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Abstract 
Motivation: Accurately detecting tissue specificity (TS) in genes helps researchers understand tissue functions at the 

molecular level, and further identify disease mechanisms and discover tissue-specific therapeutic targets. The Genotype-

Tissue Expression (GTEx) project (Consortium, 2015), and the Human Protein Atlas (HPA) project (Uhlén, et al., 2015) are 

two publicly available data resources, providing large-scale gene expressions across multiple tissue types. Multiple tissue 

comparisons, technical background noise and unknown variation factors make it challenging to accurately identify tissue 

specific gene expressions. Several methods worked on measuring the overall TS in gene expressions and classifying genes 

into tissue-enrichment categories. There still lacks a robust method to provide quantitative TS scores for each tissue. 

 

Methods: We recognized that the key to quantify tissue specific gene expressions is to properly define a concept of 

expression population. We considered that inside the population, the sample expressions from various tissues are more or 

less balanced, and the outlier expressions outside the population may indicate tissue specificity. We then formulated the 

question to robustly estimate the population distribution. In a linear regression problem, we developed a novel data-adaptive 

robust estimation based on density-power-weight under unknown outlier distribution and non-vanishing outlier proportion 

(Wang, et al., 2019). In the question of quantifying TS, we focused on the Gaussian-population mixture model. We took into 

account gene heterogeneities and applied the robust data-adaptive procedure to estimate the population. With the robustly 

estimated population parameters, we constructed the AdaTiSS algorithm to obtain data-adaptive quantitative TS scores. 

 

Results: Our TS scores from the AdaTiSS algorithm achieve the goal that the TS scores are comparable across tissues 

and also across genes, which standardize gene expressions in terms of TS.  Compared to the categorical TS method such 

as the HPA criterion, our method provides more information on the population fitting, and shows advantages in quantitatively 

analyzing tissue specific functions, making the biology functional analysis more precise. We also discuss some limitations 

and possible future work. 

 

Contact: mpsnyder@stanford.edu 

1 Introduction  
In the analysis of gene expressions, one important task is to detect tissue specificity (TS) of genes, i.e., whether 

the genes are housekeeping, or are significantly differentially expressed in one or multiple of tissues. Accurately 

detecting TS in genes helps researchers understand tissue functions at the molecular level. Understanding TS at 

the molecular level helps us further identify disease mechanisms and discover tissue-specific therapeutic targets 

(Greller and Tobin, 1999; Kim, et al., 2017). 

 

The development of high-throughput technologies greatly improves the study of tissue specificity in genes.  The 

Genotype-Tissue Expression (GTEx) project (Consortium, 2015) is an ongoing effort to build a comprehensive 

public resource to study tissue-specific gene expression and regulation. Based on the RNA-sequencing (RNA-

seq) technology, up to version 7, the GTEx project has generated RNA expressions for 18,777 human protein-

coding genes from 11,688 samples and 53 tissues. Other gene expression databases include the Tissue-specific 

Gene Expression and Regulation (TiGER) (Liu, et al., 2008),  the Human Protein Atlas portal (HPA) (Uhlén, et 

al., 2015), and the Tissue-specific Gene DataBase in cancer (TissGDB) (Kim, et al., 2017). 

 

Large-scale databases provide valuable resources but also make the task to quantify TS more challenging. If 

there were only two tissues, we could apply the 𝑡-test testing for differential expressions. But now we have more 

than 50 tissue types in the GTEx project. Pairwise or triplet comparison is computationally inefficient and 

unfeasible, and creates a burden in multiple hypotheses testing (Cavalli, et al., 2011). Moreover, sample 
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variation and background noise make it harder to identify truly high-expressed samples. We expect that a good 

TS measurement should have the properties not only identifying overall tissue specificity to tell house-keeping 

genes and tissue-specific genes, but also sensitively and robustly measuring expression specificity for each 

tissue.  

 

The previous work (Kryuchkova-Mostacci and Robinson-Rechavi, 2017) reviewed several metrics measuring 

TS but mainly focused on the methods of measuring overall specificity, not identifying the specific tissues. 

Categorizing a gene to be tissue-specific or ubiquitous only based on the overall TS score may mask potential 

subcategories such as genes specific in multiple tissues. There are a few methods for measuring TS in the tissue 

level including z-score (Cheadle, et al., 2003), the preferential expression measure (PEM) (Huminiecki, et al., 

2003) the expression enrichment (EE) (Yu, et al., 2006), and the specificity measurement (SPM) (Xiao, et al., 

2010). The last three measurements for TS rely on the constraint of total sum (or 𝑙2 norm) of tissue expressions. 

With or without an extremely high expression, the TS measurements can be dramatically changed. 

 

The z-score relaxes such constraint and is easy to interpret, usually applied in analyzing only a few tissues. In 

the large-scale data analysis, when we measure many tissues, some tissues having related functions could have 

similar high expressions. These outliers can be in unexpectedly large proportion. If we ignore the effect from 

outliers and simply estimate the mean and variance from all the samples, the TS based on the traditional z-score 

can be too conservative.  

 

(Kadota, et al., 2006) realized the influence from the high or low expressed outliers and considered all the 

combinations of inlier and outlier tissues in the method ROKU. The drawback of their method is that it cannot 

detect the case where there is no outlier tissue. (Zhang, et al., 2017) took more care on the outlier expression in 

the method of the specifically expressed gene detection tool (SEGtool). They first defined the outlier expression 

region and applied computational clustering tools to categorize each tissue as low, median or high expression. 

Since those expression categories depend on the initially defined outlier region, robustness of the outlier region 

affects the stability of their categories. (Uhlén, et al., 2015) took a direct way to cluster inlier and outlier tissues 

based on the fold change in the HPA project. Their HPA criterion differentiated the highly expressed  tissues 

(outliers, with at least 5 fold-change) from the rest of the tissues (inliers), in the comparison of tissue expressions 

in terms of the transcripts per kilobase million (TPM) or the reads per kilobase million (RPKM) from RNA-seq. 

Based on the inlier and outlier configuration, they classified genes into six categories: tissue enriched (one 

outlier); group enriched (multiple outliers); tissue enhanced; expressed in all; mixed; and not detected. Although 

their HPA criterion provides such fine categories, it still cannot quantify the TS of the enriched tissue (highly 

expressed tissue), nor the TS profiling of all the tissues. For a particular gene, the highest tissue might be 

expressed as a 10 fold-change or even a 20 fold-change compared to the rest of the tissues, but it is only 

characterized as “enriched” without a quantified score. More importantly, the specificity based on the fold-

change is not comparable across genes. For one gene, an enriched tissue having a 10-fold change compared to 

the rest does not mean that tissue is more specific in another gene having a 5 fold-change compared to the rest.  

These categorizing methods motivate us to develop a robust method to quantify gene expressions in terms of 

tissue specificity scores. With the well-estimated robust TS scores, we can quantify specificity for each tissue 

in each gene and compare TS across genes, which builds standardized scores for future comparison across -

omics. Such standardized scores also provide quantitative TS comparison in GO terms and pathways, refining 

the biology functional analysis to a precise level. 

 

The outline of the rest of this paper is as follows. In Section 2, we introduce the key concept of population in 

the problem of defining TS, then propose a data-adaptive and robust estimation method to get TS scores 

(AdaTiSS) under Gaussian population, and we provide the algorithm to implement it. We put simulation studies 

with method comparisons and the development of data-adaptive estimation procedure under 𝑡-population in the 

Supplementary Materials. In Section 3, we study the performance of AdaTiSS and the HPA criterion in the 

real data from the GTEx project, comparing the performance in detecting housekeeping gene candidates and 

tissue-specific genes. Finally, in Section 4, we conclude the paper, and discuss some limitations and future 

work. 
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2 Methods 
 

2.1 Population 
From previous works, we can see the first task to quantify TS is to distinguish inlier and outlier tissues, where 

the outliers can be the tissue-specific expressions. The outlier expressions vary from gene to gene. Some genes 

are highly expressed (enriched) in only one tissue, while some are highly expressed in multiple tissues. Among 

enriched tissues, some expression is moderately high and some is extremely high. Due to the complexity of the 

tissue-specific outliers, our contribution is a focus on the inliers, defining the concept of expression population. 

Inside the population, some tissue is highly expressed while some is not, but there is still a balance. Meanwhile, 

the tissue-specific expressions that go outside such balance become outliers. In this work, we focus mainly on 

the outlier in high expression but not in low expression.  

 

After introducing the concept of population, the next question is what variations are inside the population. Most 

of the previous works summarized the tissue information in medians, then defined TS by comparing tissue 

medians, which only considered the variation between tissues. We consider our population containing not only 

between-tissue variation but also within-tissue variation. We allow biological replicates in each tissue to 

incorporate within-tissue variation. When comparing sample expressions from multiple tissues, we consider the 

main effect in the population to be the tissue effect, which is confirmed in several studies from the analysis of 

tissue sample clustering (Jiang, et al., 2019; Melé, et al., 2015). In our own work of (Jiang, et al., 2019), we 

provided a website resource TSomics (http://snyderome.stanford.edu/TSomics.html), presenting RNA and 

protein expressions for all the quantifiied human protein-coding genes. From there, for the majority of genes, 

the abundance distribution across tissues appears as one big density bump for the main population with some 

specific tissues outside the population. In biology, it is conventional to take the logarithm transformation 

assuming Gaussian noise in the analysis of expression data (Hill, et al., 2008; Melé, et al., 2015). Based on our 

experience and other previous works, here we consider the population distribution as Gaussian but we do not an 

assume outlier distribution. 

 

Once we can identify such Gaussian population, it is natural to quantify TS in terms of the robust z-score:  

 

measuring the distance from the tissue median to the population mean, standardized by the population standard 

deviation for each tissue. In contrast to the traditional z-score, the mean and variance in our robust z-score are 

from the population and thus the score is more sensitive to the TS outliers. Importantly, when such tissue 

balances are similar in all the genes, then the robust z-scores are comparable across genes.     

 

The remaining question is how to estimate the population given the presence of various outlier expressions. In 

statistics, we formulate this question as robust estimation for the population in a mixture model. The literature 

of robust estimation is very rich, such as median and the median absolute deviation (MAD), Efron's method of 

empirical null distribution (Efron, 2005), and Tukey's biweight fitting, etc. In the cases where all the samples 

can be modeled as a mixture model of multiple Gaussian components, one can use the  Bayesian method from 

the EM algorithm (Cavalli, et al., 2011). They built a pipeline in the method of SpeCond to determine which 

Gaussian component belongs to the population, and which to the outliers.  

 

If the outliers are in a large proportion, and if their distribution is complicated and unknown, the problem 

becomes challenging. We still lack a robust, automatically data-adaptive method to estimate the population 

information. Recently in a general linear regression problem, we developed a novel data-adaptive robust 
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estimation based on density-power-weight under unknown outlier distribution and non-vanishing outlier 

proportion (Wang, et al., 2019). In the question of quantifying TS, we restrict the multivariable model analyzed 

in (Wang, et al., 2019) to a univariate model in the Gaussian population, and robustly estimate population 

information to get our data-adaptive quantitative TS in the form of robust z-score (AdaTiSS). Our AdaTiSS 

takes into account gene heterogeneities under various outlier proportions and magnitudes. It achieves robustness 

and data-adaptiveness by selecting a turning parameter based on the data to optimize the population estimation. 

We summarize the procedure and the algorithm in the following subsections, and more statistical analysis can 

be found in (Wang, et al., 2019). 

 

2.2 Data-adaptive robust TS scores 

Consider a gene expression matrix 𝑋 for 𝑛 genes from 𝑚 samples. Each row contains the expressions from 𝑇 

tissues for one gene and each tissue can have several biological replicates. Column expressions are from one 

sample across all the genes. When the samples are collected from different tissues, we consider the tissue effect 

is the major factor. Under the log scale, we model the majority of the samples coming from Gaussian population 

distribution to capture the tissue main effect. The outlier samples may reflect tissue specificity. Each expression 

in one gene has some probability from the population distribution or from the outlier distribution. To fix the 

idea, we formulate the distribution of the gene expressions for each gene as a Gaussian-null mixture model, 

 𝑋𝑖𝑗 ~ 𝑓𝑖(𝑥) ≔  𝜋𝑖0𝑓𝑖0(𝑥; 𝜃𝑖0) +  𝜋𝑖1𝑓𝑖1(𝑥),   𝑗 = 1, … , 𝑚,      (1) 

 

where 𝑓𝑖 is the mixture density for gene 𝑖, 𝑓𝑖0 is the Gaussian population (the null) density parameterized by 𝜃𝑖0 = (𝜇𝑖0, 𝜎𝑖02 )  with mean 𝜇𝑖0  and variance 𝜎𝑖02 , 𝑓𝑖1  is the unknown outlier density, 𝜋𝑖0 ∈ (0.5, 1]  is the 

population proportion, and 𝜋𝑖1 = 1 − 𝜋𝑖0  is the outlier proportion. Our model allows heterogeneous genes 

having population distributions with different (𝜋𝑖0, 𝜃𝑖0)’s. In contrast to a traditional method assuming the full 

model on all the samples, our method relaxes the assumption on the outlier distribution. Here we do not assume 

that 𝜋𝑖1vanishes to zero as increasing the sample size. In our task to quantify TS, the outlier proportion may not 

be small, especially for a gene highly expressed in multiple tissues. Under the unknown outlier distribution and 

non-vanishing outlier proportion, we would like to estimate the null parameters (𝜋𝑖0, 𝜃𝑖0) for each gene. 

 

Applying the method in (Wang, et al., 2019) to estimate the null parameters, we take the technique of weighting 

the mixture density by the density power 𝑓𝑖0𝛾  ,where 𝛾 ≥ 0, to down weight the outliers and therefore purify the 

reweighted mixture model. The rational is that under a proper 𝛾, the outliers go to the tails of the reweighted 

null density and thus the outliers do not contribute much to the population estimation. The technique of density 

power weight played an important role in robust estimation (Basu, et al., 1998; Fujisawa, 2013; Fujisawa and 

Eguchi, 2008; Windham, 1995). In our setting, we construct a robust criterion from weighted loglikelihood 

function under the system parameter 𝛾 ≥ 0, 

 

                                                        (2) 

 

where 

                                                                                                                               

                                                           (3) 

 

 

Taking 𝛾 = 0, our weighted log-likelihood criterion is the average of ordinary log-likelihood functions. Our 

robust estimate is 

 

                                                    (4) 

 

For the Gaussian-null mixture model, the estimates for the null parameters are summarized in the Proposition 

1. The estimate for 𝜃𝑖0  is the same as based on 𝛾-cross entropy in (Fujisawa and Eguchi, 2008) and the 
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estimating equation in (Windham, 1995). Our estimator for 𝜋𝑖0  agrees with the result from minimizing the 

density power score in (Kanamori and Fujisawa, 2015). The estimation can be done in an iterative fashion. We 

illustrate the iterations of the population fitting in Figure 1. We can see, along the iterations, the estimated 

population densities are approaching to the underlying population density. 

 

Proposition 1.  

For gene 𝑖, consider the expressions 𝑋𝑖1, … , 𝑋𝑖𝑚  ~𝑖𝑖𝑑 𝜋𝑖0𝑁(𝜇𝑖0, 𝜎𝑖02 ) +  𝜋𝑖1𝐹1, where 𝐹1 is the unknown outlier 

distribution. Our robust weighted log-likelihood function is  

 

 

 

The robust estimates for (𝜇𝑖0, 𝜎𝑖02 ) and the estimate for 𝜋𝑖0 satisfy 

 

 

 

 

 

 

where 𝑤̂𝑖𝑗 =  𝑤𝑖𝑗(𝜇𝑖0, 𝜎𝑖02 , 𝛾) is defined in (3). 

 

So far, the robust estimation is implemented under a predefined system parameter 𝛾. As pointed in many 

previous papers (Windham, 1995, Fujisawa and Eguchi, 2008), the 𝛾 balances robustness and efficiency of the 

estimation. Figure 2 shows a simulation result on fitting the population density under various 𝛾’s. When 𝛾 =0, 0.5, the fitting is affected by the highly expressed outliers. When 𝛾 = 3, the fitting becomes locally trapped 

such that it only locally fits well on a small set of null points. From the density fittings shown in Figure 2, what 

really matters is the goodness-of-fit (GOF) of the fitted population density to the mixture density on the 

population points. Hence, we evaluate the GOF in the measure of population distribution by 

 

                                             (5) 

 

where 𝑓𝑑𝑟(𝑥) ≔ 𝑃(𝑥 𝑖𝑠 𝑓𝑟𝑜𝑚 𝑡ℎ𝑒 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 |𝑥) =  𝜋0𝑓0(𝑥)/𝑓(𝑥)  is the local false discovery rate 

introduced in (Efron, 2005). Comparing the estimated (5) to an approximate value one gives our selection 

criterion for 𝛾, 

 

                                               (6) 

 

Our data-adaptive robust estimation is the (𝜋̂𝑖0, 𝜃𝑖0) under the selected 𝛾̂∗ from (6). The selected 𝛾̂∗ varies from 

gene to gene, trying to optimize the estimation for each gene. (Wang, et al., 2019) provided more statistical 

analysis on the data-adaptive procedure. Here, we apply this new procedure to estimate the population 

distribution under the Gaussian-null mixture model formulated in (1) in the problem of quantifying TS. 

 

We compare our data-adaptive robust population estimation to several methods in simulations, and evaluate 

their performances on estimating the population information in terms of mean squared error (MSE). The 

methods under comparison include the fixed 𝛾 robust estimation, Tukey's biweight estimation, the EM 

algorithm under two Gaussian mixtures, and Efron’s local fdr estimation. In the simulation studies, we consider 

the outlier distribution to be Gaussian or 𝑡-distribution under various model parameters. The comparison results 

are summarized in the Supplemental Materials. We conclude that the 𝛾-robust estimation methods perform 

better than the other methods in various situations. The EM algorithm only works well when the mixtures are 

well separated. The local fdr method is mainly designed under light outliers. Our data-adaptive estimation 

performs better overall than the fixed 𝛾 estimation, especially under the outliers are in a large proportion. It is 

more adaptive to various outlier distributions. 
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In the Supplementary materials, following the similar analysis in Gaussian-population mixture model, we 

develop a data-adaptive procedure for the 𝑡-population mixture model. We find our data-adaptive procedure 

prefers light tailed population density. In the real practice when applying our data-adaptive procedure, we 

suggest taking log transformation or other transformation to make the data more Gaussian distributed in order 

to maintain the detection power of our procedure. 

 

Based on our data-adaptive robust estimation for the population distribution, we establish sample outlying 𝑧-

score under the selected 𝛾̂∗ for gene 𝑖 in sample 𝑗 as 

                                                                    

                                                                                    (7) 

 

and tissue level specificity z-score for gene 𝑖 in tissue 𝑡 as 

 

                                                                            (8) 

 

The TS score 𝑆 gives a quantitative measurement on the specificity of a tissue expression relative to the sample 

population for each gene. This makes it possible to compare tissue specificities across tissues and also across 

genes. 

 

From our quantitative TS scores, we can also define tissue enrichment categories. Define a gene to be enriched 

if it includes at least one highly expressed tissue and the highly expressed tissues are in the top 𝑡∗ highest scores, 

where 𝑡∗ = 𝑎𝑟𝑔𝑚𝑖𝑛𝑡  {𝑆𝑖(𝑡) − 𝑆𝑖(𝑡+1) ≥  1.5, 𝑆𝑖(𝑡) ≥ 3 }  and 𝑆𝑖(𝑡)′𝑠  are the ordered tissue scores sorted in 

decreasing order in one gene. The 1.5 z-score gap is analogous to the concept of a 5 fold-change gap between 

the enriched tissues and the rests in the definition of the HPA categorizing method.  

 

2.3 Algorithm of AdaTiSS 
 

In this section, we develop the algorithm to get our data-adaptive TS scores (AdaTiSS). For the intensity data 

from the microarray or the mass spectrometry platform, the Gaussian distribution is usually used as a convention 

after taking the log transformation. One can directly apply our robust fitting method there. For the data from 

RNA-seq, one can work on the log transformed standardized TPM or RKPM. When comparing multiple tissues, 

it could happen that in some low expressed or unexpressed tissues, their TPM (or the RKPM) are zeroes. To 

deal with zeroes when taking the log transformation, there are several ways. One way is to add a small amount 

of positive perturbation on the TPM near zero. Another way is to ignore the expression differences when the 

TPM is less than one. Here, we take the approach of taking TPM less than one to be one. Since there could be a 

density peak at log(1), we make adjustments on defining the population and provide criteria to determine 

whether such zero peak contributes to the population. Another possible approach dealing with the zero 

expressions is to take square root or cubic root, then the variation at zero is under controlled. Since here we 

more focus on the high expressions, we prefer the log transformation to more control the variation in high 

expressions. We detail the procedures to implement AdaTiSS below. 

 

Step 1: Preprocessing.  First, to do normalization or standardization and to remove batch effects, as 

conventions. Since this paper does not extend the discussion on the normalization, we assume the data is well 

normalized or standardized before applying AdaTiSS. We allow biological replicates in the data. For the data 

having technical replicates, we take the average expressions within the tissue from the same subject. We filter 

the genes with low expressions in all the tissues. 

 

Step 2: Fitting the population distribution. Following the same notations in the previous subsection, we 

estimate population mean, standard deviation and proportion from Algorithm 1. For the TPM or RPKM data, 

we take all the negative expressions in the log scale concentrated at zero, then fit the Gaussian population on all 

the positive expressions. We then adjust the overall population in the next step. 
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Step 3: Calculating TS scores.  For the log transformed intensity expressions, we obtain their TS scores based 

on the equations (7)-(8) with robustly fitted 𝜃.0 from Step 2. For the log transformed TPM or RPKM expressions, 

we make adjustments in two complementary cases to determine the overall population. Genes in Case (i): their 

fitted 𝜋̂𝑖0  ≥ 70% from Step 2 and the zero peak lies outside three standard deviations (SD) away from the fitted 

mean, as an example shown in the top row in Figure 3. For Case (i), we take the overall population as the fitted 

Gaussian bump from the positive expressions. Genes in Case (ii): their fitted 𝜋̂𝑖0 < 70% or the zero peak lies 

inside three SDs away from the fitted mean, which is the complement to Case (i), as an example shown in the 

bottom row in Figure 3. In Case (ii), we take the samples inside the ± 3SDs away from the fitted mean and also 

include the zeroes as the overall population. Then the population information is obtained by taking the mean, 

standard deviation, and the proportion of these inliers. 

 

Step 4: Diagnosis. Since the real data may be more complicated, we add one diagnosis to check whether the 

fitting population proportion is small, trying to indicate the case of the fitting being locally trapped. If the fitted 

population proportion is less than 70%, we mark that gene and further check its fitting plot.        

 
 

Algorithm 1: Data-adaptive robust estimation for the population parameters 

 

 

 

 

 

 

 
 

 

3  Results 
From the simulation studies our data-adaptive quantitative TS method (AdaTiSS) is more adaptive to 

heterogenous cases than other methods in the comparison. The HPA categorizing method has been applicated 

to discovery several biological findings (Uhlén, et al., 2015). In this subsection, we investigate the comparability 

of our TS scores to the HPA categories on the gene expressions from RNA-seq in the GTEx project (the dataset 

is from the release in version 7, downloaded from http://www.gtexportal.org). The HPA criterion defines genes 

into six categories: tissue enriched (one tissue is at least five fold-change higher than the rest of the tissues), 

group tissues (multiple tissues are all at least five fold-change higher than the rest of the tissues), tissue enhanced 

(at least one tissue is at least five fold-change higher than the average expression of all the tissues), expressed 

in all (the gene is detected in all tissues), mixed, and not detected. The GTEx project has quantified RNA 

Input: Expression matrix in logarithm scale at base 2 for gene 𝑖, error tolerance 𝜀 

(default 10−4), step index 𝑘 = 1. 

Output: Population parameters (𝜋𝑖0, 𝜃𝑖0), where 𝜃𝑖0 = (𝜇𝑖0, 𝜎𝑖02 ). 

Initialization: take sample mean and sample variance to initialize 𝜃𝑖0(0).  
 For  𝛾 in the sequence Γ from 0 to 3 with increment 0.1 

             While ∥ 𝜃𝑖0(𝑘) −  𝜃𝑖0(𝑘−1) ∥1≥ 𝜀 or 𝑘 < 200, 

                       based on the Proposition 1, 

                       update 𝑤𝑖.(𝑘)
 from 𝜃𝑖0(𝑘−1)

; 

                       update 𝜃𝑖0(𝑘+1)
 from 𝑤𝑖.(𝑘)

; 

                       𝑘 = 𝑘 + 1 

            End while 

Calculate 𝜋̂𝑖0(𝛾)  based on the Proposition 1, from the fixed point 𝜃𝑖0(𝛾)  after 

iterations. 

Evaluate the estimate for 𝐸𝑓𝑖0𝑓𝑑𝑟 in (5) from (𝜋̂𝑖0(𝛾) , 𝜃𝑖0(𝛾)) under each 𝛾. 
End for 

Select 𝛾̂∗ based on (6) and report ( 𝜋̂𝑖0(𝛾̂∗), 𝜃𝑖0(𝛾̂∗)). 
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expressions in 18,777 protein-coding genes from 11,688 samples and 53 tissues, up to the version 7. The tissue 

level information is summarized as median TPM of tissue samples. After removing the genes in which all the 

tissue medians less than one, we take the rest 17,719 genes for our comparison analysis. 

3.1 Housekeeping genes 

The housekeeping genes are supposed to be stable, uniformly expressed in all the tissues, and maintain the basal 

cellular functions (Eisenberg and Levanon, 2013). From RNA expressions, we compare the lists of the 

housekeeping genes based on our criterion from the results of AdaTiSS and the HPA criterion. Since the 

housekeeping genes should be expressed in all the tissues, we filter out the low expressed genes and end up 

7,938 genes in which all tissue medians are greater than or equal to 1 TPM.  Among these genes, the HPA 

criterion categorizes 7,054 genes to be “expressed in all" as the housekeeping gene candidates. In contrast to the 

HPA criterion which only gives a category, we further give the population information for the candidates based 

on our robust fitting. Figure 4 shows that some candidate genes from the HPA criterion still have large variations 

and relatively low population proportions. Adding the population information, we get our criterion for the 

housekeeping genes requiring (1) the population proportion ≥ 80%, (2) the population fitted robust standard 

deviation ≤ 1, and (3) 𝑚𝑎𝑥𝑡|𝑆.𝑡| ≤ 3, where 𝑆 is defined in (8) in Section 2. We finally get 2,056 housekeeping 

gene candidates, where 2,040 genes are in the “expressed in all" category and 16 genes in “tissue enhanced" 

from the HPA criterion. We perform the GO terms enrichment analysis in the biological process on the two 

housekeeping gene lists from the tool of “GOrilla” (Eden, et al., 2009). We then reduce the redundancy among 

the significant GO terms by the method of “REVIGO” (Supek, et al., 2011). For the reduced-redundancy set of 

GO terms with the frequency ≥ 40% (the frequency of the GO term in the GOA database), the two lists have 70%  agreement in 7 terms including: metabolic process, cellular metabolic process, nitrogen compound 

metabolic process, cellular macromolecule metabolic process, macromolecule metabolic process, organic 

substance metabolic process, and primary metabolic process. The list from the HPA criterion has three more 

terms: biological process, cellular process, and cellular response to stimulus. For the redundancy-reduced set of 

GO terms with the frequency < 40%, two lists have 16% agreement in 54 terms and the list from the HPA 

criterion has 286 more. We can see that the list from the HPA criterion tends to capture the detailed specific 

functions, while added the population and the TS scores constraints, the list from our criterion mainly focuses 

on the general functions, which more reflects the property of the housekeeping genes maintaining basic cellular 

functions. The list of the redundancy-reduced significant GO terms in biological process from our criterion is 

shown in Figure 5. 

3.2 Tissue specific genes 

In the example of gene GPANK1 shown in the top row of Figure 3, the HPA criterion categorizes this gene to 

be “expression in all”, while the score of testis from our AdaTiSS is above 3 indicating the gene enrichment in 
testis. Another example is from gene NRG3 shown in the bottom row of Figure 3. Its HPA category is “tissue 

enhanced", while our TS scores show that this gene is highly expressed in a group of brain regions. These 

examples show that the HPA categorizing method may miss sub-category for the tissue-specific gene 

expressions. This is where our quantitative scores come in. 

 

To categorize the genes with highly expressed tissues, the HPA criterion reports 1,879 tissue enriched genes, 

2,078 group enriched genes, and 4,350 tissue enhanced genes. By the definition of a tissue-enriched gene in 

Section 2, we identify 4,356 tissue-enriched genes, where 1,821 genes are in the HPA category as “tissue 

enriched", covering 97% of the total tissue-enriched genes from the HPA criterion. Among our tissue-enriched 

genes, there are 1,221 genes in the HPA category as “group enriched", 1,011 genes as “tissue enhanced", 253 

genes as “expressed in all", and 50 genes as “mixed".  The two criteria have similar ability to identify single-

tissue-enriched genes. To identify multiple-tissue-enriched genes, due to different thresholds, there could be 

different in categories. Only assigning a category may not be enough to characterize a more complex TS 

profiling. Our AdaTiSS feeds the need of profiling quantitative tissue specificity scores for all the tissues.  
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Taking testis-enriched genes as an example, we compare the gene categories from our criterion to the HPA 

criterion, then investigate their biological functions. From our TS scores, we identify in total 1,866 testis-

enriched genes. The histogram of the TS scores in testis-enriched genes is shown in Figure 6, colored by the 

HPA categories. We can see that the genes with high testis scores are also in the “tissue enriched" category from 

the HPA criterion. Based on the quantitative scores, we can further quantify TS scores in the level of gene sets 

such as the GO terms, by taking the averaging of our TS scores for each tissue across the genes belonging to the 

same GO term. Figure 7 shows the scatter plot of the TS scores in the GO term level versus the minus of the 

log of adjusted 𝑝-values based on the BH procedure (Benjamini and Hochberg, 1995). The plot is referred to 

the “GOplot” package (Walter, et al., 2015). The significant GO terms also have high TS scores. The right panel 

in Figure 7 lists the topmost significant GO terms including: meiosis, gamete generation, spermatogenesis et. 

al, which represent testis specific functions. 

 

Moreover, our robust quantitative TS scores make it possible to compare biological function more precisely. 

For example, consider the TS scores across 53 tissues for the genes belonging to the GO term: neurological 

system process, shown in Figure 8. We can see that there are a bunch of genes highly expressed in the brain 

regions, as expected. We further consider the children GO terms of the neurological system process term based 

on the hierarchical structure of the GO terms. Figure 9 shows the TS scores across different brain regions for 

those children GO terms. The results confirm our basic understanding such as the neuronal action potential 

propagation gets more involved with brain cerebellum and cortex, and the detection of mechanical stimulus 

involved in sensory perception of sound more involved with cerebellum. 

4 Discussion and conclusion 
To quantify tissue specificity (TS), our contribution is a new approach, focusing on the population instead of 

tangling with heterogenous tissue-specific outlier expressions. Our AdaTiSS method is based on our data-

adaptive method AdaReg (Wang, et al., 2019), robustly estimating the population distribution and thus 

constructing the robust and data-adaptive TS scores. Our TS scores quantify the tissue specificity in each tissue 

for each gene and are comparable across genes. With our quantitative TS cores, it is easy to identify 

housekeeping genes and tissue enrichment. Our TS scores make it possible to quantitively compare the TS of 

biology functions such as in the GO term analysis. However, there are still some limitations in the proposed 

method, so more research is needed. 

 

In the current work, we considered that comparing samples from different tissues, the main effect is the tissue 

effect, which is confirmed in the explanatory study from sample clustering (Jiang, et al., 2019; Melé, et al., 

2015), and thus we modeled the population distribution only including one covariate. There could be other 

effects such as gender, age affecting the population. One thing needs to notice is that such effects could be 

associated with the tissue effect, such as some tissue is gender specific. If to remove the gender effect, it may 

reduce the tissue specificity. If we incorporate more covariates in the population model, there needs careful 

consideration on the model selection when the samples have outliers. Thus, here we took a simple univariate 

model on the population and left the problem of model selection on the complex model as a future work. 

 

When considering samples from multiple tissues, we observed the balance inside the population of tissue 

expressions. The highly expressed outliers may indicate tissue specificity (TS). Therefore, we modeled the 

population as the symmetric Gaussian distribution. In the supplementary materials, following similar procedures 

for the Gaussian population, we also developed a data-adaptive procedure for 𝑡-distribution as the population. 

We found when the population has heavy tails, our algorithm cannot distinguish which samples in the population 

tails are outliers, and which are inliers, so the algorithm becomes unstable. Actually, in such cases, the concept 

of “population” may not be valid. We think it is necessary to predefine the density of the population tails; 

otherwise all the samples can be in the population. Hence, here we consider the population as Gaussian. As the 

Gaussian population, there is only one density mode. It could happen there are two modes or even multiple 

modes, or that the tissue samples might not have any concentrated clusters. To address this concern, based on 

the current method, we added a diagnosis step: reporting the estimated population proportion. If the proportion 
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is less than 70%, we marked it and checked its fitting. In our future work, we can provide another option for a 

population with a mixture of multiple Gaussian components. Additional research is also needed to determine 

the number of components in the population. 

       

Our data-adaptive procedure works best with a light-tailed population such as Gaussian distribution. For the 

data from the microarray or the mass spectrometry platform, the Gaussian distribution is usually used as a 

convention after taking the log transformation. For the RNA data from RNA-seq, we worked on the standardized 

expressions in TPM or RKPM. There are several works analyzing the log of TPM or RKPM for RNA data. In 

the analysis of transcriptome variations, (Melé, et al., 2015) used the mixed effect model with Gaussian noise, 

and (Li, et al., 2017) detected the individual outliers within a particular tissue based on the traditional z-score 

estimated from the normalized log of TPM. In our problem of quantifying TS, we made several adjustments for 

analyzing the standardized RNA data. First, we took the log transformation to make the expressions more 

symmetric. As we more focused on the high expressions not on the low expressions, we concentrated the low 

expression (TPM < 1) at 0 in the log scale to mitigate the inflation from the log transformation.  Then, we 

modified the population concept when the low expressions are not in a small proportion. Finally, we established 

a criterion to determine whether the low expressions counted for the population.  

 

Another approach of analyzing the RNA expressions is on the counts data based on the negative binomial 

distribution. (Brechtmann, et al., 2018) developed a method for detecting aberrantly expressed genes using the 

autoencoder.  As they pointed out, their method does not work well if the outlier is not in a small proportion 

since the autoencoder cannot distinguish the outlier effect from the expected covariates. In our problem where 

the outliers can be in a large proportion, fitting the negative binomial population given the presence of outliers 

is more challenging compared to the Gaussian population, since it could be hard to distinguish the over 

dispersion from the true outliers. There still needs more effort to develop a data-adaptive robust estimation if 

working on the counts data. 

  

In the analysis pipeline, our proposed method is applied after the preprocessing normalization and/or after 

removing batch effect. The robustness of the preprocessing steps could affect our TS scores. One approach for 

future work is to combine the preprocessing steps with quantifying TS to better detect outliers. 

 

Overall, our proposed method provides a robust first step to quantify tissue-specific gene expressions. Our data-

adaptive quantitative TS scores (AdaTiSS) bring more precision to functional analysis of tissue samples. 
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Figure 1: Histogram of a simulated data from Gaussian mixture model, i.e., 𝑋𝑖  ~𝑖𝑖𝑑 0.8𝑁(0,1) +  0.1𝑁(3,1), 𝑖 = 1, … , 1000. The 

blue bars indicate the samples from the population distribution and the green ones for the outliers. The black curve is the underlying 

mixture density. The curves in gradient colors from purple to blue are the fitted population densities along iterations and the blue 

curve is the final fitted density. 
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Figure 2: Histogram of 1000 𝑋's from 0.8 𝑁(0,1) + 0.2𝑁(3,1) in the simulations where the points from 𝑁(0,1) are colored in blue 

and the ones from 𝑁(3,1) in green. The the black curve is the underlying density for the mixture model. The blue curve is the fitted 

partial density of  𝜋̂0𝑁(𝜇̂0, 𝜎̂02) under 𝛾 = 0, 0.5, 1.2, 3, where 𝛾 = 1.2 is selected from our data adaptive selection procedure. 
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Step 3 and the one in the bottom row are for a brain-group-specific gene (NRG3) in Case (ii). The histograms in the first column are 
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Figure 4: Scatter plot of the population proportion versus population standard deviation (SD) from our robust fitting  for the genes 

in “expressed in all" category from the HPA criterion. The horizontal line is at SD =1 and the vertical line is at proportion =0.8. 

REVIGO Gene Ontology treemap of housekeeping gene candidates from robust z−score criterion
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Figure 5: REVIGO Gene Ontology treemap (Supek, et al., 2011) of housekeeping gene candidates from our criterion added 

constraints on the population information and the TS scores. 
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package GOplot (Walter, et al., 2015). 
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Heatmap of robust z−scores of protein coding genes in GO:0050877 neurological system process
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Figure 9: Heatmap of the average of our TS scores from brain related tissues in the children GO terms of the neurological 

system process GO term. 

Figure 8: Heatmap of our TS scores of protein coding genes in the GO term of neurological system process across 53 

tissues, with rows for tissues and columns for genes. The scores above 6 are truncated to 6 and below -6 to -6. 
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