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Introduction Counting Modes

How Many Modes (Local Maxima)?

In the middle, we see 4 local maxima.

Existence proven in [M. Carreira-Perpiñán and C. Williams, Scotland 2003].
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Contributions

Brief Overview

Define Gaussian kernel and mixture.
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Contributions

Brief Overview

Define Gaussian kernel and mixture.

Analyze 1-dimensional mixtures.

Locate and count all critical points of an n-dimensional mixture.

Locate and count all modes of an n-dimensional mixtures.

(Describe the resilience of the ghost mode.)
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Gaussian Kernel One Dimensional

Gaussian Kernel

Definition

gz(x) =
1√
2πσ2

e
−(x−z)2
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Gaussian Kernel One Dimensional

Standardized Gaussian Kernel

Definition
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Gaussian Kernel n-Dimensional

n-Dimensional Isotropic Gaussian Kernel

Definition

gz(x) = e−π||x−z||2

Edelsbrunner, Fasy and Rote (SoCG 2012) Gaussian Mixtures 18 June 2012 7 / 31



Gaussian Kernel n-Dimensional

n-Dimensional Isotropic Gaussian Kernel

Definition

gz(x) = e−π||x−z||2

Center: z

Edelsbrunner, Fasy and Rote (SoCG 2012) Gaussian Mixtures 18 June 2012 7 / 31



Gaussian Kernel n-Dimensional

n-Dimensional Isotropic Gaussian Kernel

Definition

gz(x) = e−π||x−z||2

Center: z
Width: σ0 =

1√
2π

Edelsbrunner, Fasy and Rote (SoCG 2012) Gaussian Mixtures 18 June 2012 7 / 31



Gaussian Kernel n-Dimensional

n-Dimensional Isotropic Gaussian Kernel

Definition

gz(x) = e−π||x−z||2

Center: z
Width: σ0 =

1√
2π

Height: 1

Edelsbrunner, Fasy and Rote (SoCG 2012) Gaussian Mixtures 18 June 2012 7 / 31



Gaussian Kernel n-Dimensional

Separability of the Gaussian Kernel
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Gaussian Kernel n-Dimensional

Separability of the Gaussian Kernel

Separability Lemma

e−π||x−z||2 = e−π||x−y ||2e−π||y−z||2

||x − z ||2 = ||x − y ||2 + ||y − z ||2
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Gaussian Kernel Restrictions

Restrictions of Kernels

Definition

A restriction of gz is the
evaluation of the function on a
lower-dimensional plane P .

gz |P(x) = czgy (x).
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Gaussian Mixtures
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Theorem

In R
1, the number of modes is at most the number of components.
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Gaussian Mixtures

No Ghost Modes

Theorem

In R
1, the number of modes is at most the number of components.

Balanced sum of two kernels: [Burke, 1956].

Weighted sum of two kernels: [Behboodian, 1970].

General sum: [M. Carreira-Perpiñán and C. Williams, LNCS 2003]
relies heavily on [Silverman, 1981].

Question

When is the transition between having one mode and two?
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Gaussian Mixtures Sums in R
1

Weighted Gaussian Mixture

Gw (x) = ckg−z(x) + cℓgz(x).
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Gaussian Mixtures Sums in R
1

Weighted Gaussian Mixture

Gw (x) = ckg−z(x) + cℓgz(x).

The Weighted Mixture

1 If z is small enough, then
Gw has one critical point.
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1 If z is small enough, then
Gw has one critical point.

2 If z is large enough, then Gw

has three critical points.

3 Gw has exactly 2 critical
points when ck

cℓ
= r(x) + 1.
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Gaussian Mixtures Ghosts Exist

Counting Modes in R
n

For n ≥ 2, there can be more
modes than components of a
Gaussian mixture in R

n.
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Design n-Simplex

Standard n-Simplex, ∆n

An n-simplex is the convex hull
of n + 1 vertices.

Edelsbrunner, Fasy and Rote (SoCG 2012) Gaussian Mixtures 18 June 2012 15 / 31



Design n-Simplex

Standard n-Simplex, ∆n

An n-simplex is the convex hull
of n + 1 vertices.
The standard n-simplex has the
standard basis elements as the
vertices:

e1, e2, . . . , en+1.

Edelsbrunner, Fasy and Rote (SoCG 2012) Gaussian Mixtures 18 June 2012 15 / 31



Design n-Simplex

Standard n-Simplex, ∆n

An n-simplex is the convex hull
of n + 1 vertices.
The standard n-simplex has the
standard basis elements as the
vertices:

e1, e2, . . . , en+1.

Edelsbrunner, Fasy and Rote (SoCG 2012) Gaussian Mixtures 18 June 2012 15 / 31

R
3



Design n-Simplex

Standard n-Simplex, ∆n

An n-simplex is the convex hull
of n + 1 vertices.
The standard n-simplex has the
standard basis elements as the
vertices:

e1, e2, . . . , en+1.

Edelsbrunner, Fasy and Rote (SoCG 2012) Gaussian Mixtures 18 June 2012 15 / 31

R
3



Design n-Simplex

Scaled n-Simplex, s∆n

The scaled standard n-simplex in
R
n+1 is defined by the n + 1

standard basis elements, scaled
by a factor s

se1, se2, . . . , sen+1.
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Design n-Design

Scaled n-Design

Definition

The Scaled n-Design is the
Gaussian mixture with centers at
the n + 1 vertices of the scaled
n-simplex:

Gs(x) =
n+1
∑

i=1

gsei (x)
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Design Properties
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Design Properties

Scaled n-Simplex, s∆n

The scaled standard n-simplex in
R
n+1 is defined by the n + 1

standard basis elements, scaled
by a factor s

se1, se2, . . . , sen+1.

The barycenter is the average
vertex position:

(

s

n + 1
,

s

n + 1
, . . . ,

s

n + 1

)

.
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Let k = |K | − 1 and ℓ = |L| − 1.
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Design Properties

Complementary Faces

We partition the vertices of the
scaled n-simplex into two sets:

K = {se2, se5},
L = {se1, se3, se4}.

Let k = |K | − 1 and ℓ = |L| − 1.
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Design Axes

Location of Critical Points

The axis AK ,L is the line defined
by bK and bL.

Edelsbrunner, Fasy and Rote (SoCG 2012) Gaussian Mixtures 18 June 2012 20 / 31

R
5



Design Axes

Location of Critical Points

The axis AK ,L is the line defined
by bK and bL.

Location of Critical Values

All critical points of the scaled
n-design lie on an axis of s∆n.

Edelsbrunner, Fasy and Rote (SoCG 2012) Gaussian Mixtures 18 June 2012 20 / 31

R
5



Design Axes

Location of Critical Points

The axis AK ,L is the line defined
by bK and bL.

Location of Critical Values

All critical points of the scaled
n-design lie on an axis of s∆n.

Edelsbrunner, Fasy and Rote (SoCG 2012) Gaussian Mixtures 18 June 2012 20 / 31

R
4



Design Axes

Location of Critical Points

The axis AK ,L is the line defined
by bK and bL.

Location of Critical Values

All critical points of the scaled
n-design lie on an axis of s∆n.

Edelsbrunner, Fasy and Rote (SoCG 2012) Gaussian Mixtures 18 June 2012 20 / 31

R
3



Design Axes

Location of Critical Points

The axis AK ,L is the line defined
by bK and bL.

Location of Critical Values

All critical points of the scaled
n-design lie on an axis of s∆n.

Edelsbrunner, Fasy and Rote (SoCG 2012) Gaussian Mixtures 18 June 2012 20 / 31

R
3



Design Axes

Location of Critical Points

The axis AK ,L is the line defined
by bK and bL.

Location of Critical Values

All critical points of the scaled
n-design lie on an axis of s∆n.

Proof

Assume a critical point x is not
on an axis ...
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Design Restrictions

Restriction to an Axis
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Design Restrictions

Restriction to an Axis

Gs |A(x) = cke
−πh(x) + cℓe

−π(Dk,ℓ−h(x)),

where ck = (k + 1)gsei (bL), cℓ = (ℓ+ 1)gsej (bK ).
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Ghosts

Weighted Gaussian Mixture

Gw (x) = ckg−z(x) + cℓgz(x).

The Weighted Mixture

1 If z is small enough, then
Gw has one critical point.

2 If z is large enough, then Gw

has three critical points.

3 Gw has exactly 2 critical
points when ck

cℓ
= r(x) + 1.
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Ghosts Lower Transition Scale Factor

Lower Transition Scale Factor Tk ,ℓ

Definition

Tk,ℓ is the scale factor for which

ck

cℓ
= r(x) + 1.
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Ghosts Lower Transition Scale Factor

Lower Transition Scale Factor Tk ,ℓ

Definition

Tk,ℓ is the scale factor for which

ck

cℓ
= r(x) + 1.

1-Dimensional Maxima Lemma

For all s > Tk,ℓ, the axis AK ,L

witnesses two one-dimensional
maxima.
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Ghosts Mode at Barycenter

Upper Transition Scale Factor Un

Definition

Tk,ℓ is the scale factor for which:

ck

cℓ
= r(x) + 1.

1-Dimensional Maxima Lemma

For all s > Tk,ℓ, the axis AK ,L

witnesses two one-dimensional
maxima.

Definition

Un =

√

n + 1

2π
.
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Ghosts Mode at Barycenter

Upper Transition Scale Factor Un

Definition

Tk,ℓ is the scale factor for which:

ck

cℓ
= r(x) + 1.

1-Dimensional Maxima Lemma

For all s > Tk,ℓ, the axis AK ,L

witnesses two one-dimensional
maxima.

Definition

Un =

√

n + 1

2π
.

Barycenter Lemma

The barycenter of s∆n is a mode
for s < Un, and a saddle of
index 1 for s > Un.
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Ghosts Mode at Barycenter

One-Dimensional Maxima

Definition

Tk,ℓ is the scale factor for which:

ck

cℓ
= r(x) + 1.

1-Dimensional Maxima Lemma

For all s > Tk,ℓ, the axis AK ,L

witnesses two one-dimensional
maxima.

Definition

Un =

√

n + 1

2π
.

Barycenter Lemma

The barycenter of s∆n is a mode
for s < Un, and a saddle of
index 1 for s > Un.

Theorem

If s ∈ (Tk,ℓ,Un), then AK ,L witnesses two one-dimensional maxima, one of

which is at the barycenter.
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Ghosts Mode at Barycenter

Restriction to an Axis

Gs |A(x) = e−πh(x) + cℓe
−π(D0,n−1−h(x)),

where cℓ = (ℓ+ 1)gsej (bL).
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Witnessing the Modes
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Ghosts Witnessed Ghost

Witnessing the Modes

Witnessing Modes

If |K | = 1, then AK ,L witnesses
two modes for s ∈ (T0,n−1,Un).

Witnessing Critical Points

If |K | > 1, then M is a critical
point, not a mode.
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Ghosts Axes

Many Axes

Number of Axes with k = 0:

n + 1.

The scaled design has
n + 2 modes.

Total Number of Axes:

1

2

n+1
∑

k=1

(

n + 1

k

)

= 2n − 1.
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Ghosts Axes

Many Axes

Number of Axes with k = 0:

n + 1.

The scaled design has
n + 2 modes.

Total Number of Axes:

1

2

n+1
∑

k=1

(

n + 1

k

)

= 2n − 1.

The scaled design has Θ(2n)
critical points.
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Summary of Results
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