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Abstract The fact that a sum of isotropic Gaussian kernels can have more modes than
kernels is surprising. Extra (ghost) modes do not exist in R

1 and are generally not well
studied in higher dimensions. We study a configuration of n + 1 Gaussian kernels for
which there are exactly n + 2 modes. We show that all modes lie on a finite set of
lines, which we call axes, and study the restriction of the Gaussian mixture to these
axes in order to discover that there are an exponential number of critical points in this
configuration. Although the existence of ghost modes remained unknown due to the
difficulty of finding examples in R

2, we show that the resilience of ghost modes grows
like the square root of the dimension. In addition, we exhibit finite configurations of
isotropic Gaussian kernels with superlinearly many modes.
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1 Introduction

The diffusion of chemical substances, such as hormones, and of physical quantities,
such as temperature, is a general phenomenon. Assuming a uniform medium, the
process is described by the solution to the heat equation. In Euclidean space, solving
this equation is synonymous to convolving with a Gaussian kernel. This is also a
popular computational method, in particular in computer vision, where the 1-parameter
family of convolutions of a given image is known as its scale space; see [13,17]. A one-
dimensional Gaussian kernel is known as a normal density function in probability [8].

We are interested in the quantitative analysis of diffusion and Gaussian convolution.
In particular, we study the evolution of the critical points of a function that is convolved
with a progressively wider Gaussian kernel. If the function is one-dimensional, from R

to R, then Gaussian convolution does not create new critical points [1,9,15,18]. As a
consequence, the diffusion of m point masses (a sum of m Dirac delta functions) cannot
have more than m modes (local maxima); see [2,4,16]. For two- or higher-dimensional
functions, this is no longer true; see [12] for a two-dimensional function for which
diffusion temporarily increase the number of modes and [7,14] for a mathematical
analysis of the unfolding events that cause this effect. It has been observed that these
events are rare in practice [10,11] and it has been confirmed that the ability to create
critical points with non-negligible persistence deteriorates rapidly [6]. It is also known
that n + 1 point masses can be arranged in R

n so that diffusion creates n + 2 modes
during a non-empty time interval; see [5].

The contribution of this paper is a strengthening of the cautionary voice on using
Gaussian convolution in dimensions beyond one. In particular, we give a detailed
analysis of the sum of n + 1 identical isotropic Gaussian kernels placed at the vertices
of a regular n-simplex in R

n . We prove that all critical points lie on the symmetry
axes of the n-simplex, and we characterize their indices, confirming the (n + 2)-nd
mode at the barycenter as the sole extra mode. While the extra mode seems fragile,
we show that the interval of widths during which it exists grows like the square root
of the dimension. It thus seems likely that the phenomenon of extra modes is more
prevalent in higher dimensions. Providing additional evidence, we construct finite
configurations of isotropic Gaussian kernels with superlinearly many modes.

Outline

Section 2 provides background on Gaussian kernels and the geometry of regular
simplices. Section 3 analyzes the sum of kernels placed at the vertices of a regu-
lar simplex, characterizes its critical points, estimates the resilience of the extra mode,
and exhibits configurations with superlinearly many modes. Section 4 concludes this
paper.

2 Background

Our results depend on one-dimensional Gaussian kernels and n-dimensional regular
simplices. We study these two topics in two subsections.
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2.1 Curve Analysis

In this subsection, we introduce Gaussian kernels and discuss some of their funda-
mental properties.

Gaussian Kernels and Derivatives

We call a real-valued function of the form g(x) = W e−C‖x−z‖2
an (n+1)-dimensional

Gaussian kernel, where W and C are real constants, z ∈ R
n+1 is a point, and ‖x − z‖

denotes the Euclidean distance between the two points. We call the kernel normalized
if it integrates to 1, in which case it can be written as:

gz(x) = 1

(2πσ 2)
n+1

2

· e− ‖x−z‖2

2σ2 .

We call z ∈ R
n+1 the center or mean and σ > 0 the width (or standard deviation

if n = 0). Finally, gz is unit if it is normalized with height 1. Independent of the
dimension, the width and the formula of the unit Gaussian kernel are:

σ 0 = 1/
√

2π,

gz(x) = e−π‖x−z‖2
,

which will simplify our computations. It can be transformed into every other Gaussian
kernel by a translation (to change the center), a scaling of the domain (to change the
width), and a scaling of the range (to change the height). For the case n = 0, we can
write the formulas for the first two derivatives of the Gaussian kernel centered at the
origin:

g′
0(x) = [−2πx] · g0(x), (1)

g′′
0 (x) = [4π2x2 − 2π ] · g0(x). (2)

Note that g′′
0 is negative in the interior of [−σ0, σ0] and positive outside this interval. A

Gaussian kernel is concave at every point in the interior of the closed ball with center
z and radius σ , and it fails to be concave at every point outside this ball. This implies
that the ball is a convenient illustration of the kernel; see Fig. 1.

Balanced Sums

Consider the sum of two unit Gaussian kernels. For symmetry, we choose their centers
at distance z ≥ 0 to the left and right of the origin. As proven in [3], G = g−z + gz has
either 1 or 3 critical points and no other number is possible. More specifically, G has
1 maximum iff z ≤ σ0 and G has 2 maxima and 1 minimum iff z > σ0. We present
our own proof of this result, as we need the concepts it uses.
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Fig. 1 A unit Gaussian kernel
with center z in R

2 represented
by the disk with radius
σ0 = 1/

√
2π . The lines P and

Q define one-dimensional
sections

P

z
σ 0

Q
x

Fig. 2 The graphs of the
derivatives of g−z and of gz
intersect above the roots of the
(black) ratio function (Color
figure online)

r

qp

z z

Since G ′ = g′−z + g′
z , a point x ∈ R is a critical point of G iff the graphs of

p = −g′−z and q = g′
z intersect above x . Since g′ is an odd function, the number of

intersections (counted with multiplicities) must be odd, and it is visually plausible that
the number can only be 1 or 3. To be sure, we introduce the ratio function, r = p

q − 1,
with formula

r(x) = z + x

z − x
· e−4π z·x − 1; (3)

see Fig. 2. Setting r(x) = 0 gives us the intersections of p and q and thus the critical
points of G. The roots of r are necessarily in [−z, z]. Independent of z, we have
r(0) = 0. To see whether there are additional roots, we take the derivative:

r ′(x) = 2z − 4π z(z2 − x2)

(z − x)2 · e−4π z·x .

Setting r ′(x) = 0, we have x2 = z2 − 1
2π

, which has two real solutions if z > σ0
and no solution if z < σ0. Consider first the case that r ′(x) has no real solution.
Observing that r(−z) is negative and that the limit of r(x) as x approaches z from the
right is positive infinity, we conclude that there is exactly one root of r(x). In the case
where r ′(x) = 0 has two solutions, a similar argument shows that r(x) has 3 roots. As
anticipated, G has 1 critical point if z ≤ σ0 and it has 3 non-degenerate critical points
if z > σ0.

123



Discrete Comput Geom (2013) 49:797–822 801

Unbalanced Sums

Next, we study sums Gw = g−z +wgz , where w ≥ 0 is the weight of the second term.
The number of critical points of Gw is at most 3, but in contrast to the balanced case,
it can also be 2, as we will see. More specifically, [2] gives necessary and sufficient
conditions for all three cases (1, 2, or 3 critical points), but they are not as easy to
state as in the balanced case. As before, we present our own proof since we need the
concepts it uses.

Recalling that the critical points of Gw correspond to the intersections between the
graphs of p = −g′−z and wq = wg′

z , we consider their ratio function, which is

rw = p

wq
− 1 = r

w
− (

1 − 1

w

)
.

Its derivative is r ′
w = r ′

w
, which has at most 2 roots. Similarly, rw(−z) = −1 and

rw(z) goes to infinity as x approaches z, so we see that rw has at most 3 roots. It
follows that Gw has at most 3 critical points, just like G.

A new phenomenon is the possibility of 2 critical points. To see when this case
arises, we set w = r(x) + 1 and note that for this choice of weight rw(x) = 0. In
words, p and wq intersect above x and, equivalently, x is a critical point of Gw. If x has
the additional property of being critical for r , then the intersection between p and wq
is degenerate. As computed above, the critical points of rw are given by x2 = z2 −σ 2

0 .

Let x1 = −
√

z2 − σ 2
0 and x2 =

√
z2 − σ 2

0 be the two solutions, and note that x1 gives
a weight w1 = r(x1)+ 1 that is larger than 1, while x2 gives a weight w2 = r(x2)+ 1
between 0 and 1. We call w1 and w2 the transition weights for z, remembering that
they exist iff z ≥ σ0.

We illustrate the case analysis by moving the centers and observing how the shape
of Gw changes. We get qualitatively the same behavior for every positive weight.
Fixing the weight to w = 1

2 , let 2ζ be the distance between the two centers for which
w is a transition weight. Starting with −z = z = 0, we see the evolution sketched
in Fig. 3. For z < ζ , the function Gw has only one maximum. At z = ζ , we have
a degenerate critical point forming a shoulder on the right. For z > ζ , this shoulder
turns into a min-max pair. This is a generic event in the 1-parameter evolution of a
Morse function, known as an anti-cancellation.

2.2 Simplex Design

In this subsection, we design a sum of Gaussian kernels in R
n+1 that has the symmetry

group of the regular n-simplex. We begin with a geometric study of the simplex, whose
shape properties will play a central role in our design.

Standard Simplex

A convenient model is the standard n-simplex, defined as the convex hull of the n + 1
unit coordinate vectors in R

n+1: Δn = conv {e0, e1, . . . , en}. Each subset of k + 1

123



802 Discrete Comput Geom (2013) 49:797–822

Fig. 3 From top to bottom: the
sum of a unit kernel and half a
unit kernel. The kernels are blue,
their sum is black, their
derivatives (plus–minus) are
pink, and the trajectories of the
critical points, drawn over the
interval from 0 to 2σ0, are
yellow (Color figure online)

z 0

z 2σ0

z ζ

vectors defines a k-face of Δn , which is itself a standard k-simplex. The barycenter
of Δn is the point whose n + 1 coordinates are all equal to 1

n+1 . Let 0 ≤ k ≤ � with
k + � = n − 1 and consider a k-face and the unique disjoint �-face. Their barycenters
use complementary subsets of the n + 1 coordinates, which makes it easy to compute
the distance between them as

Dk,� =
√

1

k + 1
+ 1

� + 1
. (4)

For example, the height of the n-simplex, which is defined as the distance between
a vertex to the opposite (n − 1)-face, is D0,n−1 = √

(n + 1)/n. Similarly, we can
compute the radius of the circumsphere:

Rn =
√

n

n + 1
. (5)

Sections

A k-section of a Gaussian kernel is the restriction to a k-dimensional plane P . Assum-
ing a unit Gaussian kernel, we can write this as gz|P (x) = gz(y) ·gy(x), where y is the
orthogonal projection of z onto P and gy is the k-dimensional unit Gaussian kernel
with center y ∈ P . We call gz(y) the weight, noting that it is equal to the integral of gz

over P and we call gz|P a weighted unit Gaussian kernel. Importantly, we see that the
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Fig. 4 A 2-design, which is the
sum of three unit Gaussian
kernels centered at the vertices
of an equilateral triangle

A

e1 e2

e0

section has the same width as the original kernel. It is a unit kernel itself iff P passes
through z. In this case, gz|P (x) is the weight of the (n−k)-section defined by the plane
Q that intersects P orthogonally at x ; see Fig. 1. Iterating this construction, we can
write the (n + 1)-dimensional unit Gaussian kernel as a product of one-dimensional
kernels:

gz(x) =
n∏

i=0

g(xi − zi ), (6)

where the xi and zi are the Cartesian coordinates of x and z. In words, the high-
dimensional unit kernel can be separated into mutually orthogonal one-dimensional
unit kernels.

Standard Design

We turn Δn into a function by placing a unit Gaussian kernel at every vertex. Writing
gi for the kernel with center ei , we get G = g0 + g1 + . . . + gn , which we call an
n-design; see Fig. 4. Its symmetry group is that of the n-simplex with the additional
reflection across the n-dimensional plane spanned by the n-simplex. It is therefore
isomorphic to Σn+1 ⊕ S

0, where Σn+1 is the symmetric group on n + 1 elements. To
argue about the symmetries, we use lines that connect barycenters of complementary
faces of the n-simplex. We call these lines axes. Suppose for example that 0 ≤ k ≤ �

are integers with k + � = n − 1, and that A is the axis that connects the barycenter of
the k-face spanned by e0 to ek with the barycenter of the �-face spanned by ek+1 to
en . Except for the barycenter of Δn , every point x of A has two distinct barycentric
coordinates, one with multiplicity k + 1 and the other with multiplicity � + 1. The
orbit of x has therefore size

(n+1
k+1

)
. Recall that the section defined by the axis is the

restriction of the function to the line: G|A. The restrictions of g0, g1, . . . , gk to A are
all identical, namely a weighted one-dimensional unit Gaussian kernel whose center
is the barycenter of the k-face. Similarly, the restrictions of gk+1, . . . , gn−1, gn are all
identical, and we can write the 1-section as the sum of two kernels:

G|A = (k + 1) · g0|A + (� + 1) · gn|A, (7)
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which are one-dimensional weighted unit Gaussian kernels, with weights (k+1)g(Rk)

and (� + 1)g(R�), and distance Dk,� between their centers.
We are interested in changing the widths of the (n + 1)-dimensional kernels uni-

formly. Equivalently, we scale the n-simplex by moving the centers of the unit Gaussian
kernels closer to or further from each other, without changing their widths and heights.
To do this, we introduce the scaled n-design, Gs = gse0 + gse1 + · · · + gsen . Here,
we call s the scale factor, and we write sΔn for the scaled n-simplex whose vertices
are the sei . We are interested in the evolution of the critical points in the 1-parameter
family of scaled n-design Gs : R

n+1 → R, as s goes from zero to infinity.

3 Analysis

We begin this section by proving that all critical points lie on the axes of the
n-simplex. Thereafter, we analyze each axis, characterizing for which scales we see
1, 2, or 3 critical points. To decide which of the one-dimensional maxima are modes,
we analyze the n-sections orthogonal to the axes. As it turns out, all modes lie on axes
that pass through vertices of the n-simplex. Most interesting is the critical point at the
barycenter, which changes from unique mode during an initial interval of scales, to
(n + 2)-nd mode during a non-empty intermediate interval, to a saddle of index one
during a final interval. We call the length of the intermediate interval the resilience of
the extra mode and show that it grows like the square root of the dimension. Finally,
we construct sums of isotropic Gaussian kernels with a superlinear number of modes.

3.1 Lines of Critical Points

In this subsection, we note that all critical points of a scaled n-design lie on the axes
of the scaled n-simplex. We begin by introducing coordinates that are more natural
for the n-design, and we show how they relate to the barycentric coordinates.

Distance Coordinates

Write vi = sei , for 0 ≤ i ≤ n, and let x be a point of the corresponding scaled
n-simplex sΔn . Setting ri = ‖x − vi‖, we note that x is uniquely defined by the
vector of n + 1 distances since x lies on the hyperplane spanned by {vi }. We express
this by writing x = (r0, r1, . . . , rn)D , and by calling the ri the distance coordinates
of x . Recall that (x0, x1, . . . , xn)B is the representation of the same point in barycen-
tric coordinates. We are interested in computing the barycentric from the distance
coordinates via the coordinate transformation below.

Coordinate Transformation For 0 ≤ i ≤ n, the i th barycentric coordinate is
given by:

xi = 1

n + 1
+ 1

2(n + 1)s2

( n∑

j=0

r2
j − (n + 1)r2

i

)
. (8)
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Fig. 5 The radii of the three
circles are the distance
coordinates of the point x . The
orthogonal projections onto the
vertical axis and the left and
right edges of the triangle give
x0, x01, and x02

v1 v2

v0

x

α2 α2

Proof Let (r0, r1, . . . , rn)D be the distance coordinates of a point x in the scaled
n-simplex sΔn . Let i 
= j and consider the edge connecting vi with v j , recalling that
vi and v j are two vertices of sΔn . The length of the edge is s

√
2. Let xi j be the distance

between v j and the orthogonal projection of x onto the edge, normalized by dividing
with s

√
2; see Fig. 5. We first show that

xi j = 1

2
+ 1

4s2 (r2
j − r2

i ). (9)

Indeed, if x = (1 − t)v j + tvi , then we have r j = s
√

2t and ri = s
√

2(1 − t).
Furthermore, xi j = t , which agrees with the equation we get by plugging the values
of ri and r j into (9). Realizing that r2

j − r2
i is constant along hyperplanes orthogonal

to the edge, we get (9) for all points of the n-simplex.
For the next step, let bi be the barycenter of the (n − 1)-face complementary to vi

and y be the orthogonal projection of x onto the edge between vi and v j . Set αn to
the angle between the edges that connect vi to v j and to bi . Because sΔn is regular,
this angle does not depend on the choice of i and j . Suppose x lies on the latter edge,
which connects vi and bi . Then x = (1 − xi )bi + xivi and we have two expressions
for cos αn . Setting these two expression equal we arrive at

D0,n−1√
2

=
√

2(1 − xi j )

D0,n−1(1 − xi )
,

for every 0 ≤ j ≤ n and j 
= i . Adding the n equations gives

nD2
0,n−1(1 − xi ) = 2n − 2

∑

j 
=i

xi j . (10)

Similar to before, we notice that the two sides of the equation are constant along
hyperplanes orthogonal to the axis defined by vi and bi . Hence, (10) holds for all
points x of the scaled n-simplex. It remains to plug (4) and (9) into (10), which gives
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(n + 1)(1 − xi ) = n + 1

2s2

(
nr2

i −
∑

j 
=i

r2
j

)
.

The equation simplifies to the claimed equation. ��

Non-Zero Gradients

Recall that Gs : R
n+1 → R is the scaled n-design formed by taking the sum of

the n + 1 unit Gaussian kernels whose centers are the vertices of sΔn . We use the
coordinate transformation to show that Gs has no critical points away from the axes
of the scaled n-simplex:

Axes Lemma Every critical point of Gs lies on an axis of the scaled n-simplex sΔn .

Proof Recall that a point x belongs to an axis of sΔn iff it has at most two distinct
barycentric coordinates. We will show that if x has three distinct barycentric coordi-
nates, then the gradient of Gs at x is non-zero. Writing fi = gsei , we obtain

∇Gs(x) = −2πGs(x) · x + 2π

n∑

i=0

fi (x) · vi .

Setting the gradient to zero, we solve for x

x =
n∑

i=0

fi (x)

Gs(x)
· vi . (11)

We will show that Eq. (11) can hold only if x has at most two distinct barycentric
coordinates. To this end, we write x in distance coordinates: x = (r0, r1, . . . , rn)D .
Similar to the barycentric coordinates, x lies on an axis of sΔn iff there are at most two
distinct distance coordinates. Transforming x into barycentric coordinates, we have
x = (x0, x1, . . . , xn)B , in which

xi = 1

n + 1
+ 1

2(n + 1)s2

( n∑

j=0

r2
j − (n + 1)r2

i

)
,

for 0 ≤ i ≤ n. Assume now that x does not lie on any of the axes. If follows there
are three distinct distance coordinates: rk < r� < rm . Subtracting the mth barycentric
coordinate from the other two, we obtain

xk − xm = 1

2s2 (r2
m − r2

k ), (12)

x� − xm = 1

2s2 (r2
m − r2

� ). (13)
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Assuming a zero gradient, the barycentric coordinates of x have the form given in (11).
Hence, xk − xm and x� − xm are equal to

fk(x) − fm(x)

Gs(x)
= e−πr2

k − e−πr2
m

Gs(x)
, (14)

f�(x) − fm(x)

Gs(x)
= e−πr2

� − e−πr2
m

Gs(x)
, (15)

respectively. Since the right-hand sides of (12) and (14) are equal, as well as the
right-hand sides of (13) and (15), we have

r2
m − r2

k

e−r2
m − e−r2

k

= r2
m − r2

�

e−r2
m − e−r2

�

.

But this is impossible because r2
m − r2

k > r2
m − r2

� , by assumption, and because the
function f (t) = e−t is strictly convex. ��

3.2 One-Dimensional Sections

The restriction of Gs to an axis of sΔn is a sum of two weighted Gaussian kernels.
This sum has two maxima for a range of scale factors, which we now analyze.

Transitions

Recall that the n-design consists of n + 1 unit Gaussian kernels placed at the vertices
of the standard n-simplex. Consider the 1-section defined by the line that connects
the barycenter of a k-face with the barycenter of the complementary �-face, with
k + � = n − 1, and vary the construction by scaling the design with s ≥ 0. We
call a value a transition if the number of critical points of the 1-section changes as s
passes the value. It is easy to compute the transition for k = � = n−1

2 because the
corresponding 1-section is balanced for all scale factors s. The distance between the
two centers is s D�,� = 2s/

√
n + 1 and we find the transition by setting the distance

equal to 2σ0, which gives s equal to

Un =
√

n + 1

2π
. (16)

Consider next the case k < �. Equation (7) gives the weights of the two kernels in the
decomposition of the 1-section as (k + 1)g(s Rk) and (� + 1)g(s R�). Using (5) and
taking the ratio, the weight function is computed by the following function:

ωk,�

(
s
) = � + 1

k + 1
· e−πs2

(
1

k+1 − 1
�+1

)
. (17)
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We compare this with the two transition functions, which we get by setting z = s
2 Dk,�

and plugging the two solutions of x2 = z2 − σ 2
0 into the formula for r(x) + 1, which

we get from (3). This gives

τk,�(s) =
z −

√
z2 − σ 2

0

z +
√

z2 − σ 2
0

· e4π z
√

z2−σ 2
0 , (18)

υk,�(s) =
z +

√
z2 − σ 2

0

z −
√

z2 − σ 2
0

· e−4π z
√

z2−σ 2
0 . (19)

Note that υk,�(s) = 1/τk,�(s). We find the first transition, Tk,�, by solving ωk,�(s) =
τk,�(s), and the second transition, Un , by solving ωk,�(s) = υk,�(s). Appendix A
will prove that both transitions are well defined, also showing that the second tran-
sition depends on n but not on k and � and is given by (16) in all cases. While
we have no analytic expression for Tk,�, we will derive one for an upper bound in
Sect. 3.4.

Section Evolution

We follow the 1-section defined by an axis of the n-simplex as the scale factor, s,
goes from 0 to infinity. By construction, we have qualitative changes at the transitions,
which we now summarize.

1-Section Lemma Let 0 ≤ k ≤ � with k + � = n − 1, and let A be the axis passing
through the barycenters of a k-face and its complementary �-face of sΔn . Then Gs |A

has one maximum whenever s < Tk,�, and two maxima whenever Tk,� < s and s 
= Un .
Indeed, the double intersection is responsible for the special evolution of the 1-section.
In particular, we go from one maximum for s < Tk,� to two maxima for Tk,� < s <

Un , of which one is the barycenter of the n-simplex. After the second transition at
the double intersection, we still have two maxima, but now the separating minimum
is the barycenter of the n-simplex. Figure 6 shows all transition scale factors in a
single picture for small values of k and �. First, we look at Tk,� for a fixed value
of n. We observe that Tk,� increases with growing k. This implies that for constant
n, the axes defined for small values of k spawn a second maximum earlier than do
axes defined by large values of k. For k = �, the two transitions coincide and the
corresponding 1-section does not witness the extra maximum at all. Second, we fix
k and observe that Tk,� increases with growing �. This implies that the k-faces of a
low-dimensional simplex spawn second maxima earlier than do the k-faces in high-
dimensional simplices.

Next, we look at the second transition, Un . As we have observed, it depends only
on n. This implies that all 1-sections lose the maximum at the barycenter at the same
scale factor. For k = �, the two transitions coincide, so the interval collapses.
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Fig. 6 The vertical interval bounded from below by T0,� and above by Un contains the scale factors for
which an extra mode appears

3.3 n-Dimensional Sections

In this subsection, we show that most maxima of the 1-sections are not modes. We
begin with the analysis of the barycenter of sΔn , which belongs to every axis of the
scaled n-simplex.

Barycenter of n-simplex

The n-design has the symmetry group of the n-simplex, which implies that the barycen-
ter, bG ∈ sΔn , is a critical point of Gs . Indeed, if bG is not a critical point, then it
has a non-zero gradient, which contradicts the symmetry. More specifically, bG is
either a maximum or a minimum of the n-section defined by the n-simplex, and it is
a maximum of the orthogonal 1-section defined by the diagonal line of R

n+1.

Barycenter Lemma Let n ≥ 1. Then the barycenter of sΔn is a mode of Gs for
s < Un and it is a saddle of index 1 for s > Un .

Proof We compute the Hessian of Gs at bG by taking partial derivatives with respect
to the Cartesian basis of R

n+1. Because of the symmetry, we have

d = ∂2Gs

∂x2
0

(bG) = ∂2Gs

∂x2
i

(bG),

c = ∂2Gs

∂x0∂x1
(bG) = ∂2Gs

∂xi∂x j
(bG),
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for all 0 ≤ i ≤ n and all j 
= i . The characteristic polynomial of the Hessian is
therefore

det

⎡

⎢⎢
⎢
⎣

d − ξ c . . . c
c d − ξ . . . c
...

...
. . .

...

c c . . . d − ξ

⎤

⎥⎥
⎥
⎦

. (20)

Its roots are the eigenvalues of the Hessian, which are ξ = d+nc, with multiplicity one,
and ξ = d−c, with multiplicity n. For simple geometric reasons, d+nc is negative and
corresponds to the eigenvector in the diagonal direction of R

n+1. Since all Gaussian
kernels live in a common plane, any point in that plane will be a maximum value in
the direction orthogonal to that plane. To compute d − c, it suffices to consider just
one 1-section through the barycenter, and we choose the line, B, that passes through
the vertex v0 = se0 and the barycenter of the complementary (n − 1)-face, which we
denote as b0. The distances from the barycenter of the n-simplex are ‖bG − v0‖ = s Rn

and ‖bG − b0‖ = s
n Rn . Furthermore, the common distance of the vertices vi = sei

from B is ‖vi − b0‖ = s Rn−1, for 1 ≤ i ≤ n. Plugging these distances into the
second derivative of the one-dimensional section given by (2), we compute the second
derivatives at bG of the 1-sections defined by the n + 1 unit Gaussian kernels as

[4π2s2 R2
n − 2π ] · e−πs2 R2

n , (21)

[4π2 s2

n2 R2
n − 2π ] · e−πs2(R2

n−1+R2
n/n2), (22)

where the first line applies for i = 0 and the second line for 1 ≤ i ≤ n. Note that
R2

n−1 + R2
n/n2 = R2

n and R2
n(1 + 1

n ) = 1. Adding (21) and n times (22), we obtain
the second derivative of the sum of n + 1 one-dimensional Gaussian kernels as

d − c = [4π2s2 − 2π(n + 1)] · e−πs2 R2
n ,

which has the same sign as s2 − n+1
2π

. Thus, bG is a maximum of Gs for s < Un and
a saddle of index one for s > Un as claimed. ��

We note here that the barycenter is an index-1 saddle for s > Un , as opposed to a
minimum, because we place the n-simplex in R

n+1. At the transition, when s = Un ,
the barycenter of the n-simplex is a degenerate critical point.

Orthogonal Sections

We generalize the analysis of the barycenter. Let 1 ≤ k ≤ � with k + � = n − 1, and
consider a k-face of the n-simplex as well as the complementary �-face. Writing Gs

as the sum of the fi = gsei , for 0 ≤ i ≤ n, we assume that the centers of f0 to fk span
the k-face, and that the centers of fk+1 to fn span the �-face. Hence, Gs = Ks + Ls ,
where Ks = ∑k

i=0 fi and Ls = ∑n
i=k+1 fi . Writing bK and bL for the barycenters
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of the two faces, we let A be the axis defined by A(t) = (1 − t)bK + tbL . We are
interested in the Hessian of Gs at x = A(t). For symmetry reasons, it has at most
four distinct eigenvalues, each a second derivative along pairwise orthogonal lines.
One line is the axis, another is orthogonal to the n-simplex, a third line is parallel to
the k-face, and a fourth line is parallel to the �-face. The latter two eigenvalues have
multiplicity k and �. We write κ for the length parameter along the third line and λ for
the length parameter along the fourth line.

n-Section Lemma Let 1 ≤ k ≤ � with k + � = n − 1. The second derivatives of Gs

at x = A(t) along lines parallel to the complementary k-and �-faces of sΔn are

∂2Gs

∂κ2 (x) = −2πGs(x) + 4π2s2 f0(x), (23)

∂2Gs

∂λ2 (x) = −2πGs(x) + 4π2s2 fn(x). (24)

Proof Recall Gs = ∑n
i=0 fi and fi (x) = e−π‖x−sei ‖2

. The derivative with respect to
the i th coordinate direction is

∂Gs

∂xi
(x) = −2πxi Gs(x) + 2πs fi (x).

Deriving again, with respect to the same and a different coordinate direction, we have

∂2Gs

∂x2
i

(x) = [−2π + 4π2x2
i ]Gs(x)

−4π2(2sxi − s2) fi (x), (25)

∂2Gs

∂xi∂x j
(x) = 4π2[xi x j Gs(x)

−sxi f j (x) − sx j fi (x)]. (26)

The point at which we take the second derivative has only two distinct coordinates,
(1−t)s

k+1 , repeated k +1 times, and ts
�+1 , repeated �+1 times. We can therefore substitute

x0 and x1 for any two among the first k + 1 ≥ 2 coordinate directions, and we can
substitute xn and xn−1 for any two among the last � + 1 ≥ 2 coordinate directions.
The Hessian at the point x is

H(x) =

⎡

⎢⎢
⎢⎢⎢⎢⎢
⎢
⎣

d . . . c γ . . . γ
...

. . .
...

...
. . .

...

c . . . d γ . . . γ

γ . . . γ D . . . C
...

. . .
...

...
. . .

...

γ . . . γ C . . . D

⎤

⎥⎥
⎥⎥⎥⎥⎥
⎥
⎦

,
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where

d = ∂2Gs

∂x2
0

(x), c = ∂2Gs

∂x0∂x1
(x), (27)

D = ∂2Gs

∂x2
n

(x), C = ∂2Gs

∂xn∂xn−1
(x), (28)

γ = ∂2Gs

∂x0∂xn
(x). (29)

We get the eigenvalues as the roots of the characteristic polynomial, which we find
by subtracting the variable ξ from each diagonal element and taking the determinant,
as in (20). In particular, d − c is the k-fold eigenvalue that corresponds to the k-face,
and D − C is the �-fold eigenvalue that corresponds to the �-face. Plugging (25) and
(26) into (27) and (28), we arrive at

d − c = −2πGs(x) + 4π2s2 f0(x),

D − C = −2πGs(x) + 4π2s2 fn(x).

These are the two claimed second derivatives of (23) and (24). ��

Sign Change

A point x = A(t) is a mode of Gs : R
n+1 → R iff it is a maximum of the 1-section

defined by A as well as of the n-section defined by Ht . Focusing on the latter, we
compute the values of the parameter t at which the second derivatives with respect to
κ and with respect to λ vanish. Beginning with κ , we set (23) to zero and find

[4π2s2 − 2π(k + 1)] f0(x) = 2π(� + 1) fn(x). (30)

We note that the natural logarithm of fn(x)/ f0(x) is −π times the following difference
of squared distances:

‖x − sen‖2 − ‖x − se0‖2 = 2s2 · (� + 1) − t (n + 1)

(k + 1)(� + 1)
. (31)

Plugging (31) into (30) gives us

2πs2 − (k + 1)

� + 1
= e−2πs2 (�+1)−t (n+1)

(k+1)(�+1) .

Solving this equation, we get t as a function of the scale parameter. We call this function
tK . Doing the symmetric computations for λ, we find a second function tL : R → R,
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Fig. 7 The chandelier for n = 1
on the the left and for n = 2 on
the right. Each curve is labeled
by the index of its critical points

1 22

2

3

3

3322 12

2 2 2

both defined by

tK (s) = k� + n

2πs2(n + 1)
· ln

2πs2 − k − 1

� + 1
+ � + 1

n + 1
, (32)

tL(s) = k� + n

2πs2(n + 1)
· ln

k + 1

2πs2 − � − 1
+ � + 1

n + 1
. (33)

For example, for s = Un , we get tK = tL = �+1
n+1 , which is consistent with the

Barycenter Lemma, where s = �+1
n+1 is identified as the scale factor at which the

barycenter of the n-simplex changes from a maximum to a minimum. Note also that
tK is undefined for s = Uk , and tL is undefined for s = U�.

Chandelier

To get a feeling for the situation, we draw the trajectories of the critical points of Gs ,
and in particular those of the modes. We call this set in R

n+1 ×R the chandelier of the
1-parameter family of functions. Letting s increase from bottom to top, Fig. 7 sketches
the chandelier for n = 1, 2. The most prominent feature is the base point, which we
use to decompose the chandelier into curves. Two of these curves are vertical, both
swept out by the barycenter of the n-simplex, which changes from index n + 1 to
index 1 when it passes through the base point. For each curve, we consider the height
function defined by mapping (x, s) ∈ R

n+1 × R to s, and we further subdivide so that
the height function is injective. In other words, we cut each curve at the local minima
and maxima of the height function. The benefit of this subdivision is that now each
curve is swept out by a critical point of Gs with constant index. While the total number
of curves in the chandelier grows exponentially with the dimension, the number of
curves that correspond to modes grows only by one for each dimension. To count the
curves, we compute the number of complementary face pairs of the n-simplex:

pn = 1

2

n−1∑

k=0

( n + 1
k + 1

) = 2n − 1.

For each pair, two branches emanate from the base point. Adding the vertical line, we
count 2pn + 2 = 2n+1 branches. For each complementary face pair with 0 ≤ k < �,
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Fig. 8 Graphs of tK and tL for select values of k and �. a k = 2 and l = 4. b k = 2 and l = 5. c k = 1
and l = 5. d k = 3 and l = 4

the height function of one of the two corresponding branches has a local minimum
and is therefore subdivided into two curves. The number of local minima is

ln =
{ pn if n is even,

pn − 1
2

( n+1
(n+1)/2

)
if n is odd.

The total number of curves is therefore 2pn + 2 + ln . Of these, only n + 2 correspond
to modes.

Indices

The index swept out by a curve in the chandelier is easy to determine numerically, but
at this time, we lack analytic proofs. We first state the result and second explain the
numerical evidence that supports it.

0 ≤ k < �: There are
(n+1

k+1

)
complementary face pairs of k- and �-faces. Besides the

barycenter, the corresponding axes witness critical points of index � + 2
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and � + 1 for s ∈ (Tk,�, Un) and two critical points of index k + 2 for
s > Un .

k = � = n−1
2 : There are 1

2

(n+1
k+1

)
complementary pairs of k-faces. Besides the barycen-

ter, the corresponding axes witness two critical points of index k + 2
for s > Tk,k = Un .

To explain the numerical evidence, we consider tK (s) and tL(s), which are given by
(32) and (33). We make tK injective by restricting it to the range [0, �+1

n+1 ] and we

make tL injective by restricting it to the range [ �+1
n+1 , 1]; see Fig. 8, which plots the

inverses of the restricted functions. Drawing the horizontal line for a value of s, we
note that the portion below the graphs of tK and tL consists of the points x at which
the n-section orthogonal to the axis has a maximum at x . We see these graphs for even
and odd values of n in Fig. 8. For each scale factor s, there is either one or two modes
witnessed by Ak,�, drawn in cyan in Fig. 8. We notice empirically that the mode at the
barycenter, given by t = �+1

n+1 , is the only mode under the piecewise defined curve for
0 < k < �. This means that the only mode is at the barycenter and the other critical
points are saddles of index � + 1 and � + 2.

3.4 Resilient Modes

We have seen that the sum of Gaussian kernels can have extra modes. In this subsection,
we study their significance, showing that they last for an interval of scale factors whose
length increases with the dimension.

Balancing Scales

To get started, we need more information on the transition at which the extra maxima
appear. We get an upper bound on Tk,� by studying the scale factor at which the weights
of the two one-dimensional kernels in the decomposition of Gs restricted to a relevant
axis are balanced. For k = �, the two one-dimensional kernels in the decomposition
are always balanced. For k < �, the balancing scale factor is

Bk,� =
√

ln(� + 1) − ln(k + 1)

π
( 1

k+1 − 1
�+1

) . (34)

Indeed, recomputing the weights gives (k +1)g(Bk,� Rk) = (�+1)g(Bk,� R�). Similar
to Tk,� and Un , the balancing scale factor increases with respect to k and �. Numerically,
we observed that Bk,� is not very different, but consistently larger than Tk,�. We prove
that this relationship is not accidental.

Transition Lemma We have Tk,� < Bk,� < Un for all integers 0 ≤ k < � with
k + � = n − 1.

Proof We prove the claim indirectly, by showing that s = Bk,� gives two maxima in
the 1-section along any axis connecting the barycenter of a k-face with the barycenter
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of the complementary �-face. For balanced weights, we have two maxima iff the
centers of the two one-dimensional kernels are further apart than twice the width; see
Sect. 2. To prove the latter property, we compute

Bk,� Dk,�

2σ0
=

√
n + 1

2(� − k)
· ln

� + 1

k + 1
, (35)

using Eqs. (4), (1), and (34). Recall the logarithmic inequality:

x

1 + x
2

< ln(1 + x),

for x > 0. Setting x = �−k
k+1 , we see that the right-hand side of (35) exceeds 1 for all

choices of 0 ≤ k < �. This implies that we have two maxima along the axis, which
implies that the balancing scale factor lies between the first and second transitions, as
claimed. ��

Resilience

We define the resilience of a mode as the length of the interval of scale values at which
it exists. This definition is not satisfactory for a general 1-parameter family of smooth
functions; however, it will suffice in our context, in which we know enough about the
modes to follow them through the family parameterized by the scale s. Specifically,
we have a single mode for 0 ≤ s ≤ T0,n−1, and we have n + 1 modes for Un ≤ s.
The picture is more interesting in the interval T0,n−1 < s < Un , in which we have
n + 2 modes. One of these modes is the barycenter of the n-simplex, and we study
the resilience of this extra mode. The upper endpoint of the interval is defined in (16),
and an upper bound for the lower endpoint is given in the Transition Lemma, with the
definition of the bound in (34):

T0,n−1 <

√
ln n

π(1 − 1/n)
.

As n goes to infinity, Un grows roughly like the square root of n, and T0,n−1 grows
roughly like the square root of the logarithm of n. The gap between the two widens,
so that the resilience of the mode at the barycenter of the n-simplex grows roughly
like

√
n; see Fig. 6.

Summary

We are now ready to summarize the findings in regard to the critical points and the
modes of the 1-parameter family of functions Gs : R

n+1 → R. For values s < T0,n−1,
we have a single critical point with index n + 1. Thereafter, we pick up 2

(n+1
k+1

)
critical

points at every Tk,�, for 0 ≤ k < �, until we accumulate 2ln + 1 critical points right
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before reaching Un . The barycenter has index n +1, and the other critical points come
in pairs, with indices � + 2 and � + 1, for n−1

2 < � ≤ n − 1. For Un < s, we have
2pn + 1 critical points. The barycenter has index 1, and the other critical points come
in pairs with indices � + 2 and k + 2, for n−1

2 ≤ � ≤ n − 1. As a sanity check, we
consider the Euler-Poincaré formula, which states that the alternating sum of critical
points is equal to the Euler characteristic of R

n+1:

n+1∑

i=0

(−1)i ci = (−1)n+1, (36)

where ci counts the critical points with index i . We also write c = ∑n+1
i=0 ci . Trivially,

(36) holds in the first case. Thereafter, we pick up the critical points in pairs whose
contribution to the alternating sum cancel, so (36) is maintained. Finally, for Un < s,
we have a bijection between the critical points and the faces of the n-simplex such that
the index is n + 1 minus the dimension of the face. Since the n-simplex is a closed
ball, its Euler characteristic is 1, which again implies (36). We thus have a complete
description of the critical points of the n-design as the scale factor increases from zero
to infinity.

Main Theorem Let n ≥ 1 and consider the sum of n +1 unit Gaussian kernels placed
at the vertices of the scaled standard n-simplex, sΔn .

(1) For s < T0,n−1, we have one critical point which is also a mode.
(2) For T0,n−1 < s < Un , we have gradually more critical points after passing each

Tk,�, until we accumulate 2ln + 1 critical points right before Un . Of these critical
points, n + 2 are modes, and they exist during the entire interval.

(3) For Un < s, we have 2pn + 1 critical points, of which n + 1 are modes.

The resilience of the extra mode in Case (2) is Un − T0,n−1, which grows like
√

n.

3.5 Many Modes

In this subsection, we construct a finite configuration of isotropic Gaussian kernels
with a superlinear number of modes. While there is a family of such constructions, it
will suffice to explain one.

Products of Simplices

The basic building block of our construction is the standard 2-simplex. Let the dimen-
sion be 3n and write the 3n-dimensional Euclidean space as the Cartesian product
of n 3-dimensional planes: R

3n = H1 × H2 × . . . × Hn , in which Hi is spanned by
the three coordinate vectors e3i−2, e3i−1, e3i , for 1 ≤ i ≤ n. Let Δ2

i be the standard
2-simplex in Hi , with vertices vi0 = e3i−2, vi1 = e3i−1, vi2 = e3i . Correspondingly,
we write gi j : Hi → R for the 3-dimensional unit Gaussian kernel with center vi j ,
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for 0 ≤ j ≤ 2, and Gi : Hi → R defined by

Gi (x) = gi0(x) + gi1(x) + gi2(x)

for their sum. Next, we construct a 3n-dimensional sum of Gaussian kernels by taking
products. To begin, we let P ⊆ R

3n be the largest subset of points whose orthogonal
projection to Hi is {vi0, vi1, vi2}, for 1 ≤ i ≤ n. This is the set of 3n points formed
by taking the Cartesian product of the n triplets of points. For each point p ∈ P , let
f p : R

3n → R be the unit Gaussian kernel with center p. Adding these kernels, we
get F : R

3n → R, defined by

F(x) =
∑

p∈P

f p(x).

To understand F , we recall that f p can be written as the product of 3n 1-dimensional
unit Gaussian kernels; see (6). Collecting the terms in sets of three, we can write

f p(x) =
n∏

i=1

gi j (x),

where j is chosen such that vi j is the orthogonal projection of p onto Hi . Substituting
the sum of the three kernels for the singletons, we obtain

F(x) =
n∏

i=1

Gi (x).

In words, the sum of the 3n 3n-dimensional unit Gaussian kernels is the product of n
sums of three 3-dimensional unit Gaussian kernels.

Counting Modes

We arrive at the final construction by reintroducing the scale factor, writing Fs :
R

3n → R for the product of the Gis : Hi → R, where Gis is of course the sum of the
three unit Gaussian kernels with centers se3i−2, se3i−1, se3i . We have seen in Sect. 3
that s can be chosen such that Gis has 4 modes. Since Fs is the product of the Gis ,
its sets of modes is the largest subset of R

3n whose orthogonal projection to Hi is the

set of four modes of Gis , for 1 ≤ i ≤ n. Its size is 4n = 3(1+log3
4
3 )n > 31.261n . This

shows that the number of modes is roughly the number of kernels to the power 1.261.
There is an entire family of similar constructions. The one presented here neither

maximizes the number nor the resilience of the extra modes. Indeed, we can increase
the exponent by improving the ratio of modes over kernels in each Hi , and we can
improve the resilience by using higher-dimensional simplices.
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4 Discussion

The main contribution of this paper is a cautionary message about the sum of Gaussian
kernels. Giving a detailed analysis of the construction studied in [5], we show that there
is indeed only one extra mode, but that its resilience increases like the square root of
the dimension. We also exhibit configurations of finitely many identical isotropic
Gaussian kernels whose sums have superlinearly many modes. We thus give precisely
quantified contradictions to our intuition that diffusion erodes and eliminates local
density maxima.

The results in this paper raise a number of questions. How stable are the extra
maxima? Our analysis in Sect. 3.4 answers the question when the perturbation is the
diffusion of density. How robust are they under moving individual kernels or changing
their weights? Related to this question, we ask about the probability of extra modes for
randomly placed Gaussian kernels in Euclidean or other spaces. Carreira-Perpiñán and
Williams report that their computerized searches in R

2 did not turn up any extra modes
[5], but what if we did similar experiments in three and higher dimensions? Finally, it
would be interesting to determine the persistence of the extra modes; see [6] for a recent
related study. In other words, how large is the difference in function value between an
extra mode and the highest saddle? Understanding the persistence, as well as the basin
of attraction for each mode would complement the analysis provided in this paper.

Acknowledgements This research is partially supported by the National Science Foundation (NSF) under
Grant DBI-0820624, by the European Science Foundation under the Research Networking Programme, and
the Russian Government Project 11.G34.31.0053.

Appendix A

In this appendix, we give a detailed analysis of the intersections between the weight
function, ωk,�, and the two transition functions, τk,� and υk,�, all introduced in Sect. 3.2.
We recall that the two transitions, Tk,� and Un , are the solutions to ωk,�(s) = τk,�(s)
and to ωk,�(s) = υk,�(s) respectively. We will find that both transitions are well
defined, and the second transition depends on n but not on the choice of k and �, as
claimed in Sect. 3.2.

Curve Analysis

We discuss the graphs of the three functions to convey a feeling for how they intersect.
To begin, we note that s0 = 2σ0/Dk,� is the smallest scale factor for which the
transition functions are defined. Writing z = s

2 Dk,�, we have z2 − σ 2
0 = 0 for s = s0.

It follows that τk,�(s0) = υk,�(s0) = 1. To compare this with the weight function at
the same value, we compute

ωk,�(s0) = � + 1

k + 1
· e− 2(�−k)

n+1 ,

ln ωk,�(s0) = ln
� + 1

k + 1
− 2(� − k)

n + 1
. (37)
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1

s0 UnTk s

uk

wk

tk

Fig. 9 The graphs of the weight function and the two transition functions. The two marked intersections
define the transitions

We interpret the right-hand side of (37) as the difference between the area below the
graph of 1

x , for k +1 ≤ x ≤ �+1, and the area below the line that touches the graph at
the midpoint of the interval, again for k +1 ≤ x ≤ �+1. Since 1

x is a convex function,
the second area is smaller, which implies ln ωk,�(s0) > 0 and therefore ωk,�(s0) > 1.
This implies (38), which is the first of the two pairs of inequalities that describe the
relation between the three functions on the left and the right:

τk,�(s0) = υk,�(s0) < ωk,�(s0), (38)

υk,�(s) < ωk,�(s) < τk,�(s), (39)

as in Fig. 9. To compare the functions on the right, for sufficiently large s, we look at
the exponents. Writing z = s

2 Dk,�, as before, the exponent of ωk,�(s) is −4π z2 �−k
n+1 ,

which is clearly smaller than the exponent of τk,�(s), which is 4π z
√

z2 − σ 2
0 . Less

obvious is the comparison with the exponent of υk,�(s), which is −4π z
√

z2 − σ 2
0 .

After dividing by −4π z and squaring, we obtain z2(� − k)2/(n + 1)2 < z2 − σ 2
0 . It

follows that the exponent of ωk,�(s) is larger than that of υk,�(s), for s large which
implies (39).

From (38) and (39), we conclude that the number of intersections between the
graphs of ωk,� and τk,� (counting with multiplicity) is odd. Since both functions are
monotonic, with slopes of opposite signs, we have exactly one intersection. It follows
that Tk,� is well defined.

Double Intersection

Similarly, we use (38) and (39) to conclude that the number of intersections between
the graphs of ωk,� and υk,� (again counting with multiplicity) is even. We will establish
that there is only one double intersection, namely at s = Un . To prove that Un is a
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solution to the equation ωk,�(s) = υk,�(s), we write A = (� + 1) + (k + 1) and
B = (� + 1) − (k + 1), noting that A2 − B2 = 4(k + 1)(� + 1). Setting

s =
√

n + 1

2π
+ y

2π(n + 1)
,

and recalling that A = n + 1, we have

z =
√

A2 + y

2π(A2 − B2)
,

√
z2 − σ 2

0 =
√

B2 + y

2π(A2 − B2)
,

z +
√

z2 − σ 2
0

z −
√

z2 − σ 2
0

=
√

A2 + y + √
B2 + y

√
A2 + y − √

B2 + y
,

−4π z
√

z2 − σ 2
0 = −2

√
A2 + y

√
B2 + y

A2 − B2 .

Using the definitions of the weight function in (17) and the second transition function
in (19), we arrive at

ωk,�(s) = (A + B)2

A2 − B2 · e
− 2AB+2 B

A y

A2−B2 ,

υk,�(s) = [√A2 + y + √
B2 + y]2

A2 − B2 · e
− 2

√
A2+y

√
B2+y

A2−B2 .

Clearly, ωk,�(s) = υk,�(s) if y = 0, which shows that s = Un is indeed a solution
to the equation. We continue by showing that for small but non-zero y, we have
ωk,�(s) > υk,�(s). This is equivalent to showing that the natural logarithm of υk,�(s)
over ωk,�(s) is smaller than 0. Equivalently, LHS < RHS, where

LHS = ln

√
A2 + y + √

B2 + y

A + B
,

RHS =
√

A2 + y
√

B2 + y − AB − B
A y

A2 − B2 .

To prove this inequality for small values of y, we use the Taylor expansions of the
square root and the natural logarithm functions:

√
A2 + y = A + y

2A
− y2

8A3 + y3

16A5
− · · · ,

ln(1 + x) = x − x2

2
+ x3

3
− x4

4
+ · · · .

123



822 Discrete Comput Geom (2013) 49:797–822

With this, we can re-write the two sides of the inequality: LHS = l1 y + l2 y2 + · · · ,
and RHS = r1 y + r2 y2 + · · · . Computing the coefficients, in turn, we find

l1 = 1

2AB
= r1,

l2 = − A2 + B2

8A3 B3 < − A2 − B2

8A3 B3 = r2.

In words, s = Un is a double solution of the equation, and ωk,�(s) > υk,�(s) for values
of s chosen in a small neighborhood but different from Un .
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