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Added Mass Effects of Compressible and Incompressible Flows

in Fluid-Structure Interaction

E.H. van Brummelen∗

Delft University of Technology, Faculty of Aerospace Engineering

(Dated: March 12, 2008)

The subiteration method which forms the basic iterative procedure for solving fluid-structure-
interaction problems is based on a partitioning of the fluid-structure system into a fluidic part and
a structural part. In fluid-structure interaction, on short time scales the fluid appears as an added
mass to the structural operator, and the stability and convergence properties of the subiteration
process depend significantly on the ratio of this apparent added mass to the actual structural mass.
In the present paper, we establish that the added-mass effects corresponding to compressible and
incompressible flows are fundamentally different. For a model problem, we show that on increasingly
small time intervals, the added mass of a compressible flow is proportional to the length of the time
interval, whereas the added mass of an incompressible flow approaches a constant. We then consider
the implications of this difference in proportionality for the stability and convergence properties
of the subiteration process, and for the stability and accuracy of loosely-coupled staggered time-
integration methods.

PACS numbers: 47.11.-j
Keywords: Fluid-structure interaction, added-mass effect, compressible and incompressible flow, subiteration

I. INTRODUCTION

The numerical simulation of the interaction of a flexible
structure with a contiguous fluid flow is of critical impor-
tance to a multitude of applications, including the analy-
sis of aero-elastic instabilities such as flutter in aerospace
engineering [1, 2] and the investigation of cardiovascular
disorders such as vulnerable plaques and aneurysms in
biomechanics [3, 4]. The basic iterative method for solv-
ing fluid-structure-interaction problems is subiteration.
In the subiteration method, the fluid and solid subprob-
lems are solved alternatingly, subject to complementary
partitions of the interface conditions. In strongly-coupled
partitioned schemes, the subiteration process is repeated
until convergence to a prescribed tolerance. Alterna-
tively, the subiteration method can be used as a precon-
ditioner, for instance to a Krylov-subspace method [5, 6],
or as a smoother in multigrid [7]. In loosely-coupled
(or staggered) time-integration schemes, the subiteration
procedure is performed only once per time step [2, 8, 9].

On short time scales, the effect of the fluid on the struc-
ture can be represented as an added mass. The ratio of
this apparent added mass to the structural mass is crit-
ical to the convergence and stability properties of the
subiteration process. If the characteristic mass ratio ex-
ceeds one, then the subiteration process is unstable; see,
e.g., [10]. The added-mass effect of incompressible flows
has recently been studied in [10–12]. Heuristic methods
to account for the added-mass effect in fluid-structure-
interaction computations with very light structures such
as large cargo parachutes have been proposed in [13, 14].
However, improved understanding of these effects in en-
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gineering computations would be beneficial. The added-
mass effect of compressible flows is not well known. More-
over, despite the fact that there is a general concensus
that the behaviour of subiteration is distinctly different
for compressible and incompressible flows, it appears that
the precise distinction is not well understood. This in-
complete understanding has been the source of many mis-
communications with regard to the stability properties of
subiteration, and with regard to the accuracy and stabil-
ity of staggered time-integration schemes, which depend
strongly on the stability characteristics of the underlying
subiteration procedure.

In the present paper, we investigate the difference be-
tween the added-mass effects pertaining to compressible
and incompressible flows, and we consider the implica-
tions for the stability and convergence of the subiteration
process, and for the stability and accuracy of staggered
time-integration methods. Based on a model problem,
viz., a fluid flow on a semi-infinite domain over a flexible
panel in 2D, we show that the added mass of a com-
pressible flow is proportional to the length of the time
step in the time-integration process, whereas the added
mass of an incompressible flow approaches a constant as
the time step vanishes. Consequently, regardless of the
density of the fluid and the mass of the structure, the
subiteration process is stable and convergent for com-
pressible flows for sufficiently small time steps. For in-
compressible flows, this is not the case, and the subitera-
tion method can remain unstable in the limit of vanishing
time-step size. The distinct difference in the added-mass
effect of compressible and incompressible flows, and in
the corresponding properties of the subiteration method,
is caused by the fact that for compressible flows the dis-
placement of the interface affects the fluid only in the
immediate vicinity of the interface, on account of the
finite speed of sound in compressible fluids, whereas for
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incompressible fluids the displacement of the interface in-
duces a global perturbation in the fluid. This qualitative
difference between compressible and incompressible flu-
ids applies identically to other fluid-structure-interaction
problems. It is therefore anticipated that the results of
this paper generalize mutatis mutandis to other, more
complicated fluid-structure-interaction problems.

For incompressible flows, the model problem that we
consider is a generalization of that in [10], in that we
include convective and viscous effects. Our analysis con-
veys, however, that these effects are subordinate in the
short time-scale limit and, hence, in this limit we retrieve
the results of [10] for incompressible flow. The approach
in this paper is based on formal Fourier analyses of lin-
earized model problems, without regard for convergence
of the Fourier series in the appropriate norms. The re-
sults can be provided with a rigorous footing, but this is
beyond the scope of the present paper.

The contents of this paper are organized as follows:
Section II presents the problem statement. In sections III
and IV we derive the relation between the structural dis-
placement and the corresponding pressure exerted by the
fluid on the structure for the compressible-flow model and
the incompressible-flow model, respectively. Section V
investigates the stability and convergence properties of
subiteration for the two flow types. In section VI we
consider the implications of the distinct properties of
subiteration for compressible and incompressible flows for
the stability and accuracy of staggered time-integration
methods. Section VII contains concluding remarks.

II. PROBLEM STATEMENT

To formulate the model problems, let x, y and t des-
ignate a horizontal spatial coordinate, a vertical spatial
coordinate and a temporal coordinate, respectively. We
consider an open space-time domain,

Qα = {(x, y, t) : 0 < t < T, 0 < x < L,α(x, t) < y <∞};

see the illustration in Figure 1. The bottom boundary
of Qα, which represents the interface between the com-
pressible or incompressible fluid flow inQα and the struc-
ture, is given by

Γα = {(x, y, t) : 0 < t < T , 0 < x < L , y = α(x, t)} .

The fluid models are elaborated in sections III and IV.
The structural model that we consider pertains to the

flexural vibration of a beam:

m
∂2z

∂t2
+ σ2 ∂

4z

∂x4
= p0 − π(x, t), (1)

with m the mass of the beam per unit length, z the ver-
tical displacement, σ the flexural rigidity, p0 a prescribed
exterior pressure, and π the force exerted by the fluid on
the structure.
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FIG. 1: Illustration of the panel problem: Temporal cross
section with expanded interface region.

Denoting by p|Γα
the pressure in the fluid at the in-

terface, the fluid and the structure are connected by the
dynamic and kinematic interface conditions,

π(x, t) = p|Γα
, α(x, t) = z(x, t). (2)

The fluid-flow models associate a unique pressure
field π with each admissible interface displacement
field α. We refer to the map P : α 7→ π as the
displacement-to-pressure (dtp) operator corresponding to
a particular flow model. For the panel-model problem
that we consider, the customary subiteration approach
for solving fluid-structure-interaction problems can be
condensed into the following iterative procedure: Given
an initial approximation of the structural displacement,
z0, repeat for n = 1, 2, . . .,

m
∂2zn

∂t2
+ σ2 ∂

4zn

∂x4
= p0 − P (zn−1), (3)

To elucidate the problem considered in this paper, let
us consider the particular case that (1) is provided with
the homogeneous initial conditions

z(x, 0) = 0, ∂tz(x, 0) = 0 , (4)

and, moreover, suppose that the flow problem is fur-
nished with initial and boundary conditions such that
it admits a uniform flow with pressure p0. The obvious
solution to (1) is then z(x, t) = z̄(x, t) = 0, and the corre-
sponding solution of the flow problem is the uniform flow
specified by the initial conditions. By adding a suitable
partition of zero to (3), we obtain

m
∂2(zn − z̄)

∂t2
+σ2 ∂

4(zn − z̄)

∂x4
= −

(

P (zn−1)−P (z̄)
)

, (5)

If we restrict our considerations to displacements that are
small in the appropriate norm, the right member of (5)
can be linearized, and we obtain the following recursion
relation for the iteration error εn = zn − z̄ in the subit-
eration process:

m
∂2εn

∂t2
+ σ2 ∂

4εn

∂x4
= −P ′εn−1, (6)
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where P ′ designates the linearized dtp operator. More-
over, under the stipulation that the iterates zn comply
with the initial conditions, it follows that the iteration
errors εn satisfies homogeneous initial conditions:

εn(x, 0) = 0, ∂tεn(x, 0) = 0 . (7)

In the sequel of this paper, we derive the linearized dtp
operators for a compressible flow and an incompressible
flow model, and we examine the corresponding behaviour
of the subiteration error in compliance with (6) and (7).

III. COMPRESSIBLE FLOW MODEL

We consider a compressible flow governed by the Euler
equations,

∂q

∂t
+
∂f(q)

∂x
+
∂g(q)

∂y
= 0 , (x, y, t) ∈ Qα , (8a)

with

q := (q1, q2, q3, q4),

f (q) :=

(

q2,
q22
q1

+ p(q),
q2q3
q1

,
q2(p(q) + q4

)

q1

)

,

g(q) :=

(

q3,
q23
q1

+ p(q),
q2q3
q1

,
q3

(

p(q) + q4
)

q1

)

.

(8b)

In (8b), q1, q2, q3 and q4 denote the density, horizon-
tal momentum, vertical momentum and total energy of
the fluid, respectively. The system (8) is closed by the
equation of state

p(q) := (γ − 1) (q4 −
1
2 (q22 + q23)/q1), (8c)

with γ = 1.4.
At the interface, the fluid flow complies with the flow

tangency condition

∂α

∂t
+
q2
q1

∂α

∂x
−
q3
q1

= 0. (9)

The boundary conditions on the complement ∂Ωα \ Γα

will not be further elaborated.
To derive the linearized dtp operator corresponding

to (8), we consider small deflections:

αǫ = 0 + ǫ α′, ǫ→ 0. (10)

Accordingly, we assume that the fluid solution can be
formally expanded as qǫ = q0 + ǫq′ + O(ǫ2), where the
generating solution q0 corresponds to a uniform horizon-
tal flow with density ρ0 > 0, horizontal velocity U0 ≥ 0
and pressure p0,

q0(x, y, t) =
(

ρ0, ρ0U0, 0,
1
2ρ0U

2
0 + p0/(γ − 1)

)

. (11)

One easily verified that (11) indeed satisfies (8) and (9)
for α = 0. In addition, we assume that qǫ is isentropic

and irrotational. The first-order perturbation in the fluid
solution can then be written as

q′ =
(

ρ′, ρ′U0 + ρ0∂xϕ
′, ρ0∂yϕ

′, E′
)

,

where the potential ϕ′ complies with the linearized full-
potential equation

U2
0

∂2ϕ′

∂x2
+ 2U0

∂2ϕ′

∂x∂t
+
∂2ϕ′

∂t2
− C2

0

(

∂2ϕ′

∂x2
+
∂2ϕ′

∂y2

)

= 0 ,

(12)

with C0 :=
√

γp0/ρ0 the speed of sound corresponding
to the reference state. The energy perturbation E′ is
irrelevant in the sequel. The density perturbation ρ′ it
related to the potential by

ρ′ = −(ρ0/C
2
0 )(∂tϕ

′ + U0∂xϕ
′) . (13)

Moreover, upon expanding the pressure according to
p(qǫ) = p(q0)+ ǫp′ +O(ǫ2), it holds that p′ = C2

0ρ
′. The

flow-tangency condition (9) yields the first-order condi-
tion

∂α′

∂t
+ U0

∂α′

∂x
−
∂ϕ′

∂y
= 0 . (14)

It is to be noted that (12) and (14) hold on the unper-
turbed domain Q0 and on the unperturbed interface Γ0,
respectively.

The Green’s function for the wave equation (see, for in-
stance, Refs. [15, p.473], [16, p.520]) enables us to express
the pressure perturbation at Γ0 in accordance with (12)
and (14) as p′|Γ0

= P ′α′, with the operator P ′ accord-
ing to

P ′ = π−1ρ0C0 Ψ ΞΨ, (15a)

where

(Ξψ)(x, t) =

∫ t

0

∫

R

ψ(ξ, τ)

×
H(C0(t− τ) − |(x− ξ) − U0(t− τ)|)
√

C2
0 (t− τ)2 − |(x − ξ) − U0(t− τ)|2

dξ dτ , (15b)

with H(·) the Heaviside function and

Ψε =

{

∂tε+ U0∂xε if (x, t) ∈]0, L[×]0, T [

0 otherwise
(15c)

It is noteworthy that the Heaviside function restricts the
domain of integration to the triangle

{τ < t, x− (U0 +C0)(t− τ) < ξ < x− (U0 −C0)(t− τ)},
(16)

which constitutes the projection of the domain of depen-
dence associated with (12) for the space/time coordinate
(x, t) onto Γ0. Equation (15) represents the linearized
dtp operator corresponding to the considered compress-
ible flow model.



4

To facilitate the interpretation of the added-mass effect
associated to (15), we derive the Fourier symbol of the
operator (15). To this end, we first derive the Fourier
symbol of the integral operator Ξ. Let us consider an
isolated Fourier mode

ψ(x, t) = ψ̂(κ, ω) exp(iκx+ iωt) . (17)

Upon inserting (17) in (15b), and restricting the domain
of integration in accordance with (16), we obtain

(Ξψ)(x, t) = Ξ̂(κ, ω, x, t) ψ̂(κ, ω) exp(iκx+ iωt) , (18)

where the Fourier symbol Ξ̂ is given by

Ξ̂(κ, ω, x, t) =

∫ t

0

∫ x−(U0−C0)(t−τ)

x−(U0+C0)(t−τ)

e−i(κ(x−ξ)+ω(t−τ))

×
(

C2
0 (t− τ)2 − |(x− ξ) − U0(t− τ)|2

)

−1/2
dξ dτ .

(19)

We introduce the transformations

(θ, η) 7→ (ξ, τ) =
(

x− (U0 − C0 sin θ)η, t− η
)

, (20a)

(r, ζ) 7→ (κ, ω) = r 2t−1
(

C−1
0 cos ζ, sin ζ

)

. (20b)

Note that the factor C−1
0 is prerequisite in (20b) to en-

sure dimensional consistency. By means of (20) and the
partition of unity 1 = sin2 θ + cos2 θ, the integral (19)
can be condensed into

Ξ̂ = t

∫ π/2

−π/2

sinβ

β
exp(−iβ) dθ , (21)

where

β(r, ζ, θ) = r (M cos ζ + sin ζ − cos ζ sin θ),

with M = U0/C0 the Mach number. Noting that
|β−1 sinβ| ≤ 1 for all β ∈ R, it follows from the Cauchy-
Schwartz inequality that the Fourier symbol of Ξ can be
bounded as

|Ξ̂(κ, ω, x, t)| ≤ t
∥

∥(·)−1 sin(·)
∥

∥

L2(−π/2,π/2)

×
∥

∥ exp(−i(·))
∥

∥

L2(−π/2,π/2)
≤ π t . (22)

For the operator Ψ according to (15c) we simply ob-
tain:

(Ψψ)(x, t) = Ψ̂(κ, ω) ψ̂(κ, ω) exp(iκx+ iωt),

with Ψ̂ = i(ω+U0κ). The Fourier symbol of the compos-
ite operator (15a) is the product of the Fourier symbols of
the operators in the composition. Hence, we obtain the
following upper bound for the Fourier symbol of the lin-
earized dtp operator (15) associated with the compress-
ible flow problem:

|P̂ | ≤ ρ0C0t |ω + U0κ|
2 . (23)

In particular, in the analysis of the added-mass effect,
we shall be interested in short time intervals or, equiva-
lently, high frequencies. In this context, it is to be noted
that (23) yields |P̂ | . ρ0C0t ω

2 in the high-frequency
limit ω → ∞. The Fourier symbol of this high-frequency
limit can be associated with an added mass

µc = ρ0C0t . (24)

Hence, the added mass corresponding to the compress-
ible flow is time dependent and, specifically, the added
mass µc is proportional to t.

Let us allude to the fact that the added mass µc in (24)
admits an intuitive physical interpretation: because pres-
sure perturbations travel at the speed of sound C0, the
displacement of the interface has a local effect on the
fluid, and only affects the fluid in a region within dis-
tance C0t of the interface. The mass corresponding to
this region (per unit length) is precisely µc.

IV. INCOMPRESSIBLE FLOW MODEL

We consider an incompressible flow governed by the
Navier–Stokes equations,

∂tu+ ∂xuu+ ∂yuv + ∂xp− ν∆u = 0, (25a)

∂tv + ∂xuv + ∂yvv + ∂yp− ν∆v = 0, (25b)

∂xu+ ∂yv = 0, (25c)

where u and v represent the horizontal and vertical ve-
locity components, respectively, p denotes the pressure
divided by the (homogeneous) fluid density ρ0, ν is the
dynamic viscosity and ∆ designates the Laplace opera-
tor.

At the interface, the flow is assumed to obey slip
boundary conditions. This implies that the flow com-
plies with the tangency condition

∂α

∂t
+ u

∂α

∂x
− v = 0, (26)

and, moreover, that the tangential component of the nor-
mal traction vanishes,

nα · ∇u · tα + tα · ∇u · nα = 0, (27)

where nα and tα denote the unit normal vector and the
unit tangential vector to Γα, respectively, ∇ = (∂x, ∂y)
and u = (u, v). The boundary conditions on ∂Ωα \ Γα

will be elaborated in passing.
We are concerned with small deflections αǫ conforming

to (10) and, accordingly, we assume that the flow solution
can be formally expanded as

(u, v, p)ǫ = (u, v, p)0 + ǫ(u, v, p)′ +O(ǫ2). (28)

where the generating solution (u, v, p)0 = (U0, 0, p0)
again corresponds to a uniform horizontal flow. Upon
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inserting the expansion in (25a) and collecting terms
of O(ǫ), we obtain the first-order conditions

∂tu
′ + U0∂xu

′ + ∂xp
′ − ν∆u′ = 0, (29a)

∂tv
′ + U0∂xv

′ + ∂yp
′ − ν∆v′ = 0, (29b)

∂xu
′ + ∂yv

′ = 0. (29c)

These conditions hold on Q0. The boundary condi-
tions (26) and (27) moreover imply that u′ and v′ comply
with the following first-order conditions on Γ0:

∂α′

∂t
+ U0

∂α′

∂x
− v′ = 0, (30)

and

∂u′

∂y
+
∂v′

∂x
= 0 . (31)

For notational convenience, we introduce the con-
densed notation q′(x, y, t) = (u′, v′, p′)(x, y, t). Instead of
deriving an explicit expression for the linearized dtp oper-
ator corresponding to (29)–(31), we establish its Fourier
symbol. To this end, we regard an isolated Fourier com-
ponent of the interface displacement,

α′(x, t) = α̂(κ, ω) exp(iκx+ iωt), (32)

and a corresponding velocity/pressure perturbation

q′(x, y, t) = q̂(k, ω) exp(iκx+ iωt+ sy). (33)

We stipulate that the velocity and pressure perturba-
tions vanish as y → ∞. This implies that the functions
s := s(κ, ω) must have strictly negative real part. Upon
inserting (33) into (29), we obtain

N̂(k, ω) · q̂(k, ω) exp(iκx+ iωt+ sy) = 0, (34)

where the Fourier symbol N̂(k, ω) of the system (29) is
defined by

N̂(k, ω) =





Ĥ(k, ω) 0 iκ

0 Ĥ(k, ω) s
iκ s 0



 , (35)

with Ĥ(k, ω) = iω + iU0κ + ν(κ2 − s2). Therefore, (33)
complies with (29) if and only if

q̂(k, ω) ∈ kernel(N̂(k, ω)) . (36)

Equation (36) admits nontrivial solutions under the strict
condition that

det(N̂(k, ω)) = (κ2 − s2) Ĥ(k, ω) = 0. (37)

It then follows that (33) satisfies (29) provided that

q̂(k, ω) ∈ span
{(

iκ,−|κ|,−i(ω+U0κ)
)}

, s = −|κ|, (38)

or

q̂(k, ω) ∈ span{(s,−iκ, 0)}, Ĥ(k, ω) = 0. (39)

A solution to (29)–(31) with α′ specified by (32) can be
obtained by combining the modes (38)–(39):

q′ = α̂





(ω + U0k)(σ
2 + κ2)

|κ|(κ2 − σ2)
exp(−|κ|y)





−κ
−i|κ|

(ω + U0κ)





+
2(ω + U0k)κ

κ2 − σ2
exp(σy)





−σ
iκ
0







 exp(iκx+ iωt),

(40)

with σ(κ, ω) = ±
√

κ2 + i(ω + U0κ)/ν, subject to the re-
striction that the real part of σ is negative. Recalling that
the pressure divided by the density corresponds to the
third component of (40), we obtain the following Fourier
symbol for the linearized dtp operator corresponding to
the incompressible flow:

P̂ (κ, ω) = ρ0

(

−
(ω + U0k)

2

|κ|
+ i

2νκ2(ω + U0κ)

|κ|

)

. (41)

It is to be noted that the high-frequency limit of (41)

yields P̂ ∼ −ρ0|κ|
−1ω2 as ω → ∞. This symbol can be

associated with an added mass ρ0|κ|
−1. In fact, the wave

number can only assume values κ = kπ/L, k ∈ N, on
account of the structural boundary conditions α(0, t) =
α(L, t) = 0. Hence, the largest-wave-length component
(k = 1) is dominant, and for this component it holds

that P̂ ∼ − µi ω
2 as ω → ∞, where the added mass is

defined by:

µi = ρ0L/π . (42)

Equation (42) conveys that the added mass correspond-
ing to the incompressible flow is independent of time. It
is noteworthy that the added mass (42) is consistent with
that derived in [10], in the appropriate limit.

To provide a physical explanation for the difference in
the added-mass effect for compressible and incompress-
ible flows, we note that the mode (40) is global. Hence,
whereas for compressible flows the effect of the displace-
ment of the interface on the fluid is confined to a region
within distance C0t of the interface (see section III), for
incompressible flows the fluid is affected throughout its
entire domain.

Let us moreover note that the convective part and
the viscous part of P̂ according to (41) are proportional
to ω, whereas the added-mass part is proportional to ω2.
Hence, convective effects and viscous effects are subordi-
nate to the added-mass effect in the limit ω → ∞.

V. STABILITY AND CONVERGENCE OF

SUBITERATION

Equipped with the Fourier symbols of the linearized
dtp operators, we can establish the behaviour of the it-
eration error according to (6) for the compressible and
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incompressible flows. Let us consider an isolated Fourier
component of the iteration error:

εn(x, t) = ε̂n(κ, ω) exp(iκx+ iωt) , (43)

Upon inserting (43) in equation (6), we obtain the rela-
tion |ε̂n(κ, ω)| ≤ ̺(κ, ω) |ε̂n−1(κ, ω)|, where the contrac-
tion number ̺ is defined by:

̺(κ, ω) =
|P̂ (κ, ω)|

| −mω2 + σ2κ4|
. (44)

Again restricting our consideration to high frequencies,
it follows that the contraction number is bounded from
above as ̺ ≤ µ/m as ω → ∞, where µ refers to the added
mass according to (24) and (42) for the compressible flow
and incompressible flow, respectively, and equality holds
in the incompressible case. Let us note that the follow-
ing results extend without further modifications to other
structural-stiffness operators, as for fixed κ the contri-
bution corresponding to the structural-stiffness operator
to (44) vanishes in the limit ω → ∞. This argument has
also been used in [12]. If ̺ ≤ 1, the Fourier amplitudes ε̂n

form a non-increasing sequence and, hence, the subitera-
tion process is stable. Moreover, if ̺ < 1, the subiteration
process is formally convergent, and ̺ determines the rate
of convergence. For the compressible and incompressible
flows, equations (24), (42) and (44) lead to the following
estimates for the corresponding contraction numbers:

̺c ≤
ρ0C0t

m
+O(ω−1), (45a)

̺i =
π−1ρ0L

m
+O(ω−1), (45b)

as ω → ∞.
The estimates in (45) elucidate the fundamental dif-

ference in the properties of the subiteration method for
compressible and incompressible flows. In computational
methods, the subiteration procedure is generally applied
to resolve the aggregated fluid-structure system within
each time step of a time-integration process, i.e., the it-
eration (3) is repeated within each time step until the
iteration error is inferior to a certain prescribed toler-
ance. Hence, within a time step, the sequence of itera-
tion errors complies with (6) and (7), and we implicitly
restrict our consideration of the iteration error to the
time interval 0 ≤ t ≤ δt, where δt denotes the time step
in the time-integration process. The upper bound (45a)
then yields ̺c ≤ ρ0C0δt/m. In particular, this implies
that for compressible flows the convergence behaviour
of the subiteration process improves if the time step is
reduced and, specifically, ̺c → 0 as δt → 0. Let us re-
mark that this behaviour has also been established for
the piston problem in [17]. Consequently, for all set-
tings of the structural mass m and the fluid density ρ0,
there exists a strictly positive time step δt∗ such that the
subiteration process is stable for all δt ∈ ]0, δt∗]. More-
over, if the time-step size is reduced by a certain factor,

then the convergence rate of the subiteration process im-
proves by that same factor. For incompressible flows, this
is not the case. For increasingly small time steps, i.e., in
the limit δt → 0, the contraction number converges to-
wards the strictly positive, time-step-independent high-
frequency limit in (45b). Therefore, if the characteristic
fluid-structure mass ratio µi/m exceeds one, the subiter-
ation method is unstable, regardless of the time step.1

The above results have been established on the ba-
sis of the continuum problem. If a particular temporal
discretization scheme is considered, then the structure of
the estimates in (45) remains intact, although the precise
values can be different. We refer to [12] for an overview
of the effects of temporal discretization schemes on the
stability of the subiteration procedure for fluid-structure
interaction with incompressible flow.

VI. STAGGERED TIME-INTEGRATION

METHODS

The aforementioned fundamental difference in the con-
vergence properties of the subiteration process for com-
pressible and incompressible flows also carries important
consequences for the suitability of staggered (also referred
to as loosely-coupled or partitioned) time-integration
procedures, i.e., time-integration methods in which the
subiteration step is performed only once per time step;
see, for instance, [2, 8, 9]. We regard a partition of the
time interval under consideration, 0 < t < T , into time
steps ti−1 < t < ti of uniform length δt = ti − ti−1

(i = 1, 2, . . . , T/δt). Within each time step, the aggre-
gated fluid-structure system can be condensed into

Awi = Bwi−1, (46)

with

wi =

(

qi
zi

)

, A =

(

A11 A12

A21 A22

)

, B =

(

B11 0
0 B22

)

,

where qi and zi represent the variables pertaining to the
discrete approximation of the fluid and structure solu-
tions on interval i, and A11, A12, A21 and A22 denote the
discretized fluid operator, kinematic condition, dynamic
condition and structural operator, respectively. The op-
erators B11 and B22 extract the initial conditions for the
fluid and structure subsystems on interval i from the ap-
proximation on the previous time interval. Of course, on
the first interval the right member of (46) is replaced by a
vector corresponding to the prescribed initial conditions.

1 In principle, this statement requires somewhat more care, be-
cause it is not a-priori obvious that (45b) does not represent an
upper bound, attained in the limit ω → ∞. A more precise anal-
ysis of (44) with P̂ according to (41) reveals that this is not the
case.
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For simplicity, we assume that the operators A and B are
linear, which is appropriate for the ensuing error analysis.

Let us assume that the system (46) has been solved
inexactly on the previous time interval, i− 1. In partic-
ular, the result on interval i− 1 contains an error δwi−1.
This error propagates to an error δwp,i on interval i via
the initial conditions. Hence, on account of the inexact
solution on interval i− 1, equation (46) is replaced by:

A (wi + δwp,i) = B (wi−1 + δwi−1). (47)

By virtue of the assumed linearity of (47), the propa-
gated error can be expressed in terms of the error on
interval i − 1 as δwp,i = L δwi−1 with L = A−1B. Note
that the inverse operator A−1 is well defined under the
standing assumption that the fluid-structure problem is
well posed.

Application of the subiteration procedure to (47) leads
to the following sequence of approximations: given an
initial estimate wi,0, for n = 1, 2, . . .,

(

A11 0
A21 A22

) (

qi,n
zi,n

)

=

(

B11 0
0 B22

) (

qi−1 + δqi−1

zi−1 + δzi−1

)

−

(

0 A12

0 0

) (

qi,n−1

zi,n−1

)

. (48)

Note that the fluid and structure approximations with
index n in fact depend exclusively on the structural ap-
proximation with index n − 1. Hence, to initialize the
procedure, it is sufficient to prescribe zi,0. We define the
local iteration error by δwi,n = wi,n− (wi +δwp,i). Upon
adding a suitable partition of zero to (48), we obtain the
error-amplification relation

(

A11 0
A21 A22

) (

δqi,n
δzi,n

)

= −

(

0 A12

0 0

) (

δqi,n−1

δzi,n−1

)

. (49)

From (49), it follows that δwi,n = Q δwi,n−1 with

Q =

(

0 −A−1
11 A12

0 A−1
22 A21A

−1
11 A12

)

. (50)

Hence, by recursion, δwi,n = Qn δwi,0.
Suppose that the initial approximation on each time

interval is obtained by means of prediction, i.e., by ex-
trapolation of the approximation on the previous time
interval. In particular,

wi,0 = E (wi−1 + δwi−1), (51)

where E represents the extension operator:

(E wi−1)(x, t) = wi−1(x, t+ δt) 0 < t < δt. (52)

The extension (52) is well defined for finite-element ap-
proximations in time. For finite-difference approxima-
tions, it can be defined via interpolating polynomials.
Assuming that in each time step the subiteration process
is terminated after n̄ iterations, the cumulative iteration

error δwi in the final result on interval i is composed of
the propagated error and the local iteration error at it-
eration n̄. From (47)–(51), we then obtain the sequence
of identities:

δwi = δwi,n̄ + δwp,i = Qn̄ δwi,0 + δwp,i

= Qn̄ (E (wi−1 + δwi−1) − (wi + δwp,i)
)

+ δwp,i

= Qn̄(E − L)wi−1 +
(

Qn̄(E − L) + L
)

δwi−1. (53)

The final identity in (53) is a consequence of wi = Lwi−1

and δwp,i = L δwi−1.
From (53) it follows by recursion that:

δwi =

i
∑

k=1

(

Qn̄(E − L) + L
)i−k

Qn̄(E − L)wk−1 , (54)

and, by the triangle inequality,

‖δwi‖ =

i
∑

k=1

‖Qn̄(E − L) + L‖i−k‖Q‖n̄‖E − L‖ ‖wk−1‖ .

(55)
Recalling that ti = i δt, we replace i− k in the exponent
in (55) by (ti − tk)/δt. A necessary condition for bound-
edness of the right member of (55) in the limit δt→ 0 is:

‖Qn̄(E − L) + L‖ ≤ 1 + ϑ δt as δt→ 0, (56)

for some positive constant ϑ. The exponential term
in (55) can then be bounded as

‖Qn̄(E − L) + L‖i−k ≤ (1 + ϑ δt)(ti−tk)/δt ∼ eϑ(ti−tk),
(57)

as δt → 0. It is to be remarked that the provision (56)
does not hold for n̄ = 0, because any appropriate norm of
the extrapolation operator ‖E‖ exceeds 1 as δt → 0. In
particular, this implies that the analysis below does not
hold if only extension is applied, or if the subiteration
process is non-convergent or if convergence is too slow.
In such circumstances, the right member of (55) becomes
unbounded as δt→ 0.

Proceeding under the assumption (56), it follows
from (55) and (57) that:

‖δwi‖ ≤ C δt−1 eϑti ‖Q‖n̄‖E − L‖ sup
k

‖wk‖ , (58)

for some constant C independent of δt, as δt → 0. Sup-
pose that the extension operator corresponds to an m-th
order extrapolation. Then for sufficiently smooth func-
tions ‖E − L‖ = O(δtm). Moreover, on account of the
fact that ‖wk‖ pertains to a time interval of length δt, it
holds that ‖wk‖ = O(δt1/2). Therefore,

‖δwi‖ ≤ C̄(ti) ‖Q‖n̄O(δtm−1/2), (59)

for some exponentially increasing function C̄(t), indepen-
dent of δt.

The error δwi, which is induced by the inexact solution
of the aggregated fluid-structure system on the intervals
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with index ≤ i, is to be compared to the discretization
error on interval, i.e., the difference between the resolved
(monolithic) discrete solution, and the actual continuum
solution. Suppose that the monolithic discrete approx-
imation corresponding to (46) yields an approximation
to the solution of the fluid-structure system with formal
temporal order of accuracym, i.e., for sufficiently smooth
solutions its holds that the approximation error on each
time interval conforms to

‖wi − w̄‖ ≤ C δtm ‖w̄‖ = O(δtm+1/2), (60)

as δt → 0, where w̄ represents the continuum solution.
The additional factor 1/2 in estimate (60) originates from
the fact that the measure of the considered time interval
is proportional to δt.

The upper bound (59) enables us to clarify the dis-
tinctly different properties of staggered time-integration
procedures for compressible and incompressible flows.
For compressible flows, ‖Q‖ is proportional to δt. In
section V this proportionality has been established for
the map δzi,n−1 7→ δzi,n; cf. (45a). However, specifically,
the norm of the map between the structure displacement
and the fluid state, δzi,n−1 7→ δqi,n, is proportional to δt,
and the norm of the map between the fluid state and the
structure displacement, δqi,n 7→ δzi,n, is proportional to 1
as δt → 0. Upon inserting the proportionality ‖Q‖ ∝ δt
in (59), it follows that for a compressible flow the iter-
ation error on interval i, i.e., the error relative to the
monolithic result, is bounded as:

‖δwi‖ ≤ Ca(ti) δt
m+n̄−1/2, (61)

as δt → 0, for some exponentially increasing func-
tion Ca(t), independent of δt. For a staggered time-
integration method, n̄ = 1 and, therefore, the cumula-
tive iteration error is of the same order as the discretiza-
tion error in the monolithic result; cf. (60). Hence, the
staggered procedure possesses the same order of accuracy
as the underlying monolithic method, but with a differ-
ent constant of proportionality. As a digression, we note
that for n̄ = 2, the cumulative iteration error is one order
higher than the discretization error. Consequently, in the
limit δt→ 0, the result obtained with 2 subiterations per
time step is identical to the monolithic results.

For incompressible flows, staggered time-integration
methods behave distinctly different. In the incompress-
ible case, the norm of ‖Q‖ converges to a positive con-
stant in the limit δt→ 0. For n̄ = 1, the global iteration
error thus remains O(δtm−1/2) and, hence, the order of
accuracy of a result obtained by a staggered method is
one order lower than that of the underlying monolithic
method. In fact, assuming that the subiteration pro-
cess is convergent, the number of subiterations per time
step must increase as n̄ ∝ | log δt| as δt → 0 to obtain
a method which yields the same order of accuracy as a
monolithic approach.

The distinct properties of ‖Q‖ for compressible and
incompressible flows is also pertinent in relation to the

condition (56). For compressible flows, ‖Q‖ ∝ δt in the
limit δt → 0. Therefore, condition (56) is fulfilled for
n̄ ≥ 1 under the solitary provision that

‖L‖ = 1 +O(δt) as δt→ 0, (62)

independent of the extrapolation operator. This implies
that if (62) holds, then the solution of the staggered
scheme cannot grow unbounded in finite time, on account
of the upper bound (57). For incompressible flows, this
is not the case, because ‖Q‖ does not vanish as δt→ 0.

VII. CONCLUSION

To examine the difference between the added-mass ef-
fects of compressible and incompressible flows, we consid-
ered the model problem of flow in a semi-infinite domain
over a flexible panel in 2D. We derived the displacement-
to-pressure operator which relates the pressure exerted
by the fluid on the structure to the structural displace-
ment for a compressible flow governed by the Euler equa-
tions and for an incompressible flow governed by the
Navier–Stokes equations. For the compressible flow, the
displacement-to-pressure operator assumes the form of
an integro-differential operator. We derived the Fourier
symbol of this operator, and we showed that in the high-
frequency limit corresponding to short time intervals, this
Fourier symbol can be associated with an added mass
proportional to the length of the considered time inter-
val. For the incompressible flow, the Fourier symbol
represents a time-independent added mass in the high-
frequency limit. Moreover, we showed for the incompress-
ible flow that the viscous and convective effects are sub-
ordinate to the added-mass effect in the high-frequency
limit.

The distinct proportionalities of the added-mass to the
time step for compressible and incompressible flows yield
essentially different behaviour of the subiteration method
for fluid-structure-interaction problems. For compress-
ible flows, for any setting of the density of the fluid and
the mass of the structure, the subiteration process is sta-
ble and convergent for sufficiently small time steps. Fur-
thermore, if the time step in the time-integration method
is reduced by a certain factor, then the convergence rate
of the subiteration method improves by that same fac-
tor. For incompressible flows, this is not the case, and
the subiteration method can be unstable even in the limit
of vanishing time-step size.

Finally, we considered the implications of the difference
in the convergence behaviour of the subiteration method
for staggered time-integration methods. We showed that
for compressible flows, the order of accuracy of a stag-
gered method is identical to that of the underlying mono-
lithic method, provided that a suitable predictor is used.
If two subiterations per time step are applied instead of
one, then the approximation provided by the staggered
method approaches the monolithic result in the limit of
vanishing time-step size. Moreover, we showed that for
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compressible flows, staggered time-integration methods
are stable in the limit of vanishing time-step size, in the
sense that the solution remains bounded in finite-time.
For incompressible flows, the order of accuracy of a sta-
ble staggered approximation with prediction is one order
lower than the corresponding monolithic result. More-
over, for incompressible flows, time-integration schemes
with a finite number of subiterations per time step can

be unstable in the limit of vanishing time-step size, in
the sense that the approximation can grow unbounded
in finite time, if the subiteration process converges too
slowly. Staggered methods therefore appear appropriate
for fluid-structure-interaction problems with compress-
ible flows, but for fluid-structure-interaction problems
with incompressible flows their use should be dissuaded.
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