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ADDED MASS AND DAMPING OF A
VIBRATING ROD IN CONFINED

VISCOUS FLUIDS

by

M. W. Wambsganss, S. S. Chen, and J. A. Jendrzejczyk

ABSTRACT

An analytical and experimental study of a cylindrical
rod vibrating in a viscous fluid enclosed by a rigid, concentric
cylindrical shell is presented. A closed form solution for the
added mass and damping coefficient is obtained and a series of
experiments with cantilevered rods vibrating in various viscous
fluids is performed. Experimental data and the^vtical results
are in good agreement.

I. INTRODUCTION

When a structural component vibrates in a viscous fluid, the presence
of the fluid gives rise to a fluid reaction force which can be interpreted as
an added mass and a damping contribution to the dynamic response of the
component. Added mass and damping are known to be dependent on fluid properties
(in particular, fluid density and viscosity) as well as to be functions of
component geometry and adjacent boundaries, whether rigid or elastic. Nuclear
reactor components are typically immersed in a liquid coolant environment and,
also, are often closely spaced. Many reactor internal components (fuel pins,
instrument lines, measurement probes) and plant components (heat exchanger
tubes) are long, slender, beam-like components which are susceptible to excita-
tion by the coolant flow; potential flow excitation mechanisms include: force-
excitation due to random pressure fluctuations, fluidelastic instabilities,
and resonant vibration associated with a coincidence between component natural
frequencies and vortex-shedding or other flow-related characteristic frequencies.
In analyzing the vibration response to these excitations, added mass and
damping are important considerations. In general, the added mass will decrease
the component natural frequencies; it thus can have a significant effect on
the response and the potential for large amplitude motion caused by a resonance
or instability. While damping is generally not important for "off-resonance"
excitation by harmonic driving forces, it is important in predicting component
response to broad-band random excitation in which energy is contained over a
wide frequency range and damping controls the response amplitude [I]1.
Damping is also an important parameter in characterizing the onset of fluid-
elastic instability as determined by a critical flow velocity at which the
energy extracted from the flow equals the energy dissipated by damping [2].

i Studies of added mass can be traced back to Stokes [3]. A brief survey
was presented by Muga and Wilson [4]. At present, the added mass of a
structural component with a simple geometry immersed in an inviscid fluid can

1Numbe'rs in brackets refer to similarly numbered references at end of report.
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be calculated rather easily or can be found in literature [5]. However, the
added mass of a system consisting of several structural components in confined
viscous fluids, in general, is not available. To the writers' knowledge,
there have been only a few studies considering the effects of viscous fluid
on vibrating structural components: Ackermann and Arbhabhirama [6] determined
experimentally the added mass of a sphere oscillating in a fluid filling a
fixed concentric spherical shell; Miller [7] presented an experimental study
on the dependence of hydrodynamic mass on frequency and amplitude of oscilla-
tion for a body undergoing a driven oscillatory motion; Fritz and Kiss [8]
and Fritz [9] presented a theoretical analysis and test results which describe
the response of a rod surrounded by a fluid annulus; and Keane [10], in an
attempt to predict the dynamic response of a circular cantilever tube surrounded
by a viscous fluid, provides a discussion of theoretical approaches to solving
the Navier-Stokes equations for the two-dimensional incompressible fluid
motion, as well as presents results from experiments involving cantilever
tubes excited by harmonic driving forces.

In this report an appropriate form of the Navier-Stokes equation is
solved to give the radial and tangential velocity components of the viscous
flow in the fluid annulus formed by a vibrating rod and rigid containment
shell. These velocity components are used to obtain representations for the
fluid stresses which are, in turn, integrated over the circumference of the
rod to determine the fluid reaction force. The resulting force consists of
two parts: (1) a force in phase with the acceleration which acts as an added
mass and (2) a drag force which acts to oppose cylinder motion and can be
considered as a damping force. Coefficients of these forces are presented as
functions of the containment-shell to rod radius ratio (D/d) and the dimen-
sionless number (S = ud^/v) which may easily be recognized as the product of
the Reynolds and Strouhal numbers. Results are reported of experiments in
which cantilevered rods are oscillated in liquids confined by rigid boundaries
consisting of 1) concentric, circular cylindrical shells of various diameters,
and 2) hexagonal arrays of six similar rods. The experimentally-determined
added mass and damping data are in good agreement with theoretical predictions
for the case of fluid annul!. Results from the hexagonal array tests are
correlated with the theoretical results by a correction factor which gives
an effective radius ratio.

II. THEORY

A. Formulation of the Governing Equations

Consider an infinitely long cylinder of radius d oscillating along a
diameter in a viscous fluid annulus (Fig. 1). The Navier-Stokes equations,
governing the motion of the viscous fluid, can be expressed in a circular
cylindrical coordinate (r,6,z) system. Let the velocity of the cylinder be
Ue i w t along 8 = 0 ; the exterior wall at r = D is stationary. For small ampli-
tudes the equations of state and motion can be linearized. Letting u and v
denote the velocity components in the r and 9 directions, respectively, the
equations of motion for the fluid are [11]:
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Fig. 1. Schematic and Coordinate System for Cylinder Vibrating in Fluid Annulus
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9" - 12. J. fa2" . 1 3« u , 1 32u 2
3 7 = - 3

 + M ^ 2 + a 7 - 2 + 2 2 - 2

and (1)

3v _ 1 3p , /32v , 1 8v v 1 32v . 2 jJu'i
P 3F = - 7 39 + " (9r2

 + 7 3r - r2
 +~ r2 3Q2 r2 39 j '

where p is fluid density, ji is absolute fluid viscosity, and p is fluid
pressure. The fluid stress components are:

•«.--»•*£ •
. _ (1 3v \

Tee P + 2^ ^

and

'" 3 lv\ ̂  1 3u

j r tj +
Tr6 = U j r 3^ tj + 7 30

Assuming an incompressible fluid, the continuity equation becomes

The velocity of the fluid at the cylinder surface must be in the direction of
oscillation, so that the conditions to be satisfied by u and v on the cylinder
are

u = U cos 9 e ,

and (4)

v = -U sin 9 eiu)t ,

at r = d. At r = D, the fluid velocity is zero, thus

u = v = 0 . (5)

Equations (1) to (5) are the complete mathematical statement of the problem.

B. Solution to the Equations

From equation (3) it is seen that a scalar function i/»(r,9,t) exists
such that
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On substituting equations (6) into equations (1), and then eliminating p from
the resulting equations, we obtain

where

v = u/p ,

and
 2 (8)

V = . j_ — — — +

3r ° r 36

The general solution of IJJ is

^ = ty ̂ ~ ̂ « , (9)

where \}>]_ and ^2 satisfy the following equations

V ip1 = 0 ,

and (10)

2 X 2 —

Th> form of the boundary conditions, equations (4) and (5), suggests that

^ = F1(r)sin6e
ia)t ,

X X

and (11)

*2 = F2(r)sin9e
ia)t .

Substitution of equations (11) into equations (10) yields

1 F -
- ^ Fl "

dr2 r dr r2 X

and (12)

^ + if2_;_L + k2
dr v r
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where

k - ̂ JT^ . (13)

The solutions of equations (12) are

and (14)

F2 - Ud[CI1(kr) + DKx(kr)] ,

where A, B, C, and D are arbitrary constants and I and K are modified Bessel
functions. It follows that

cos 8

and

= U j-A (|) + B + C |(kd)Io(kr) - ( |) I^kr)!

| -+ D |-(kd)KQ(kr) - ( i ) K^kr)!!* s i n e e i w t

The constants A, B, C, and D are determined from the boundary conditions.
Substitution of equations (15) into equations (4) and (5) gives

A + B + I^cOC + K (a)D = -1 ,

A - B - [al (a) - I , (a)]C + [aK (a) + K,(a)]D = 1 ,o x o x

Y2A + B + Ylx(3)C + YK1(3)D = 0 ,

and
t

= 0 ,

where

and

Y2A

a =

3 -

Y *

- B -

kd ,

kD ,

d/D .

|
(17) 1

fi
I
I
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Solving equations (16) gives

A= {-a2[Io(a)Ko(e)-Io(6)Ko(a)]

B = (2aY[I1(e)Ko(e) - 1 ^ 0 ) ^ ( 6 ) ] + a2Y2[Io(c0Ko(g)-Io(f3)Ko(a)]

C = {-2aKQ(e) - 4YK1(B) + Y2[2aKQ(a)

D = {-2oIo(B) +4YI1(B) +Y2[2aIQ(o) -

and

A = a2(l-Y
2)[Io(cOKo(0)-Io(B)Ko(cO]

+ 2<XY[I (a)K.(B)-I, (B)K (B) +
o l xo

+ 2aY
2[Io(B)K (a) - I (a)K (a)

O i O X j . u J . U

The fluid pressure can be obtained from the second of equations (1). On
substituting equations (15) into equations (1) and integrating with respect
to 6, we obtain

P - Po - f {[\-2a® + <kr>«2 + 2 (f)2 H Jo^> -*\0*» C

D > cos 6 e i a ) t

<A\2 1

l j (IT)]
(|2o(f) " (kr)a2 - 2 ^J (kr) Ko(k?;)-a

here, po i s the undisturbed fluid pressure. Finally, substitution of equations
(15) into equations (2) yields

( 2 0 )

a - K (kr) + 2 - Kn (kr) D> cos 6 e u t

\r; o \r) 1 J I
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Tee

D} cos 8 e t , f

(20) £
(Contd.) i

" . M K (kr)+f«2
+^)Kl(kr)] Dlsinee1<ut .

W o V T2j 1 j J
We are now in a position to calculate the added mass and drag force.

The resultant force per unit length of a cylinder is

T
rr

cos9 - T
r=d re

sine d6 . (21)

Jr=d

On substituting equations (20) into equation (21) and carrying out the
integration, we obtain

F = -iMUuHela>t , (22)

where

M = pird ,

and (23)

H = -A + B + Cl^ot) + DK2(a) .

M is the mass of fluid per unit length displaced by the cylinder. From the
first of equations (16), H may be simplified to obtain

H = -1 - 2A . (24)

The real part of equation (22) gives

F = MUio[Re(H)sinut + Im(H)cos&>t] . (25) |
••?

; |

In the absence of fluid, the force per unit length required to move i
a cylinder of mass m is -muU sinut. Equation (25) shows that, in addition, 3
two forces are required: (1) -MUwRe(H)sinwt, in phase with the acceleration, |
arises because the fluid is necessarily moved as the cylinder vibrates; the I
quantity MRe(H) is called the added mass of the cylinder. (2) The force |
-MUwIm(H)coswt always opposes the movement of the cylinder and is related |
to damping mechanism. |
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To evaluate the added mass and damping factor, we must compute the
value of H. From equations (18) and (24), we may write

H = {2o2[Io(o)Ko(3)-Io(p)Ko(a)J - 4a[I1(a)K)(($) +

4ay[Io(a)K1(p)+1^(5)1^(a)] - 8Y[

2 2 2aY[^(0

+ 1 ^ 3 ) ^ (a) - 1^)1^(3)] + 2ay2[Io(3)K1(a)

+ ^(0)^(3) - I^oOK^a)]} - 1 . (26)

It is seen that H depends on a and 3 in a very complicated way. While
in general, H must be computed from equation (26), simplified results can
be obtained in special cases.

1) Infinite, viscous fluid. The value of H for this case can be obtained
by taking the limits of Bessel's functions. As D 'v », Y ^ 0, and 3 * °°; then
Io(&)

 % °°» Ii(3) ̂  «, Ko(3) ^ 0, and Ki(3) ^ 0. With these values, equation
(26) reduces to

4K, (a)
H = 1 + ̂ o • (27>

2) Infinite, inviscid fluid. If the fluid is inviscid, a = °° and,
from equation (27),

H = 1 . (28)

This result is consistent with the classical result; the added mass of a
cylinder vibrating in an infinite fluid is equal to the mass of the fluid
displaced by the cylinder [5].

3) General viscous case with large values of a and 3• For a and 3 very
large, the results can be greatly simplified using the asymptotic formulae

(29)

and
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As a result of these approximations, H becomes

[a2(l + Y2) - 8Y]sinh(3 - a) + 2a(2 - Y +Y2)cosh(& - a) -

a2(l - Y2)sinh(3 - a) - 2OIY(1 + Y)cosh(B - a) + ^
(30)

4) General inviscid case with large values of a and g. If the fluid is
inviscid, equation (30) reduces to

(31)

Equations (27), (28), (30) and (31) are useful for the special cases cited.
For the general case, values of H have been computed from equation (26) in terms

of two parameters, S 1= - — 1 and radius ratio D/d. From equation (17),

a = *T"s ,

and (32)

The real and imaginary parts of H are plotted in Figs. 2 and 3, respectively,
as functions of the radius ratio (D/d) for selected values of the nondimensional
parameter S.

C. Added Mass and Damping Factors

The added mass correction factor CJJ is defined as a constant which
multiplies the mass of displaced fluid to give the added mass. From equation
(25), by definition,

CM = Re(H) . (33)

Similarly, from equation (25), if MUuIm(H) is considered as the amplitude
of a viscous damping force, by definition the damping coefficient can be
written as

Cv = MuiIm(H) . (34)

The equivalent viscous damping factor ?n is defined as the ratio of the
viscous damping coefficient to the critical damping coefficient

*n E VCCR <35)

where, C C R = 2(C^I + m)un ; U)n is rod natural frequency. When oscillating
at the rod natural frequency, u = w n and

<36>
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- 1 2 -

10
8

6

1.0
0.8

0.6

0.4

x
£ 0.2

0.10
0.08

0.06

0.04

0.02

0.01

1 I I I I I I I I 1 I I I I I I-H

I I I I I I I I I

S=IO

50

100

500

5000

50000

I I I I I I II
4 6 8 10

D/d

20 40 60 80100

Fig. 3. Imaginary Values of H as a Function of D/d for Selected Values of S



-13-

III. EXPERIMENT

In Section II of the report, theoretical results are derived giving
the added mass correction factor and equivalent viscous damping factor
(equations (33) and (36), respectively) for a flexible rod vibrating in a
fluid annulus. Situations which also occur involve the vibration of rods
or tubes grouped in bundles, for example, reactor fuel pins or heat exchanger
tubes. The question arises as to what effect the adjacent components have on
added mass and damping. To evaluate the theoretical results derived in
Section II, and to obtain insight into the effect of adjacent elements, a
series of experiments with cantilevered rods as the vibrating elements was
designed and performed.

A. Description of Experiment

The test element consists of a 0.5 inch (12.7mm) diameter aluminum
rod fixed to a base plate to achieve cantilever end conditions. An annular
region around the rod is formed by a 2.5 inch (63.5mm) i. d. circular cylin-
drical containment: shell mounted to the base plate, concentric with the rod.
Two series of tests were performed. In the one series, the width of the
annulus was varied by inserting machined brass liners into the containment
shell; outer diameters of the annular gaps so obtained are as follows:
2.5 (63.5), 2.25 (57.2), 2.0 (50.8), 1.75 (44.4), 1.5 (38.1), 1.25 (31.8),
1.0 (25.4), 0.75 (19.0), and 0.625 (15.9) inches (mm). In the second series
of tests the effect of "rigid" adjacent rods of the same diameter, mounted in
a hexagonal pattern was investigated; the pitch-to-diameter ratios tested are
as follows: 1.75, 1.50, 1.25, and 1.12. A complete set of tests was performed
with a 28.1 inch (0.714mm) long test element; the rod was then cut to a 14 inch
(0.356m) length and tests in water were performed to assess th. affect of
frequency on added mass and damping.

A means to excite the rod is provided by an electromagnetic exciter
assembly. This exciter assembly consists of 13 permanent magnets, 1/4 inch
(6.35mm) in diameter by 3/8 inches (9.52mm) long, embedded in the aluminum
rod approximately 2.7 inches (68.6mm) from the free end, and a pair of 350-
turn coils of no. 26 wire attached to the outside of the containment shell,
conforming to itt̂  curvature. An alternating current applied to the coils
from a signal generator induces an alternating magnetic field which, in turn,
produces a force on the rod through the embedded magnets.

Response, in the form of rod displacement, is measured using an
electro-optical displacement tracker mounted above the test assembly and ad-
justed to track a black/white interface painted on the end of the rod. RMS
current to the coil which is proportional to input force, is measured on an
ammeter. A servo system can be used to control either displacement output,
or current input, as desired. The data is processed on a fast Fourier trans-
form analyzer.

Tests were performed with four different fluids: air, water, mineral
oil, and silicone oil. Fluid properties are listed in Table 1. Oil viscosities
were measured at room temperature using a capillary-type viscometer.
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Test Fluid

AIR
WATER
MINERAL OIL
SILICONE OIL

TABLE I TEST FLUID

Viscosity, u (cp)

0.018
1.0
41
145

PROPERTIES i

Specific Gravity,r \

0.00121 •
1.0
0.935
0.956

Approximately 10 measurements were taken at various times during a given test
and the results averaged.

B. Measurement Methods

The quantities of interest are the added mass correction factor and
equivalent viscous damping factor associated with that portion of the fluid
reaction force which acts to oppose velocity of the rod.

1) Added Mass Correction Factor

The natural frequency of a cantilever rod vibrating in a fluid can
be written in the form

f . i_ a^V El (37)
n 2w I 7

where, a is a mode constant, £ is length, El is flexural rigidity, and m is
rod mass per unit length. Vibrating in air, m >>C|l-M, and equation (37)*
becomes

L\ 2 V (38)L\ _ 1 a2 V El •

WAIR- * * f T

Solving equation (37) for (L. and using equation (38) obtains
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the mass per unit length of the rod (m) and displaced mass of fluid per
unit length (M), equation (39) can be used to compute CL, from measured values
of resonant frequencies. This approach assumes that any changes in resonant
frequency caused by changes in damping are negligible in comparison with the
change caused by added mass.

The rod does not have uniform mass per unit length because of the
permanent magnets embedded near the free end. Consequently, in equations (37)-
(39), m must be considered as an effective mass per unit length which accounts
for the mass of the magnets. The effective mass per unit length is evaluated
in Appendix A for the two test element lengths. Expressing the mass of dis-
placed fluid in terms of specific gravity, r, and defining

R = m/M w a t e r (40)

yields

where values for r and R are given in Tables 1 and 2 respectively.

2) Equivalent Viscous Damping Factor

Energy loss mechanisms for a rod vibrating in a fluid include material
damping, associated with internal friction in the solid material, fluid drag
forces due to the viscosity of the fluid, and losses at the support location.
In general, for the test element under consideration, material damping and
damping assoicated with losses at the support are small compared with fluid
viscosity effects in liquids. Damping can be measured and calculated by
several different methods including log decrement from autocorrelation of re-
sponse to white noise input or from a "pluck" test, magnification factor (Q)
at resonance, bandwidth of frequency response function, and measurement of
input power at resonance. The bandwidth method was the primary method used in
these experiments. The advantages of the bandwidth method over the log decre-
ment method and pluck test is that higher modes are not involved and response
levels can be readily controlled, if amplitude dependency is suspected. The
advantage over the magnification factor method is that only the shape of the
curve is involved, calibration factors and the fact that energy may go into
different modes is not of concern. Damping is readily obtained from the
transfer function, or frequency response curve, as

(42)
2 /N* - 1 ln

where

c -

AfN

2 V

1

- 1

A fN

n

f(2)
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f is the natural (resonant) frequency, and f and f^ are the frequencies

at which the response is a factor (1/N)th of the resonant response. Since AfM

is generally the difference between two closely spaced numbers, the greater

the value of Af_., the greater the accuracy of the measurement.

C. Test Procedures and Results

Virtual mass is computed from measured values of resonant frequencies.
Damping factor is computed from the frequency response function of the rod.
For each of the two test element lengths, rod natural frequency and damping
in air is measured. In-air results are given in Table 2. It should be noted
that the in-air natural frequency of the 28.1 inch (0.714m) test element was
only measured once, prior to Test No. 1. During tests with the 14 inch
(0.356m) test element, five measurements of rod natural frequency in-air were
made with an averaged deviation from the mean of 0.24 per cent.

For a given annular gap and fluid, resonant frequency is determined
by applying a sinusoidal current to the coils, slowly sweeping through the
frequency range centered about the fundamental frequency of the rod, selecting
the peak response, recording the period associated with the peak oscillation
as read from a frequency meter, and taking the reciprocal of the period to
obtain resonant frequency. Four independent measurements are obtained by
traversing two cycles of increasing and decreasing annular gaps and at each
gap approaching resonant frequency by sweeping both up and down in frequency.
The four measurements are compared to assess repeatability and, if repeatabil-
ity is shown, are then averaged. The averaged experimentally-determined
resonant frequencies are summarized in Table 2. Added mass correction factor
is computed from equation (41) using the results given in Table 2, and is
also tabulated in Table 2 along with Stokes number (S) based on the resonant
frequency of the rod and rod radius.

Damping factor is obtained by applying random excitation to the rod,
computing the transfer function, and calculating damping factor from the
transfer function by both the bandwidth and magnification factor methods.
The transfer function is computed from the cross-spectral density function
and its validity is checked by computing the coherence function; both compu-
tations are performed on a digital fast Fourier transform analyzer. At each
test condition, damping factor is computed from the bandwidth method at two
different response levels corresponding to N equal to /2" and 2 in equation
(42). Damping factor is also computed from the magnification factor at
resonance (Q), corrected to account for calibration uncertainties and energy
which goes into sustaining vibration in the plane normal to the plane of
excitation. The three values of damping factor are then compared to assess
reliability of the measurements and, if agreement is good, they are averaged.
It is assumed that the in-air measurements of damping account primarily for
material and joint damping. Consequently, to obtain a more accurate measure
of the viscous damping, the measured value of in-air damping is subtracted
from the experimentally determined values accounting for the differences in
critical damping coefficient. Results are summarized in Table 2.



TABLE 2 SUMMARY OF TEST RESULTS

3
1-1

D/d

1.25

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

P/d

2.25

2.50

3.0

3.5

TEST No. 1

Fluid: Water
R ' 3.39

(fn>ATR -16-°4 Hz

<«n>AIK - °'11% C R

(Hz)

8.97

11.84

12.99

13.40

13.61

13.72

13.79

13.85

13.90

11.77

12.85

13.46

13.65

S

2450

3230

3540

3650

3710

3740

3760

3780

3790

3210

3500

3670

3720

CM

7.45

2.83

1.78

1.47

1.32

1.24

1.20

1.16

1.12

2.91

1.89

1.42

1.29

(% CR)

9.88

2.77

1.47

0.98

0.95

0.83

0.71

0.76

0.65

2.99

1.63

1.04

0.94

TEST No. 2

Fluid: Mineral Oil
R = 3.39

<fn>AIR = 1 6' 0 4 H z

(? n) A I R = 0.11% CR

(Hz)

(10.41)

11.45

12.96

13.35

13.57

13.69

13.77

13.84

13.93

11.86

13.22

13.63

13.76

S

69.2

76.2

86.2

88.8

90.3

91.1

91.6

92.1

92.7

78.9

87.9

90.7

91.5

CM

4.98

3.49

1 93

1.61

1.44

1.35

1.29

1.24

1.18

3.01

1.71

1.40

1.30

(% CR)

(60)

13.8

5.37

3.74

3.21

2.90

2.65

2.67

2.46

26.5

8.20

4.47

3.73

TEST No. 3

Fluid: Silicone Oil
R = 3.39

(fn)AIR - 16-04 Hz

(Cn)AIR " O'11* C R

fn
(Hz)

11.77

12.48

12.78

13.00

13.12

13.19

13.27

13.34

8.20

12.69

12.93

13.06

S

22.1

23.5

24.0

24.4

24.7

24.8

25.0

25.1

15.4

23.9

24.3

24.6

cM

3.04

2.31

2.04

1.85

1.75

1.70

1.63

1.58

10.0

2.12

1.91

1.80

(% CR)

(54)

14.0

8.71

7.27

6.69

6.23

5.97

5.55

57.1

26.5

9.73

7.70

TEST No. 4

Fluid: Water
R = 3.72

(fn>AIR - 58.38 Hz)

<5n)AIR
 = °'53% CR

*n
(Hz)

(36.96)

44.25

47.99

49.47

50.17

50.55

50.86

51.08

51.22

44.25

47.70

49.68

50.18

S

10,100

12,100

13,100

13,500

13,700

13,800

13,900

13,900

14,000

12,100

13,000

13,500

13,700

cM

5.56

2.76

1.79

1.46

1.32

1.24

1.18

1.14

1.11

2.76

1.85

1.42

1.32

(% CR)

2.61

1.78

1.04

0.73

0.62

0.61

0.51

0.53

0.50

2.36

1.23

0.65

0.54
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Theoretical values of Re(H) ( * CLj and In (H) are obtained using

the Stokes Numbers and radius ratios given in Table 2. "Theoretical" values
of damping factor are computed from equation (36), rewritten in the form

using theoretical values of C. and values of r and R taken from Tables 1

and 2. In Figs. 4 and 5, theoretical and experimental results are compared.

Agreement between theoretical and experimental results are very good
for the tests with water (Tests No. 1 and 4); among other things, the results
indicate the decrease in added mass and damping with increasing frequency as
predicted by theory. In Fig. 4, while the experimental results from Tests
No« 2 and 3 exhibit the proper trends, the agreement with theory is not as
good. However, as noted above, only one measurement of the "in-air" natural
frequency of the 28.2 inch (0.714m) test element was made at the initiation
of testing. Since calculation of the added mass correction factor is sensi-
tive to the valu.: of in-air natural frequency, the experimental phase of the
study is deficient in that additional measurements of in-air natural frequen-
cies were not made. In an attempt to compensate for this deficiency, it is
observed that it is reasonable to expect slight changes in frequecny (on the
order of 1 or 2 per cent) caused by "disturbing" the test assembly in changing
test fluids. Based on the good agreement between theory and experiment for
the water tests (for which in-air measurements were made prior to testing),
assume that the theory is valid for a rod vibrating in an "infinite" fluid
and that a radius ratio (D/d) of 5 approximates the infinite condition. With
the values of F and R given in Table 1 and 2, respectively, it is easy to use
equation (41) to calculate the following values of in-air natural frequencies
that result in agreement between theoretical and experimental results at
D/d = 5 for Tests No. 2 and 3:

ff\ fl6.43 Hz, Test 2 (Mineral Oil)) r
/AIR"!,V ' «"»• v»16.26 Hz, Test 3 (Sillcone Oil)

In Fig. 4, "experimental" results obtained from equation (41), using mea-
sured values of resonant frequency from Tests 2 and 3 given in Table 2, and
the appropriate values of in-air natural frequencies as given by equation
(44), are compared with theory. It is readily observed that agreement is
now very good over the range of radius ratios and Stokes numbers tested.
This leads one to suspect that some of the discrepancy between theory and
experiment in Tests No. 2 and 3 might be attributed to slight changes in
in-air natural frequency caused by disturbing the base plate between tests.

Results from the 7-rod hexagonal array tests are also summarized in
Table 2 for the four different pitch-to-diameter ratios tested. Tests were
performed with the center rod excited in-line with adjacent rods and also
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in a plane 30° to the in-line direction. Results from the two series of
tests were essentially the same; the presented results represent averaged
values. In an attempt to correlate che 7-rod hexagonal array results with
those from the fluid annulus tests an effective radius ratio was determined
from theory and a correction factor to the pitch-to-radius ratio was defined
as

(D/d)effective (45)
CD (P/d) (43>

The results are given in Fig. 6 as curves of C versus P/d. Unfortunately,

a constant value of C_ is not obtained and, further, the correction factor

is different for the added mass and damping factor. Nevertheless, the
results give insight into the behavior of closely-spaced rod arrays, thus
providing some design guidance prior to the development of a theory.

IV. CONCLUDING REMARKS

In this report, a closed form solution for the added mass and damping
coefficient is obtained and a series of experiments is conducted for a cy-
lindrical rod vibrating in a viscous fluid filling a fixed cylindrical shell.
Analytical results and experimental data for the added mass coefficient and
damping ratio are found to be in good agreement. Thus, the closed form
solution can be used in the study of the response of circular cylindrical
rods in viscous fluid annuli.

A few remarks should be made:

(1) The added mass factor Cw and damping coefficient C are dependent

on the dimensionless number S (= ) ; as S increases, C,. and C decrease.

For fixed values of d andv, C,. decreases with an increasing w; this behavior

is also noted by Miller [7]

(2) In the analysis, the fluid field is considered to be two
dimensional; that is, the axial motion of the fluid is neglected. This is
Justified for a large value of Jt/d as in the case of inviscid fluid [12].
When i and d are of the same order of magnitude, the three dimensional
effect of the flow should be considered.

(3) The linear theory presented in this report is based on the
assumption that the vibration amplitude is small. As the rod displacement
becomes large, the nonlinear effects of the fluid field will be important.
In fact, it was shown by Miller [7] that C, is a function of the vibration
amplitude. However, for small vibration, as in the cases of many reactor
components, the linear theory is applicable, and C^ and C are independent
of the amplitude of oscillation. v
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APPENDIX

Effective Mass Per unit Length of Rod

The permanent magnets embedded near the free end of the cantilever
represent a concentrated mass that must be accounted for in computing the
effective mass per unit length of the test element. Employing the Rayleigh-
Ritz method, the natural frequency of a uniform beam of length I, with a
concentrated mass (MQ) located at x = b can be written in the form

ljo[<fr"(x)]2dx
U2 = T ^
n p*i <(.2(x)dx + Mod.

2(b)

where <Kx) is the mode shape. Nondimensionalizing x as x = x/£ and defining

I _ .,2 .

a, = -
D*" (x)J dx
/!<|>2(x)dx

a n d # 2 ( b ) ( 4 8 )

|V(x)dx
'O

allows writing equation (46) in the form

n 2ir 1? I m '

where
M

m = PA I ! + 7T7 k ) • (50)

The effective mass of the magnets, M , is given by

Mo " psteel " Pal ' Vo

where V is the volume occupied by the magnets.
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For a 0.5 inch (12.7mm) diameter aluminum rod

pA = 0.498 x 10~ Ib.sec2/m2 (0.171 kg/m) . (52)

There are 13 0.25 inch (6.35mm) diameter, 0.375 inch (9.52mm) long
magnets with an effective mass as obtained from equation (51), given by

M Q = 1.19 x lO'^lb.sec
2^ (0.821 kg/m) . (53)

With the center of the magnet assembly located 2.7 inch (68.6mm) from the
free end of both the 28.1 inch (0.714m) and 14 inch (0.356m) long test
elements, the corresponding values of k, assuming the mode shape to be
that of a uniform cantilever beam, are 2.96 and 2.19 respectively. Eval-
uating the effective mass by using the appropriate k values, and sub-
stituting equations (50) and (51) into equation (48), yields

).622 x lO'^lb.sec2/^2 (0.429 kg/m), % = 28.1 inch (0.714m)
m = I (54)

|b.682 x lO^lb.secVln2 (0.470 kg/m), I = 14 inch (0.356m)

I
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