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Abstract

Recently, records on stereo matching benchmarks are con-

stantly broken by end-to-end disparity networks. However,

the domain adaptation ability of these deep models is quite

poor. Addressing such problem, we present a novel domain-

adaptive pipeline called AdaStereo that aims to align multi-

level representations for deep stereo matching networks.

Compared to previous methods for adaptive stereo match-

ing, our AdaStereo realizes a more standard, complete and

effective domain adaptation pipeline. Firstly, we propose

a non-adversarial progressive color transfer algorithm for

input image-level alignment. Secondly, we design an efficient

parameter-free cost normalization layer for internal feature-

level alignment. Lastly, a highly related auxiliary task, self-

supervised occlusion-aware reconstruction is presented to

narrow down the gaps in output space. Our AdaStereo mod-

els achieve state-of-the-art cross-domain performance on

multiple stereo benchmarks, including KITTI, Middlebury,

ETH3D, and DrivingStereo, even outperforming disparity

networks finetuned with target-domain ground-truths.

1. Introduction

The stereo matching task aims to find all corresponding

pixels in a stereo pair, and the distance between correspond-

ing pixels is known as disparity [12]. Based on the epipolar

geometry, stereo matching enables stable depth perception,

hence it supports further applications such as scene under-

standing, object detection, odometry, and SLAM.

Recent stereo matching methods typically adopt fully con-

volutional networks [21] to regress disparity maps directly

and have achieved state-of-the-art performance on stereo

benchmarks [7, 25, 30]. However, the performance of these

methods adapted from synthetic data to real-world scenes is

limited. As shown in Fig. 1, the PSMNet [4] pretrained on

⋆ indicates equal contribution.

Figure 1. Overview examples. Left-right: KITTI [25] and Middle-

bury [30]. Top-down: left image, disparity maps predicted by the

SceneFlow-pretrained PSMNet [4], and by our Ada-PSMNet.

the SceneFlow dataset [24] fails to produce good results on

the Middlebury [30] and KITTI [25] datasets. Therefore, in-

stead of designing complicated networks for higher accuracy

on specific datasets, how to obtain effective domain-adaptive

stereo matching models is more desirable now.

In this work, we aim at the important but less explored

problem of domain adaptation in stereo matching. Consider-

ing the fact that there are a great number of synthetic data

but only a small number of realistic data with ground-truths,

we focus on domain gaps between synthetic and realistic

domains. We first analyse main differences between these

two domains, as shown in Fig. 2. At the input image level,

color and brightness are the obvious gaps. By making statis-

tics on the internal cost volumes, we also find significant

differences in distributions. Moreover, geometries of the

output disparity maps are inconsistent as well. In order to

bridge the domain gaps at these levels (input image, internal

cost volume, and output disparity), we propose AdaStereo, a

standard and complete domain adaptation pipeline for stereo
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matching, in which three particular modules are presented:

• For input image-level alignment, the non-adversarial

progressive color transfer algorithm is presented to

align input color space between source and target do-

mains during training. It is the first attempt that adopts

a non-adversarial style transfer method to align input-

level inconsistency for stereo domain adaptation, avoid-

ing harmful side-effects of geometrical distortions from

GAN-based methods [56]. Furthermore, the proposed

progressive update strategy enables capturing represen-

tative target-domain color styles during adaptation.

• For internal feature-level alignment, the cost normal-

ization layer is proposed to align matching cost dis-

tribution. Oriented to the stereo matching task, two

normalization operations are designed and embedded

in this layer: (i) channel normalization reduces the in-

consistency in scaling of each feature channel; and (ii)

pixel normalization further regulates the norm distribu-

tion of pixel-wise feature vector for binocular match-

ing. Compared to previous general normalization layers

(e.g. IN [42], DN [54]), our cost normalization layer is

parameter-free and adopted only once in the network.

• For output-space alignment, we conduct self-supervised

learning through a highly related auxiliary task, self-

supervised occlusion-aware reconstruction, which is

the first proposed auxiliary task for stereo domain adap-

tation. Concretely, a self-supervised module is attached

upon the main disparity network, to perform image

reconstructions on the target domain. To address the ill-

posed occlusion problem in reconstruction, we also de-

sign a domain-collaborative learning strategy for occlu-

sion mask predictions. Through occlusion-aware stereo

reconstruction, more informative geometries from tar-

get scenes are involved in model training, thus benefit-

ing disparity predictions across domains.

Based on our proposed pipeline, we conduct effective do-

main adaptation from synthetic data to real-world scenes. In

Fig. 1, our Ada-PSMNet pretrained on the synthetic dataset

performs well on both indoor and outdoor scenes. In order

to validate the effectiveness of each module, ablation stud-

ies are performed on diverse real-world datasets, including

Middlebury [30], ETH3D [32], KITTI [7, 25], and Driving-

Stereo [47]. Our domain-adaptive models outperform other

traditional / domain generalization / domain adaptation meth-

ods, and even finetuned models on multiple stereo matching

benchmarks. Main contributions are summarized below:

• We locate the domain-adaptive problem and investigate

domain gaps for deep stereo matching networks.

Figure 2. Comparisons of input images, internal cost volumes, and

output disparity maps between synthetic and real-world datasets.

Left-right: SceneFlow [24] and Middlebury [30]. Top-down: input

image, internal cost volume, and output disparity map. Disparity

maps are rendered by the same color map.

• We propose a novel domain adaptation pipeline, includ-

ing three modules to narrow down the gaps at input

image level, internal feature level, and output space.

• Our domain-adaptive models outperform other domain-

invariant methods, and even finetuned disparity net-

works on multiple stereo matching benchmarks.

2. Related Work

2.1. Stereo Matching

Recently, end-to-end stereo matching networks have

achieved state-of-the-art performance, which can be roughly

categorized into two types: correlation-based 2-D stereo net-

works and cost-volume based 3-D stereo networks. On the

one hand, Mayer et al. [24] proposed the first end-to-end

disparity network DispNetC. Since then, based on color or

feature correlations, more advanced models were proposed,

including CRL [27], iResNet [18], HD3 [49], SegStereo [48],

and EdgeStereo [36, 35]. On the other hand, 3-D convolu-

tional neural networks show the advantages in regularizing

cost volume for disparity estimation, including GC-Net [15],

PSMNet [4], GWCNet [11], GANet [53], etc. Our proposed

domain adaptation pipeline for stereo matching can be easily

applied on both 2-D and 3-D stereo networks.
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2.2. Domain Adaptation

Prior works on domain adaptation can be roughly divided

into two categories. The general idea of the first category is

aligning source and target domains at different levels, includ-

ing: (1) input image-level alignment [2, 14], using image-to-

image translation methods such as CycleGAN [56]; (2) inter-

nal feature-level alignment, based on feature-level domain

adversarial learning [41, 23]; (3) conventional discrepancy

measures, such as MMD [22] and CMD [52]; and (4) output-

space alignment [39, 43], based on adversarial learning. For

the second category, self-supervised learning based domain

adaptation methods [37] achieve great progress, in which

simple auxiliary tasks generated automatically from unla-

beled data are utilized to train feature representations, such

as rotation prediction [8], patch-location prediction [45], etc.

In this paper, we explicitly implement domain alignments

at input level and internal feature level, while incorporating

self-supervised learning into output-space alignment through

a specifically designed auxiliary task.

2.3. Domain­Adaptive Stereo Matching

Although records on public benchmarks are constantly

broken, few attention has been paid to the domain adaptation

ability of deep stereo models. Pang et al. [28] proposed a

semi-supervised method utilizing the scale information. Guo

et al. [10] presented a cross-domain method using knowl-

edge distillation. MAD-Net [38] was designed to adapt a

compact stereo model online. Recently, StereoGAN [20]

utilized CycleGAN [56] to bridge domain gaps by joint opti-

mizations of image style transfer and stereo matching. How-

ever, no standard and complete domain adaptation pipeline

was implemented in these methods, and their adaptation per-

formance is quite limited. Contrarily, we propose a more

complete pipeline for deep stereo models following the stan-

dard domain adaptation methodology, in which alignments

across domains are conducted at multiple levels thereby re-

markable adaptation performance is achieved. In addition,

we do not conduct any adversarial learning, hence the train-

ing stability and semantic invariance are guaranteed.

3. Method

In this section, we first describe the problem of domain-

adaptive stereo matching. Then we introduce the motivation

and give an overview of our domain adaptation pipeline. Af-

ter that, we detail the main components in the pipeline, i.e.

non-adversarial progressive color transfer, cost normaliza-

tion, and self-supervised occlusion-aware reconstruction.

3.1. Problem Description

In this paper, we focus on the domain adaptation prob-

lem for stereo matching. Different from domain general-

ization where a method needs to perform well on unseen

scenes, domain adaptation allows using target-domain im-

ages without ground-truths during training. Specifically

for stereo matching, since there are a great number of syn-

thetic data [24] but only a small number of realistic data with

ground-truths [25, 30, 32], the problem can be further limited

to the adaptation from virtual to real-world scenarios. Given

stereo image pairs (I ls, I
r
s ) and (I lt , I

r
t ) on source synthetic

and target realistic domains, and the ground-truth disparity

map d̂ls on the source synthetic domain, we train the model

to predict the disparity map dlt on the target domain.

3.2. Motivation

As shown in Fig. 2, two images from the SceneFlow [24]

and Middlebury [30] datasets are selected to describe inher-

ent inconsistencies between two domains. (i) These two im-

ages own observable differences in their color and brightness.

Moreover, according to the statistics on the whole datasets,

the mean values of RGB channels are (107, 102, 92) in

SceneFlow and (148, 132, 102) in Middlebury. Therefore,

significant color variances are found between synthetic and

realistic domains. (ii) For cost volumes computed from the

1D-correlation layer [24], we calculate the proportion of

matching cost values in each interval and find the distri-

butions between two domains are inconsistent as well. (iii)

Although these two images have similar plants as foreground,

the generated disparity maps still vary in scene geometries.

Both the foreground objects and background screens have

quite different disparities. Therefore, we conclude that the

inherent differences across domains for stereo matching lie

in the image color at input level, cost volume at feature level,

and disparity map at output level.

Correspondingly, to solve the domain adaptation problem

for stereo matching, we propose the progressive color trans-

fer, cost normalization, and self-supervised reconstruction

to handle the domain gaps in three levels respectively. The

former two methods are presented to narrow down the differ-

ences in color space and matching cost distribution directly.

The latter reconstruction is appended as an auxiliary task to

impose extra supervision on disparity regression for target

domain, finally benefiting the domain adaptation ability.

3.3. Framework Overview

Fig. 3 depicts the training pipeline of our stereo domain

adaptation framework, in which three proposed modules are

involved. For input, a randomly selected target-domain pair,

and a randomly selected source-domain pair which adapts

to target-domain color styles through our progressive color

transfer algorithm, are simultaneously fed into a shared-

weight disparity network with our cost normalization layer.

The source-domain branch is under the supervision of the

given ground-truth disparity map, while the target-domain

branch is regulated by the proposed auxiliary task: self-

supervised occlusion-aware reconstruction.
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Figure 3. The training diagram of AdaStereo, with the adaptation from SceneFlow to Middlebury as an example. Color transfer and

self-supervised occlusion-aware reconstruction modules are only adopted during training. (Lmain

s , Locc

s , Lar

t , Locc

t , Lsm

t ) are the five

training loss terms specified in Eq. 5.

3.4. Non­adversarial Progressive Color Transfer

As mentioned in Sec. 3.2, color difference plays a ma-

jor role in the input image-level inconsistency across do-

mains. Hence, we present an effective and stable algorithm

for color transfer from source domain to target domain in

a non-adversarial manner. During training, given a source-

domain image Is and a target-domain image It, the algorithm

outputs a transferred source-domain image Is→t, which pre-

serves the contents of Is and owns the target-domain color

styles. As in Alg. 1, color transfer is performed in the LAB
color space. TRGB→LAB(.) and TLAB→RGB(.) denote the

color space transformations. Under the LAB space, the

mean value µ and standard deviation σ of each channel are

first computed by S(·). Then, each channel in the source-

domain LAB image Ĩs is subtracted by its mean µs and

multiplied by the standard deviation ratio λ. Finally, the

transferred image Is→t is obtained through the addition of

the progressively updated µt and color space conversion.

During training, two images in a source-domain pair are

simultaneously transferred with the same µt and σt.

Compared with the Reinhard’s color transfer method [29],

the main contribution of our algorithm is the proposed pro-

gressive update strategy that proves to be more beneficial

for domain adaptation. Considering color inconsistencies

might exist across different images in the same target-domain

dataset while the previous method [29] only allows one-

to-one transformations, the source-domain images can not

adapt to meaningful color styles that are representative for

the whole target-domain dataset during adaptation. The pro-

gressive update strategy is proposed to address such problem.

To be specific, target-domain µt and σt are progressively re-

weighted by current inputs (µt
i, σt

i) and historical records

(µt, σt) with a momentum γ, simultaneously ensuring the di-

versity and representativeness of target-domain color styles

during adaptation. Experimental results further validate its

effectiveness over the previous color transfer method [29].

In a larger sense, we are the first to use a non-adversarial

style transfer method to align input-level inconsistency for

stereo domain adaptation. Unlike GAN-based style/color

transfer networks [16, 56] that cause harmful side-effects

of geometrical distortions for the low-level stereo match-

ing task, our algorithm is more stable and training-efficient,

which can be easily embedded in the training framework of

stereo domain adaptation. Experimental results further vali-

date its superiority over other adversarial transfer methods.

Algorithm 1 Progressive Color Transfer

Input: Source-domain dataset Ds, target-domain dataset

Dt, µt = 0, σt = 0
1: Randomly shuffle Ds and Dt

2: for i ∈ [0, len(Ds)) do

3: Select Is ∈ Ds, It ∈ Dt

4: Ĩs ⇐ TRGB→LAB(Is), Ĩt ⇐ TRGB→LAB(It)
5: (µs, σs) ⇐ S(Ĩs), (µt

i, σt
i) ⇐ S(Ĩt)

6: µt ⇐ (1− γ) ∗ µt + γ ∗ µt
i

7: σt ⇐ (1− γ) ∗ σt + γ ∗ σt
i

8: Ĩs ⇐ Ĩs − µs, λ ⇐ σt/σs

9: ˜Is→t ⇐ λ ∗ Ĩs + µt

10: Is→t ⇐ TLAB→RGB( ˜Is→t)
11: end for

3.5. Cost Normalization

Cost volume is the most important internal feature-level

representation in a deep stereo network, encoding all neces-

sary information for succeeding disparity regression. Hence

for domain-adaptive stereo matching, an intuitive way is to

directly narrow down the deviations in matching cost dis-

tributions across domains. Correspondingly, we design the
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cost normalization layer, which is compatible with all cost

volume building patterns (correlation and concatenation) in

stereo matching, as shown in Fig. 3.

Before cost volume construction, the left lower-layer

feature FL and right feature FR with the same size of

N × C ×H ×W (N : batch size, C: channel, H: spatial

height, W : spatial width), are both successively regularized

by two proposed normalization operations: channel normal-

ization and pixel normalization. Specifically, the channel nor-

malization is applied across all spatial dimensions (H,W )

per channel per sample individually, which is defined as:

Fn,c,h,w =
Fn,c,h,w

√

∑H−1

h=0

∑W−1

w=0
||Fn,c,h,w||2 + ε

, (1)

where F denotes the lower-layer feature, h and w denote

the spatial position, c denotes the channel, and n denotes the

batch index. After the channel normalization, the pixel nor-

malization is further applied across all channels per spatial

position per sample individually, which is defined as:

Fn,c,h,w =
Fn,c,h,w

√

∑C−1

c=0
||Fn,c,h,w||2 + ε

. (2)

Through channel normalization which reduces the inconsis-

tency in norm and scaling of each feature channel, and pixel

normalization which further regulates the norm distribution

of pixel-wise feature vector for binocular matching, inter-

domain gaps in matching cost distributions due to varied

image contents and geometries are greatly reduced.

In a nutshell, our parameter-free cost normalization layer

is indeed a normalization layer designed specifically for

stereo domain adaptation, which is adopted only once before

cost volume construction. On the contrary, previous nor-

malization layers (e.g. BIN [26], IN [42], CN [5] (just IN),

and DN [54]) are general normalization approaches, which

contain learnable parameters and are repeatedly adopted in

the network’s feature extractor. Hence regulations on cost

volume from these general normalization layers are not di-

rect and effective enough, requiring extra implicit learning

process. Moreover, our cost normalization layer does not use

zero-centralization to prevent extra disturbances in matching

cost distributions. Experimental results further validate its

superiority over other general normalization layers.

3.6. Self-Supervised Occlusion-Aware Reconstruction

Self-supervised auxiliary tasks are demonstrated to be

beneficial for domain adaptation on high-level tasks [8, 45].

However, such methodology has not been explored for the

low-level stereo matching task. In this subsection, we pro-

pose an effective auxiliary task for stereo domain adaptation:

self-supervised occlusion-aware reconstruction. As shown

in Fig. 3, a self-supervised module is attached upon the main

disparity network, to perform image reconstructions on the

target domain. To address the ill-posed occlusion problem in

reconstruction, we design a domain-collaborative learning

strategy for occlusion mask predictions. Through occlusion-

aware stereo reconstruction, more informative geometries

from target scenes are involved in training.

During the self-supervised learning, stereo reconstruction

is firstly measured by differences between the input target-

domain left image I lt and the corresponding warped image I lt
(based on the right image Irt and the produced disparity map

dlt). Then, a small fully-convolutional occlusion prediction

network takes the concatenation of dlt, I
r
t , and the pixel-wise

error map elt = |I lt − I lt | as input, and produces a pixel-wise

occlusion mask Ol
t whose element denotes per-pixel occlu-

sion probability from 0 to 1. Next, the reconstruction loss

Lar
t is re-weighted by the occlusion mask Ol

t and error map

elt on each pixel. Furthermore, we introduce the disparity

smoothness loss (Lsm
t ) to avoid possible artifacts. To guide

the occlusion mask learning on the target domain more ef-

fectively, the shared-weight occlusion prediction network

simultaneously learns an occlusion mask Ol
s on the source

domain, under the supervision of the ground-truth occlusion

mask Ôl
s generated from the ground-truth disparity map d̂ls.

More details are provided in the supplementary material.

Our self-supervised occlusion-aware reconstruction task

is the first proposed auxiliary task for stereo domain adapta-

tion. In addition, our design enables collaborative occlusion

mask learning on both source and target domains, acting

as another domain adaptation on occlusion prediction that

ensures the quality of the target-domain occlusion mask and

explicitly improves the effectiveness of the target-domain

reconstruction loss. Experimental results further validate its

superiority over other high-level auxiliary tasks.

3.7. Training Loss

On the source domain, we train the main task of disparity

regression using the per-pixel smooth-L1 loss: Lmain
s =

SmoothL1
(dls − d̂ls). In addition, the per-pixel binary cross

entropy loss is adopted for occlusion mask training on the

source domain: Locc
s = BCE(Ol

s, Ô
l
s).

On the target domain, the occlusion-aware appearance

reconstruction loss is defined as:

Lar
t = α

1− SSIM(I lt ⊙ (1−Ol
t), I

l
t ⊙ (1−Ol

t))

2

+ (1− α)||I lt ⊙ (1−Ol
t)− I lt ⊙ (1−Ol

t)||1

(3)

where ⊙ denotes element-wise multiplication, SSIM de-

notes a simplified single scale SSIM [44] term with a 3× 3
block fiter, and α is set to 0.85. Besides, we apply a L1-

regularization term on the produced target-domain occlusion

mask: Locc
t = ||Ol

t||1. Last but not least, we adopt an edge-

aware term as the target-domain disparity smoothness loss,
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where ∂I and ∂d denote image and disparity gradients:

Lsm
t = |∂xd

l
t|e

−|∂xI
l
t| + |∂yd

l
t|e

−|∂yI
l
t| (4)

Finally, the total training loss is a weighted sum of five

loss terms mentioned above, where λocc
s , λar

t , λocc
t , and λsm

t

denote corresponding loss weights:

L = Lmain
s +λocc

s Locc
s +λar

t Lar
t +λocc

t Locc
t +λsm

t Lsm
t (5)

4. Experiment

To prove the effectiveness of our domain adaptation

pipeline, we extend the 2-D stereo baseline network ResNet-

Corr [46, 35] as Ada-ResNetCorr, and the 3-D stereo base-

line network PSMNet [4] as Ada-PSMNet. We first con-

duct detailed ablation studies on multiple datasets including

KITTI [7, 25], Middlebury [30], ETH3D [32], and Driv-

ingStereo [47]. Next, we compare the cross-domain perfor-

mance of our domain-adaptive models with other traditional /

domain generalization / domain adaptation methods. Finally,

we show that our domain-adaptive models achieve remark-

able performance on public stereo matching benchmarks.

4.1. Datasets

The SceneFlow dataset [24] is a large synthetic dataset

containing 35k training pairs with dense ground-truth dispar-

ity maps, acting as the source-domain dataset for training.

The KITTI dataset includes two subsets, i.e. KITTI 2012

[7] and KITTI 2015 [25], providing 394 stereo pairs of out-

door driving scenes with sparse ground-truth disparities for

training, and 395 pairs for testing. The Middlebury dataset

[30] is a small indoor dataset containing less than 50 stereo

pairs with three different resolutions. The ETH3D dataset

[32] includes both indoor and outdoor scenarios, containing

27 gray-image pairs with dense ground-truth disparities for

training, and 20 pairs for testing. The DrivingStereo dataset

[47] is a large-scale stereo matching dataset covering a di-

verse set of driving scenarios, containing over 170k stereo

pairs for training and 7751 pairs for testing. These four

real-world datasets act as different target domains that are

adopted for cross-domain evaluations.

We adopt the bad pixel error rate (D1-error) as the evalua-

tion metric, which calculates the percentage of pixels whose

disparity errors are greater than a certain threshold.

4.2. Implementation Details

Each model is trained end-to-end using the Adam opti-

mizer (β1 = 0.9, β2 = 0.999) on eight NVIDIA Tesla-V100

GPUs. The learning rate is set to 0.001 for training from

scratch, and we train each model for 100 epochs with a batch

size of 16 using 624× 304 random crops. The momentum

factor γ in Alg. 1 is set to 0.95. The weights of different

loss terms (λocc
s , λar

t , λocc
t , λsm

t ) in Eq. 5 are set to (0.2, 1.0,

0.2, 0.1). An individual domain-adaptive stereo model is

trained for each target domain. The model specifications of

the Ada-ResNetCorr and Ada-PSMNet are provided in the

supplementary material.

4.3. Ablation Studies

In Tab. 1, we conduct detailed ablation studies on four

real-world datasets to evaluate the key components in our

domain adaptation pipeline, based on Ada-PSMNet and Ada-

ResNetCorr. As can be seen, applying the progressive color

transfer algorithm during training can significantly reduce

error rates on multiple target domains, e.g. 8.3% on KITTI,

8.6% on Middlebury, 4.7% on ETH3D, and 13.5% on Driv-

ingStereo from Ada-PSMNet, benefiting from massive color-

aligned training images without geometrical distortions. We

also provide qualitative results of color transfer in the sup-

plementary material. In addition, compared with baseline

models, error rates are reduced by 1% ∼ 4% on varied tar-

get domains by integrating the proposed cost normalization

layer, which also works well when implemented together

with the input color transfer module. Furthermore, adopt-

ing the self-supervised occlusion-aware reconstruction can

further reduce error rates by 0.5% ∼ 1.5% on varied tar-

get domains, though the adaptation performance is already

remarkable through color transfer and cost normalization. Fi-

nally, both Ada-PSMNet and Ada-ResNetCorr significantly

outperform the corresponding baseline model on all target do-

mains, especially an accuracy improvement of 15.8% from

Ada-PSMNet on the large-scale DrivingStereo dataset.

In order to further demonstrate the effectiveness of each

module, we perform exhaustive comparisons with other alter-

native methods respectively. As shown in Tab. 2, our specifi-

cally designed cost normalization layer which is parameter-

free and adopted only once in the network, outperforms

other general and learnable normalization layers (AdaBN

[17], BIN [26], IN [42], and DN [54]) which are repeatedly

adopted in the network’s feature extractor. In Tab. 3, our

progressive color transfer algorithm far outperforms three

popular color/style transfer networks (WCT2 [50], Water-

GAN [16], and CycleGAN [56]), indicating that geometrical

distortions from such GAN-based color/style transfer models

are harmful for the low-level stereo matching task. More-

over, our method outperforms the Reinhard’s color transfer

method [29] by about 1% in D1-error, revealing the effec-

tiveness of the proposed progressive update strategy. In Tab.

4, our proposed self-supervised occlusion-aware reconstruc-

tion is demonstrated to be a more effective auxiliary task for

stereo domain adaptation, while other alternatives all hurt

the domain adaptation performance.
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Table 1. Ablation studies on the KITTI, Middleburry, ETH, and DrivingStereo training sets. D1-error (%) is adopted for evaluation.

Model
cost color self-supervised KITTI Middlebury

ETH DrivingStereo
normalization transfer reconstruction 2012 2015 half quarter

Ada-PSMNet

✗ ✗ ✗ 13.6 12.1 18.6 11.5 10.8 20.9

✓ ✗ ✗ 11.8 9.1 16.8 10.1 9.0 16.7

✗ ✓ ✗ 5.3 5.4 10.0 5.8 6.1 7.4

✓ ✓ ✗ 4.5 4.7 9.0 5.1 5.2 6.4

✓ ✓ ✓ 3.6 3.5 8.4 4.7 4.1 5.1

Ada-ResNetCorr

✗ ✗ ✗ 9.8 9.4 22.5 12.8 15.8 17.2

✓ ✗ ✗ 8.1 8.4 19.7 10.9 13.4 15.2

✗ ✓ ✗ 6.7 6.7 15.1 8.3 7.1 10.2

✓ ✓ ✗ 6.0 5.9 13.7 7.4 6.6 9.2

✓ ✓ ✓ 5.1 5.0 12.7 6.6 5.8 8.0

Table 2. Comparisons with existing normalization layers on the

KITTI and DrivingStereo training sets. D1-error (%) is adopted.

Methods KITTI DrivingStereo

PSMNet Baseline 12.1 20.9

+Adaptive Batch Norm [17] 11.8 20.3

+Batch-Instance Norm [26] 11.2 19.5

+Instance Norm [42] 10.7 18.6

+Domain Norm [54] 9.5 17.2

+Our Cost Norm 9.1 16.7

Table 3. Comparisons with color/style transfer methods on the

KITTI and DrivingStereo training sets. D1-error (%) is adopted.

Methods KITTI DrivingStereo

PSMNet Baseline 12.1 20.9

+WCT2 [50] 10.2 17.3

+WaterGAN [16] 8.7 11.5

+CycleGAN [56] 8.0 10.6

+Color Transfer [29] 6.2 8.3

+Our Progressive Color Transfer 5.4 7.4

Table 4. Comparisons with other auxiliary tasks for stereo domain

adaptation on the KITTI training set. D1-error (%) is adopted.
Methods KITTI

PSMNet + Our Color Transfer + Our Cost Norm (Baseline) 4.7

+Patch Localization Task [45] 6.5

+Rotation Prediction Task [8] 6.1

+Flip Prediction Task [45] 6.0

+Our Self-Supervised Reconstruction Task 3.5

4.4. Cross­Domain Comparisons

In Tab. 5, we compare our proposed domain-adaptive

stereo models with other traditional stereo methods, domain

generalization, and domain adaptation stereo networks on

three real-world datasets. Firstly, both Ada-ResNetCorr and

Ada-PSMNet show great superiority over traditional stereo

methods. Secondly, for comparisons with domain general-

ization networks, unfairness may exist since our domain-

adaptive models use target-domain images during training.

It is caused by the problem definition of domain adapta-

tion as mentioned in Sec. 3.1. However, as can be seen in

Tab. 5, our Ada-PSMNet achieves tremendous gains rather

Table 5. Cross-domain comparisons with other traditional / domain

generalization / domain adaptation stereo methods on the KITTI,

Middlebury, and ETH3D training sets. D1-error (%) is adopted.

The second and third columns indicate whether the method is

trained on the SceneFlow dataset, and whether the method uses

target-domain images during training respectively.

Methods
Train Target Test

SceneFlow Images KITTI Middlebury ETH

Traditional Stereo Methods

PatchMatch [1] ✗ ✗ 17.2 38.6 24.1

SGM [13] ✗ ✗ 7.6 25.2 12.9

Domain Generalization Stereo Networks

HD3 [49] ✓ ✗ 26.5 37.9 54.2

GWCNet [11] ✓ ✗ 22.7 34.2 30.1

PSMNet [4] ✓ ✗ 16.3 25.1 23.8

GANet [53] ✓ ✗ 11.7 20.3 14.1

DSMNet [54] ✓ ✗ 6.5 13.8 6.2

Domain Adaptation Stereo Networks

StereoGAN [20] ✓ ✓ 12.1 - -

Ada-ResNetCorr ✓ ✓ 5.0 12.7 5.8

Ada-PSMNet ✓ ✓ 3.5 8.4 4.1

than small deltas compared with all domain generalization

networks, including the state-of-the-art DSMNet [54] and

its baseline network GANet [53]. Lastly, among the few

published domain adaptation networks, only the StereoGAN

[20] reported such cross-domain performance, while our

Ada-PSMNet achieves a 3.5 times lower error rate than Stere-

oGAN [20] on the KITTI training set. Hence, our proposed

multi-level alignment pipeline successfully address the do-

main adaptation problem for stereo matching. In Fig. 4,

we provide qualitative results of our method on different

real-world datasets, in which Ada-PSMNet predicts accurate

disparity maps on both outdoor and indoor scenes.

4.5. Evaluations on Stereo Benchmarks

We further compare our domain-adaptive stereo model

Ada-PSMNet with several unsupervised/self-supervised

methods and finetuned disparity networks on public stereo

matching benchmarks: KITTI, Middlebury, and ETH3D. We

directly upload the results from our SceneFlow-pretrained

model to the online benchmark, and do not finetune using

target-domain ground-truths before submitting test results.
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Table 6. Performance on the ETH3D stereo benchmark. The 1-pixel error (%) and 2-pixel error (%) are adopted for evaluation.

Method Deep-Pruner iResNet Stereo-DRNet SGM-Forest PSMNet DispNet Ada-PSMNet

Use ETH-gt ✓ ✓ ✓ ✗ ✓ ✓ ✗

Bad 1.0 3.52 3.68 4.46 4.96 5.02 17.47 3.09

Bad 2.0 0.86 1.00 0.83 1.84 1.09 7.91 0.65

Table 7. Performance on the Middlebury stereo benchmark. The 2-pixel error (%) is adopted for evaluation.

Method EdgeStereo CasStereo iResNet MCV-MFC Deep-Pruner PSMNet Ada-PSMNet

Use Mid-gt ✓ ✓ ✓ ✓ ✓ ✓ ✗

Bad 2.0 18.7 18.8 22.9 24.8 30.1 42.1 13.7

Table 8. Performance on the KITTI 2015 stereo benchmark. The D1-error (%) is adopted for evaluation.

Method GC-Net L-ResMatch SGM-Net MC-CNN DispNetC Weak-Sup MADNet Unsupervised Ada-PSMNet

Use KITTI-gt ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✗

D1-error 2.87 3.42 3.66 3.89 4.34 4.97 8.23 9.91 3.08

ETH3D

Middlebury

KITTI

Figure 4. Disparity predictions from our SceneFlow-pretrained

Ada-PSMNet on the ETH3D, Middlebury, and KITTI datasets.

Left-right: left image, colorized disparity map, and error map.

4.5.1 Results on the ETH3D Benchmark

As can be seen in Tab. 6, SceneFlow-pretrained Ada-

PSMNet outperforms the state-of-the-art patch-based model

DeepPruner [6], end-to-end disparity networks (iResNet

[18], PSMNet [4], and StereoDRNet [3]) finetuned with

ground-truth disparities from the ETH3D training set, and

state-of-the-art traditional method SGM-Forest [31]. By the

time of the paper submission, AdaStereo ranks 1st on the

ETH3D benchmark in terms of the 2-pixel error metric.

4.5.2 Results on the Middlebury Benchmark

As can be seen in Tab. 7, SceneFlow-pretrained Ada-

PSMNet significantly outperforms all other state-of-the-art

end-to-end disparity networks (EdgeStereo [35], CasStereo

[9], iResNet [18], MCV-MFC [19], and PSMNet [4]) which

are finetuned using ground-truth disparities from the Middle-

bury training set. Our Ada-PSMNet achieves a remarkable

2-pixel error rate of 13.7% on the full-resolution test set, out-

performing all other finetuned end-to-end stereo matching

networks on the benchmark.

4.5.3 Results on the KITTI Benchmark

As can be seen in Tab. 8, SceneFlow-pretrained Ada-

PSMNet far outperforms the online-adaptive model MAD-

Net [38], weakly supervised [40] and unsupervised [55]

methods, meanwhile achieving higher accuracy than some

supervised disparity networks including MC-CNN-acrt [51],

L-ResMatch [34], DispNetC [24], and SGM-Net [33]. More-

over, our Ada-PSMNet achieves comparable performance

with the KITTI-finetuned GC-Net [15].

5. Conclusions

In this paper, we focus on the domain adaptation problem

for deep stereo networks. Following the standard domain

adaptation methodology, we propose a novel domain adapta-

tion pipeline specifically for stereo matching task, in which

multi-level alignments are conducted: a non-adversarial

progressive color transfer algorithm for input-level align-

ment; a parameter-free cost normalization layer for inter-

nal feature-level alignment; a highly related self-supervised

auxiliary task for output-space alignment. We verify our

SceneFlow-pretrained domain-adaptive models on four real-

world datasets, and state-of-the-art cross-domain perfor-

mance is achieved on all target domains. Our AdaStereo

model also achieves remarkable performance on multiple

stereo matching benchmarks without finetuning.
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