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Abstract—This paper presents a novel adaptive synthetic
(ADASYN) sampling approach for learning from imbalanced
data sets. The essential idea of ADASYN is to use a weighted
distribution for different minority class examples according to
their level of difficulty in learning, where more synthetic data
is generated for minority class examples that are harder to
learn compared to those minority examples that are easier to
learn. As a result, the ADASYN approach improves learning
with respect to the data distributions in two ways: (1) reducing
the bias introduced by the class imbalance, and (2) adaptively
shifting the classification decision boundary toward the difficult
examples. Simulation analyses on several machine learning data
sets show the effectiveness of this method across five evaluation
metrics.

I. INTRODUCTION

LEARNING from imbalanced data sets is a relatively new

challenge for many of today’s data mining applications.

From applications in Web mining to text categorization to

biomedical data analysis [1], this challenge manifests itself

in two common forms: minority interests and rare instances.

Minority interests arise in domains where rare objects (minor-

ity class samples) are of great interest, and it is the objective

of the machine learning algorithm to identify these minority

class examples as accurately as possible. For instance, in

financial engineering, it is important to detect fraudulent credit

card activities in a pool of large transactions [2] [3]. Rare

instances, on the other hand, concerns itself with situations

where data representing a particular event is limited compared

to other distributions [4] [5], such as the detection of oil

spills from satellite images [6]. One should note that many

imbalanced learning problems are caused by a combination of

these two factors. For instance, in biomedical data analysis, the

data samples for different kinds of cancers are normally very

limited (rare instances) compared to normal non-cancerous

cases; therefore, the ratio of the minority class to the majority

class can be significant (at a ratio of 1 to 1000 or even

more [4][7][8]). On the other hand, it is essential to predict

the presence of cancers, or further classify different types of

cancers as accurate as possible for earlier and proper treatment

(minority interests).
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Generally speaking, imbalanced learning occurs whenever

some types of data distribution significantly dominate the

instance space compared to other data distributions. In this

paper, we focus on the two-class classification problem for

imbalanced data sets, a topic of major focus in recent research

activities in the research community. Recently, theoretical

analysis and practical applications for this problem have

attracted a growing attention from both academia and industry.

This is reflected by the establishment of several major work-

shops and special issue conferences, including the American

Association for Artificial Intelligence workshop on Learning

from Imbalanced Data Sets (AAAI’00) [9], the International

Conference on Machine Learning workshop on Learning from

Imbalanced Data Sets (ICML’03) [10], and the Association

for Computing Machinery (ACM) Special Interest Group on

Knowledge Discovery and Data Mining explorations (ACM

SIGKDD Explorations’04) [11].

The state-of-the-art research methodologies to handle imbal-

anced learning problems can be categorized into the following

five major directions:

(1) Sampling strategies. This method aims to develop var-

ious oversampling and/or undersampling techniques to com-

pensate for imbalanced distributions in the original data sets.

For instance, in [12] the cost curves technique was used to

study the interaction of both oversampling and undersampling

with decision tree based learning algorithms. Sampling tech-

niques with the integration of probabilistic estimates, pruning,

and data preprocessing were studied for decision tree learning

in [13]. Additionally, in [14], “JOUS-Boost” was proposed

to handle imbalanced data learning by integrating adaptive

boosting with jittering sampling techniques.

(2) Synthetic data generation. This approach aims to over-

come imbalance in the original data sets by artificially gener-

ating data samples. The SMOTE algorithm [15], generates an

arbitrary number of synthetic minority examples to shift the

classifier learning bias toward the minority class. SMOTE-

Boost, an extension work based on this idea, was proposed

in [16], in which the synthetic procedure was integrated with

adaptive boosting techniques to change the method of updating

weights to better compensate for skewed distributions. In order

to ensure optimal classification accuracy for minority and

majority class, DataBoost-IM algorithm was proposed in [17]

where synthetic data examples are generated for both minority

and majority classes through the use of “seed” samples.

(3) Cost-sensitive learning. Instead of creating balanced

data distributions by sampling strategies or synthetic data

generation methods, cost-sensitive learning takes a different
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approach to address this issue: It uses a cost-matrix for

different types of errors or instance to facilitate learning from

imbalanced data sets. That is to say, cost-sensitive learning

does not modify the imbalanced data distribution directly;

instead, it targets this problem by using different cost-matrices

that describe the cost for misclassifying any particular data

sample. A theoretical analysis on optimal cost-sensitive learn-

ing for binary classification problems was studied in [18].

In [19] instead of using misclassification costs, an instance-

weighting method was used to induce cost-sensitive trees

and demonstrated better performance. In [20], Metacost, a

general cost-sensitive learning framework was proposed. By

wrapping a cost-minimizing procedure, Metacost can make

any arbitrary classifier cost-sensitive according to different

requirements. In [21], cost-sensitive neural network models

were investigated for imbalanced classification problems. A

threshold-moving technique was used in this method to adjust

the output threshold toward inexpensive classes, such that

high-cost (expensive) samples are unlikely to be misclassified.

(4) Active learning. Active learning techniques are conven-

tionally used to solve problems related to unlabeled training

data. Recently, various approaches on active learning from

imbalanced data sets have been proposed in literature [1] [22]

[23] [24]. In particular, an active learning method based on

support vector machines (SVM) was proposed in [23] [24].

Instead of searching the entire training data space, this method

can effectively select informative instances from a random

set of training populations, therefore significantly reducing

the computational cost when dealing with large imbalanced

data sets. In [25], active learning was used to study the class

imbalance problems of word sense disambiguation (WSD)

applications. Various strategies including max-confidence and

min-error were investigated as the stopping criteria for the

proposed active learning methods.

(5) Kernel-based methods. Kernel-based methods have also

been used to study the imbalanced learning problem. By

integrating the regularized orthogonal weighted least squares

(ROWLS) estimator, a kernel classifier construction algorithm

based on orthogonal forward selection (OFS) was proposed in

[26] to optimize the model generalization for learning from

two-class imbalanced data sets. In [27], a kernel-boundary-

alignment (KBA) algorithm based on the idea of modifying

the kernel matrix according to the imbalanced data distribution

was proposed to solve this problem. Theoretical analyses in

addition to empirical studies were used to demonstrate the

effectiveness of this method.

In this paper, we propose an adaptive synthetic (ADASYN)

sampling approach to address this problem. ADASYN is

based on the idea of adaptively generating minority data

samples according to their distributions: more synthetic data

is generated for minority class samples that are harder to learn

compared to those minority samples that are easier to learn.

The ADASYN method can not only reduce the learning bias

introduced by the original imbalance data distribution, but can

also adaptively shift the decision boundary to focus on those

difficult to learn samples.

The remainder of this paper is organized as follow. Section

II presents the ADASYN algorithm in detail, and discusses the

major advantages of this method compared to conventional

synthetic approaches for imbalanced learning problems. In

section III, we test the performance of ADASYN on various

machine learning test benches. Various evaluation metrics are

used to assess the performance of this method against existing

methods. Finally, a conclusion is presented in Section IV.

II. ADASYN ALGORITHM

Motivated by the success of recent synthetic approaches

including SMOTE [15], SMOTEBoost [16], and DataBoost-

IM [17], we propose an adaptive method to facilitate learning

from imbalanced data sets. The objective here is two-fold:

reducing the bias and adaptively learning. The proposed

algorithm for the two-class classification problem is described

in [Algorithm ADASYN]:

[Algorithm - ADASYN]

Input

(1) Training data set Dtr with m samples {xi, yi}, i =
1, ...,m, where xi is an instance in the n dimensional feature

space X and yi ∈ Y = {1,−1} is the class identity label asso-

ciated with xi. Define ms and ml as the number of minority

class examples and the number of majority class examples,

respectively. Therefore, ms ≤ ml and ms + ml = m.

Procedure

(1) Calculate the degree of class imbalance:

d = ms/ml (1)

where d ∈ (0, 1].
(2) If d < dth then (dth is a preset threshold for the maximum

tolerated degree of class imbalance ratio):

(a) Calculate the number of synthetic data examples that

need to be generated for the minority class:

G = (ml − ms) × β (2)

Where β∈ [0, 1] is a parameter used to specify the desired

balance level after generation of the synthetic data. β = 1
means a fully balanced data set is created after the general-

ization process.

(b) For each example xi ∈ minorityclass, find K nearest

neighbors based on the Euclidean distance in n dimensional

space, and calculate the ratio ri defined as:

ri = Δi/K, i = 1, ...,ms (3)

where Δi is the number of examples in the K nearest

neighbors of xi that belong to the majority class, therefore

ri ∈ [0, 1];

(c) Normalize ri according to r̂i = ri/

ms∑
i=1

ri, so that r̂i is
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a density distribution (
∑

i

r̂i = 1)

(d) Calculate the number of synthetic data examples that

need to be generated for each minority example xi:

gi = r̂i × G (4)

where G is the total number of synthetic data examples that

need to be generated for the minority class as defined in

Equation (2).

(e) For each minority class data example xi, generate gi

synthetic data examples according to the following steps:

Do the Loop from 1 to gi:

(i) Randomly choose one minority data example, xzi,

from the K nearest neighbors for data xi.

(ii) Generate the synthetic data example:

si = xi + (xzi − xi) × λ (5)

where (xzi − xi) is the difference vector in n dimensional

spaces, and λ is a random number: λ ∈ [0, 1].
End Loop

The key idea of ADASYN algorithm is to use a density

distribution r̂i as a criterion to automatically decide the

number of synthetic samples that need to be generated for

each minority data example. Physically, r̂i is a measurement

of the distribution of weights for different minority class

examples according to their level of difficulty in learning.

The resulting dataset post ADASYN will not only provide a

balanced representation of the data distribution (according to

the desired balance level defined by the β coefficient), but it

will also force the learning algorithm to focus on those difficult

to learn examples. This is a major difference compared to the

SMOTE [15] algorithm, in which equal numbers of synthetic

samples are generated for each minority data example. Our

objective here is similar to those in SMOTEBoost [16] and

DataBoost-IM [17] algorithms: providing different weights for

different minority examples to compensate for the skewed

distributions. However, the approach used in ADASYN is

more efficient since both SMOTEBoost and DataBoost-IM

rely on the evaluation of hypothesis performance to update

the distribution function, whereas our algorithm adaptively

updates the distribution based on the data distribution char-

acteristics. Hence, there is no hypothesis evaluation required

for generating synthetic data samples in our algorithm.

Fig. 1 shows the classification error performance for differ-

ent β coefficients for an artificial two-class imbalanced data

set. The training data set includes 50 minority class examples

and 200 majority class examples, and the testing data set

includes 200 examples. All data examples are generated by

multidimensional Gaussian distributions with different mean

and covariance matrix parameters. These results are based

on the average of 100 runs with a decision tree as the base

classifier. In Fig. 1, β = 0 corresponds to the classification

error based on the original imbalanced data set, while β = 1
represents a fully balanced data set generated by the ADASYN

algorithm. Fig. 1 shows that the ADASYN algorithm can

improve the classification performance by reducing the bias

introduced in the original imbalanced data sets. Further more,

it also demonstrates the tendency in error reduction as balance

level is increased by ADASYN.

Fig. 1. ADASYN algorithm for imbalanced learning

III. SIMULATION ANALYSIS AND DISCUSSIONS

A. Data set analysis

We test our algorithm on various real-world machine learn-

ing data sets as summarized in Table 1. All these data sets are

available from the UCI Machine Learning Repository [28].

In addition, since our interest here is to test the learning

capabilities from two-class imbalanced problems, we made

modifications on several of the original data sets according to

various literary results from similar experiments [17] [29]. A

brief description of such modifications is discussed as follows.

TABLE I
DATA SET CHARACTERISTICS USED IN THIS PAPER.

Data set # total # minority # majority #
Name examples examples examples attributes

Vehicle 846 199 647 18

Diabetes (PID) 768 268 500 8

Vowel 990 90 900 10

Ionosphere 351 126 225 34

Abalone 731 42 689 7

Vehicle dataset. This data set is used to classify a given

silhouette as one of four types of vehicles [30]. This dataset

has a total of 846 data examples and 4 classes (opel, saab,

bus and van). Each example is represented by 18 attributes. We

choose “Van” as the minority class and collapse the remaining

classes into one majority class. This gives us an imbalanced

two-class dataset, with 199 minority class examples and 647

majority class examples.
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Pima Indian Diabetes dataset. This is a two-class data set

and is used to predict positive diabetes cases. It includes a

total of 768 cases with 8 attributes. We use the positive cases

as the minority class, which give us 268 minority class cases

and 500 majority class cases.

Vowel recognition dataset. This is a speech recognition

dataset used to classify different vowels. The original dataset

includes 990 examples and 11 classes. Each example is repre-

sented by 10 attributes. Since each vowel in the original data

set has 10 examples, we choose the first vowel as the minority

class and collapse the rest to be the majority class, which gives

90 and 900 minority and majority examples, respectively.

Ionosphere dataset. This data set includes 351 examples

with 2 classes (good radar returns versus bad radar returns).

Each example is represented by 34 numeric attributes. We

choose the “bad radar” instances as minority class and “good

radar” instance as the majority class, which gives us 126

minority class examples and 225 majority class examples.

Abalone dataset. This data set is used to predict the age

of abalone from physical measurements. The original data set

includes 4177 examples and 29 classes, and each example

is represented by 8 attributes. We choose class “18” as the

minority class and class “9” as the majority class as suggested

in [17]. In addition, we also removed the discrete feature

(feature “sex”) in our current simulation. This gives us 42

minority class examples and 689 majority class examples; each

represented by 7 numerical attributes.

B. Evaluation metrics for imbalanced data sets

Instead of using the overall classification accuracy as a

single evaluation criterion, we use a set of assessment metrics

related to receiver operating characteristics (ROC) graphs [31]

to evaluate the performance of ADASYN algorithm. We use

ROC based evaluation metrics because under the imbalanced

learning condition, traditional overall classification accuracy

may not be able to provide a comprehensive assessment

of the observed learning algorithm [17] [31] [32] [33] [6]

[34] [16]. Let {p, n} be the positive and negative testing

examples and {Y,N} be the classification results given by

a learning algorithm for positive and negative predictions. A

representation of classification performance can be formulated

by a confusion matrix (contingency table) as illustrated in

Fig. 2. We followed the suggestions of [15] [34] and use the

minority class as the positive class and majority class as the

negative class.

Based on Fig. 2, the evaluation metrics used to assess

learning from imbalanced data sets are defined as:

Overall Accuracy (OA):

OA =
TP + TN

TP + FP + FN + TN
(6)

Precision:

Precision =
TP

TP + FP
(7)

Recall:

Recall =
TP

TP + FN
(8)

Fig. 2. Confusion matrix for performance evaluation

F Measure:

F Measure =
(1 + β2) · recall · precision

β2 · recall + precision
(9)

Where β is a coefficient to adjust the relative importance of

precision versus recall (usually β = 1).

G mean:

G mean =
√

PositiveAccuracy × NegativeAccuracy

=

√
TP

TP + FN
×

TN

TN + FP
(10)

C. Simulation analyses

We use the decision tree as the base learning model in our

current study. According to the assessment metrics presented

in Section III-B, Table 2 illustrates the performance of the

ADASYN algorithm compared to the SMOTE algorithm. As

a reference, we also give the performance of the decision tree

learning based on the original imbalanced data sets. These

results are based on the average of 100 runs. At each run, we

randomly select half of the minority class and majority class

examples as the training data, and use the remaining half for

testing purpose. For both SMOTE and ADASYN, we set the

number of nearest neighbors K = 5. Other parameters include

N = 200 for SMOTE according to [15], β = 1 and dth = 0.75
for ADASYN.

For each method, the best performance is highlighted in

each category. In addition, the total winning times for each

method across different evaluation metrics are also shown in

Table 2. Based on these simulation results, the ADASYN

algorithm can achieve competitive results on these five test

benches. As far as the overall winning times are concerned,

ADASYN outperforms the other methods. Further more,

ADASYN algorithm also provides the best performance in

terms of G-mean for all data sets. This means our algorithm

provides improved accuracy for both minority and majority

classes and does not sacrifice one class in preference for

another. This is one of the advantages of our method to handle

the imbalanced learning problems.

There is another interesting observation that merit further

discussion. From Table 2 one can see there are situations

that learning from the original data set can actually achieve

better performance for certain assessment criterion, such as

the precision assessment. This raises an important question:

generally speaking, to what level the imbalanced learning
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TABLE II
EVALUATION METRICS AND PERFORMANCE COMPARISON

Dataset
Methods OA Precision Recall F measure G mean

Vehicle

Decision tree 0.9220 0.8454 0.8199 0.8308 0.8834

SMOTE 0.9239 0.8236 0.8638 0.8418 0.9018

ADASYN 0.9257 0.8067 0.9015 0.8505 0.9168

Pima Indian Diabetes
Decision tree 0.6831 0.5460 0.5500 0.5469 0.6430

SMOTE 0.6557 0.5049 0.6201 0.5556 0.6454

ADASYN 0.6837 0.5412 0.6097 0.5726 0.6625

Vowel recognition
Decision tree 0.9760 0.8710 0.8700 0.8681 0.9256

SMOTE 0.9753 0.8365 0.9147 0.8717 0.9470

ADASYN 0.9678 0.7603 0.9560 0.8453 0.9622

Ionosphere
Decision tree 0.8617 0.8403 0.7698 0.8003 0.8371

SMOTE 0.8646 0.8211 0.8032 0.8101 0.8489

ADASYN 0.8686 0.8298 0.8095 0.8162 0.8530

Abalone
Decision tree 0.9307 0.3877 0.2929 0.3249 0.5227

SMOTE 0.9121 0.2876 0.3414 0.3060 0.5588

ADASYN 0.8659 0.2073 0.4538 0.2805 0.6291

Winning times
Decision tree 2 5 0 1 0

SMOTE 0 0 1 1 0

ADASYN 3 0 4 3 5

methods such as adjusting the class balance can help the learn-

ing capabilities? This is a fundamental and critical question in

this domain. In fact, the importance of this question has been

previously addressed by F. Provost in the invited paper for the

AAAI’2000 Workshop on Imbalanced Data Sets [1]:

“Isn’t the best research strategy to concentrate on how

machine learning algorithms can deal most effectively with

whatever data they are given?”

Based on our simulation results, we believe that this

fundamental question should be investigated in more depth

both theoretically and empirically in the research community

to correctly understand the essence of imbalanced learning

problems.

D. Discussions

As a new learning method, ADASYN can be further ex-

tended to handle imbalanced learning in different scenarios,

therefore potentially benefit a wide range of real-world ap-

plications for learning from imbalanced data sets. We give a

brief discussion on possible future research directions in this

Section.

Firstly of all, in our current study, we compared the

ADASYN algorithm to single decision tree and SMTOE

algorithm [15] for performance assessment. This is mainly

because all of these methods are single-model based learning

algorithms. Statistically speaking, ensemble based learning al-

gorithms can improve the accuracy and robustness of learning

performance, thus as a future research direction, the ADASYN

algorithm can be extended for integration with ensemble

based learning algorithms. To do this, one will need to use

a bootstrap sampling technique to sample the original training

data sets, and then embed ADASYN to each sampled set to

train a hypothesis. Finally, a weighted combination voting rule

similar to AdaBoost.M1 [35] [36] can be used to combine

all decisions from different hypotheses for the final predicted

outputs. In such situation, it would be interesting to see the

performance of such boosted ADASYN algorithm with those

of SMOTEBoost [16], DataBoost-IM [17] and other ensemble
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based imbalanced learning algorithms.

Secondly, ADASYN can be generalized to multiple-class

imbalanced learning problems as well. Although two-class

imbalanced classification problems dominate the research ac-

tivities in today’s research community, this is not a limitation

to our method. To extend the ADASYN idea to multi-class

problems, one first needs to calculate and sort the degree

of class imbalance for each class with respect to the most

significant class, ys ∈ Y = {1, ..., C}, which is defined as

the class identity label with the largest number of examples.

Then for all classes that satisfy the condition d < dth, the

ADASYN algorithm is executed to balance them according to

their own data distribution characteristics. In this situation, the

update of ri in equation (3) can be modified to reflect different

needs in different applications. For instance, if one would like

to balance the examples in class yk, (yk ∈ {1, ..., C} and

yk �= ys), then the definition of Δi in equation (3) can be

defined as the number of examples in the nearest neighbors

belonging to class ys, or belonging to all other classes except

yk (similar to transforming the calculation of the nearest

neighbors to a Boolean type function: belonging to yk or not

belonging to yk).

Further more, the ADASYN algorithm can also be modified

to facilitate incremental learning applications. Most current

imbalanced learning algorithms assume that representative

data samples are available during the training process. How-

ever, in many real-world applications such as mobile sensor

networks, Web mining, surveillance, homeland security, and

communication networks, training data may continuously be-

come available in small chunks over a period of time. In

this situation, a learning algorithm should have the capability

to accumulate previous experience and use this knowledge

to learn additional new information to aid prediction and

future decision-making processes. The ADASYN algorithm

can potentially be adapted to such an incremental learning

scenario. To do this, one will need to dynamically update the ri

distribution whenever a new chunk of data samples is received.

This can be accomplished by an online learning and evaluation

process.

IV. CONCLUSION

In this paper, we propose a novel adaptive learning al-

gorithm ADASYN for imbalanced data classification prob-

lems. Based on the original data distribution, ADASYN can

adaptively generate synthetic data samples for the minority

class to reduce the bias introduced by the imbalanced data

distribution. Further more, ADASYN can also autonomously

shift the classifier decision boundary to be more focused on

those difficult to learn examples, therefore improving learning

performance. These two objectives are accomplished by a

dynamic adjustment of weights and an adaptive learning

procedure according to data distributions. Simulation results

on five data sets based on various evaluation metrics show the

effectiveness of this method.

Imbalanced learning is a challenging and active research

topic in the artificial intelligence, machine learning, data

mining and many related areas. We are currently investigating

various issues, such as multiple classes imbalanced learning

and incremental imbalanced learning. Motivated by the results

in this paper, we believe that ADASYN may provide a

powerful method in this domain.
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