6 5 5

Table II
THIS TABLE SUMMARIZES THE SENSORS SAMPLING RATES FOR ACHIEVING BFS’S MAXIMAL ACCURACY WHEN DIFFERENT SAMPLING STRATEGIES

ARE USED. THE BFS’S MAXIMAL ACCURACIES OF SUBJECT 1, 2, 3, 4, 5, 6, 7, AND 8 ARE 85%, 82%, 88%, 85%, 91%, 89%, 87%, AND 92%. SR
STANDS FOR SAMPLING RATE.

accurate, since they are generated under the accuracy re-
quirements of the maximal accuracies (93%, 91%, and 93%)
achieved by BFS. Although we cannot directly measure the
energy savings of AdaSense on the Opportunity dataset, we
will explicitly demonstrate how AdaSense saves energy on
smartphone sensing in next subsection.

B. Performance of Smartphone Sensing

Up to now, we have been presenting how AdaSense
reduces sensors sampling rate for on-body sensors in BSNs.
In this subsection, we emphasize that it also potentially
applies to smartphone sensors, which are used for activity
recognition. We evaluate the performance of AdaSense on
reducing smartphone sensors sampling rate and sensing
energy consumption. In this setting that only includes smart-
phone, there is no communication between on-body nodes
and aggregator (See Figure 2).

Data Collection. In data collection, we use the accelerom-
eter on HTC Google Nexus One Android smartphone and
collect its readings when eight subjects (3 females, 5 males)
performing different activities. The subjects put the phone at
either their left or right pants pockets. The direction of phone
head in each subject’s pocket is random. The subjects are
instructed to perform each of the six activities (sitting, lying
down, standing, walking, cycling, and running) for 30 min-
utes. During each activity, each subject is allowed to perform
other jobs such as reading papers and operating computers.
All subjects perform walking, running, and cycling with the
speeds they wish, there is no special speed requirement. We
concatenate the data of each activity in the way that all
activities interleave with each other with 5 minutes period.
During each activity, we record the triaxial readings of the
accelerometer, which operates at 30Hz. There are three
columns in the raw readings. We group the raw readings
with one second window and use the basic statistical features
(the max, min, max-min, mean, var, median, zero crossing
rate, number of peaks, values of the histgram with 10 bins,
and interquartile range), which are extracted by Feature
Generator II in Figure 2, as the input to GP-based algorithm.

In data collection, we only consider the modality of
accelerometer because the other method [27], which we plan
to compare AdaSense with in terms of energy consumption,
only uses accelerometer readings.

Sampling Rate Reduction. Similar to the evaluation of

on-body sensing, we select the BFS for each subject and
use the maximal accuracy each BFS achieves (85%, 82%,
88%, 85%, 91%, 89%, 87%, and 92%) at high sampling
rates as the accuracy requirements input to GP-based al-
gorithm. In addition, we use 60 as the input of the total
generation to GP-based algorithm. Compared to the accuracy
achieved by CenceMe [20] when the phone was deployed
in subjects’ pockets, BFS of smartphone sensors we obtain
achieves slightly higher accuracy for more activities because:
CenceMe only considers limited number of features (the
mean, standard deviation, and number of peaks of the
accelerometer readings), but BFS contains the best features
selected from a larger feature pool (19 features in total).
Compared to the results in the on-body sensing subsection,
BFS of smartphone sensors achieves lower accuracy be-
cause: (i) on-body sensors are deployed at different positions
of human body, capturing more information of human activ-
ities; (ii) we use two sensing modalities (the accelerometer
and gyroscope) of on-body sensors, but we only use one
sensing modality (the accelerometer) of Google Nexus One;
(iii) smartphone sensors are loosely tied to human body
compared to on-body sensors.

We summarize the classification sampling rate and each
activity’s detection sampling rate of BFS and SRO optimal
feature set in Table II. From the table, we observe that with
either BFS or SRO optimal feature set, the classification
sampling rate is always larger than the detection sampling
rates. Thus, we can conclude that EAR reduces the sampling
rate for activity recognition on average by combining lower
power single activity event detection and higher power multi-
activity classification. From the results, we also observe that
SRO further reduces both the classification sampling rate
and detection sampling rates. For example, for subject one
with BFS, the detection sampling rate of standing is 10Hz.
With the SRO optimal feature set, the detection sampling
rate is 5Hz, which is reduced by 50%. Thus, from both
Table I and II, we can conclude the heuristic strategy taken
by GP-based algorithm, which reduces detection sampling
rates through reducing classification sampling rate is sound.
Aside from sampling reduction, the SRO optimal feature
set is generated under the accuracy requirement of BFS’s
maximal accuracy. Thus, the SRO optimal feature set also
guarantees the system is accurate.

Energy Savings. With the data collected from eight subjects,



we compare the energy consumption of AdaSense with that
of the most recent sampling rate reduction method in [27].
Our evaluation settings are described as follows: (i) The
method in [27] uses the maximal sampling rate supported
by Android (100Hz) with the time domain features listed in
[27] for multi-activity classification. In addition, it uses one
of four sampling rates (5Hz, 16Hz, 50Hz, and 100Hz)
with the time domain features listed in [27] for single
activity event detection. For each subject, the sampling
rate for each single activity event detection is obtained
by the A3R framework in [27]. (ii) AdaSense uses the
classification sampling rate of the SRO optimal feature set
for multi-activity classification. In addition, AdaSense uses
the detection sampling rates of the SRO optimal feature set
for single activity event detections.

Figure 5. Energy Measurement
Setup.

Sampling Rate Energy Consumed
(Hz) per hour (J)

1 1.90
2 3.01
3 5.76
4 6.78
5 10.62
6 14.16
7 19.85
8 22.22
9 26.48
10 32.22
16 51.16
20 53.10
50 81.20

100 327.42

Figure 6. Energy Consumption of Ac-
celerometer per hour on Google Nexus
One Under Different Sampling Rates.

To make the comparison fair, all the methods uses the
same sensing modality (accelerometer) to recognize ac-
tivities and the energy consumption of each method is
obtained by the emulation method described in [27], which
“uses the sequence of system state transitions observed and
multiplies each such activity duration by the corresponding
energy power consumption per unit time”. AdaSense con-
trols the sensors sampling rate through the Android API
android.hardware.SensorManager.registerListener(). We use
the Monsoon Power Monitor [1] to measure the energy
consumption of accelerometers per hour on Google Nexus
One under different sampling rates (Figure 5). In the en-
ergy consumption measurements, we turn off the network
interfaces and keep the system all the same except for the
sampling rate. We use the difference between the energy
consumption when the accelerometer is on with a certain
sampling rate and that without operating sensor as the
energy consumption for that sampling rate. In Figure 6,
we list measurement results for the sampling rates that are
frequently used in the energy consumption comparison and
do not explicitly list the results of other sampling rates to
save space. With the measurement results, we calculate the
energy consumption per second (i.e., power) of different
sampling rates for emulation. In addition, we also measure

that the average power consumption for extracting features
and running classifier on Google Nexus One each time
is 3.5mw and the average running time for each feature
extraction and classification is 12.7ms.
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Figure 7. Energy savings compared to the method in [27].

With these measurement results, we emulate the energy
consumption for each method. The emulation results indicate
AdaSense saves energy compared to the method in [27]. The
energy saving results are illustrated in Figure 7. Compared
to the method in [27], the energy saving of AdaSense ranges
from 39.4% to 51.0%. Although the method (A3R) in [27]
similarly uses detection sampling rate of single activity to re-
duce system operating sampling rate, AdaSense outperforms
it because: (i) for single activity event detection, AdaSense
achieves more fine-grained sampling rate adaption instead of
only utilizing the 4 fixed sampling rates (5Hz, 16Hz, 50Hz,
and 100Hz) exploited in [27]; (ii) A3R uses data sampled
at 100Hz, which consumes more energy compared to other
sampling rates used by AdaSense, to perform multi-activity
classification; (iii) AdaSense explores the feature set space
by genetic programming techniques and finds the optimal
feature set that effectively reduces both the classification and
detection sampling rates.

False activity change detection and activity misclassifi-
cation result in system instability and hence compromise
energy savings and introduce extra delay for classifying new
activity. However, AdaSense reduces the number of false
activity change detection by the smoothing technique stated
in Section IV. This technique determines the current activity
having changed when at least four out of five continuous
event detection results of the current activity are negative.
Four out of five is an experimentally chosen value that keeps
the activity change detection accuracy to be above 90%.
From Figure 7, we can conclude that AdaSense achieves
considerable energy savings with the help of this technique.
For all eight subjects, the average time delay for classifying
new activity is 7.12s, which is comparable to the delay (10s)
in the most recent activity recognition system [14].



VI. CONCLUSION

In body sensor networks, sensor sampling and commu-
nication quickly deplete the limited battery energy. In this
paper, we propose AdaSense that effectively reduces sen-
sors sampling rate without violating user-defined accuracy
requirements. Effective Activity Recognition in AdaSense
reduces sensors sampling rate by turning multi-activity
classification to single activity event detection most of the
time. It only resorts to multi-activity classification when
an activity change is detected. Sampling Rate Optimization
in AdaSense further reduces the optimal sampling rates of
both multi-activity classification and single activity event
detection by utilizing a novel Genetic Programming based
algorithm. With the Opportunity dataset and the smartphone
dataset collected from eight subjects, AdaSense is demon-
strated to effectively reduce both classification sampling rate
and detection sampling rate. AdaSense is also demonstrated
to save 39.4%∼51.0% smartphone energy compared to one
state-of-the-art solution.
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