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Added Mass of High-Altitude Balloons

W. J. Anderson,* G. N. Shah,t and Jungsun Park$
University of Michigan, Ann Arbor, Michigan 48109

Acoustic theory is used to find the added mass for several rigid, immersed bodies. The classical cases of a
thin circular disk and a sphere are used to determine the mesh fineness required for engineering accuracy. A
family of five Smalley-shaped balloons (zero circumferential stress in the film) is then considered, at different
inflation ratios. Acoustical boundary elements are used. The fluid is assumed incompressible and, therefore,
the added masses are identical in spirit with those from hydrodynamics. Although not important for this study,
compressibility effects can be included for other bodies, if needed. Both vertical and horizontal accelerations
are considered. Results show that the pear-shaped balloons behave in an intermediate way between spheres and
cylinders, as expected. Such accurate values for added mass will allow better simulation of balloon flight,
particularly for dynamic motion resulting from ballast or pay load drop. A major feature of this article is to
demonstrate the feasibility of calculating added masses for arbitrarily shaped bodies using acoustics. The authors
feel this approach will become a standard working tool for studies of immersed bodies such as balloons,
parachutes, and submarines because of the ease of computation. The method uses commercial finite element
preprocessors for building the model, calculation of enclosed volumes, and transferring rigid body information
to the acoustic computer program.

Nomenclature
[C] = coupling matrix
FA = acoustic load vector
Fs = structural force vector
[H] = fluid matrix
[K] = stiffness matrix
k = wave number
[M] = mass matrix
p = acoustic pressure
p = prescribed acoustic pressure on surface S,
{Q} = potential (jump of pressure) vector
r- = coefficient of determination of curve fit
5, = surface where pressures p are specified
S2 = surface where velocities vn are specified
{U} = displacement vector
v = normal velocity
v = prescribed normal velocity on surface S2
y(x) = polynomial curve fit for inertia coefficient
p = fluid density
co = frequency, rad/s

Subscripts
A = added mass
F = fluid
n = normal
S = structural

Superscripts
T = transpose
— 1 — inverse

= given value of variable, e.g., pressure
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Introduction

I F a solid body is immersed in a fluid and is then acceler-
ated, pressures are generated that affect the fluid field to

infinity. This creates kinetic energy in the fluid. One can
define an effective mass of fluid accelerating with the body;
this is called ''added" mass. Historically, the calculation of
added mass has been in the province of hydrodynamics.

Added masses are very important in studying dynamics of
bodies that are submerged in relatively heavy fluids. Neutrally
buoyant bodies such as balloons and submarines certainly
qualify, as well as bodies that have large paddle-shaped sur-
faces that disturb the fluid, such as a thin disk oscillating
normal to its surface.

Much recent progress in the area of numerical modeling of
coupled acoustics/structures has been made.1 3 Major soft-
ware packages use boundary elements for the fluid discreti-
zation.4 This modeling procedure can be used to determine
the added mass due to rigid-body structural accelerations. The
effect of the pressure field is to retard the acceleration of the
body, and the resulting added mass of the body can then be
deduced. This capability has not existed before, and promises
to aid the study of bodies such as balloons, parachutes, and
submarines where the bodies carry a large amount of fluid
with them.

Eigenvalue Equations
This study is based on a solution of the Helmholtz equation.

One can solve this acoustic equation either by a potential field
solution or by a pressure field solution. The present approach
is to consider the pressure field as the primary variable and
to cast boundary conditions into functions of pressure. The
Helmholtz equation is

V2p + k2p = 0 (1)

and the associated boundary conditions are

p = p(x, y, z) (on surface S,) (2)

vn = vn(x, y, z) (on surface S2) (3)

In addition, one has the Sommerfeld radiation condition for
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unbounded domains:

lim r2 (— + ikp
\dn ^ (4)

The solution to these equations will be carried out for var-
ious-shaped bodies using a commercial computer program,
SYSNOISE.4 Quadrilateral and triangular elements are used.
It is a peculiarity of the boundary elements used that the fluid
pressure exists on both sides of the element. For hollow bod-
ies, such as the balloon, the elements therefore model the
(same) fluid on both the interior and exterior of the body.
For the balloon, the interior air is spurious and its contribution
to the added mass must be removed and replaced by the mass
of helium actually present. This correction requires accurate
knowledge of the enclosed volume of the balloon and this is
provided by the preprocessor.

After the fluid field is modeled by boundary elements, the
structure is modeled by conventional finite elements. The
translational rigid body modes of the structure are easily rep-
resented by commercial finite element programs, which put
the rigid displacements in a form compatible with the acoustic
code. (Working with rotational motion, however, as with par-
achute pendulum modes, is not so easy to describe.)

One then solves the eigenvalue problem describing coupled
oscillations of the structure and fluid field, and infers the mass
of the fluid. The coupled equations developed for the struc-
ture and the fluid are

Ks -

C

CT 1

H(k) (5)

where a) is the frequency of oscillation of the structure and
fluid acting together. Fs is a structural force vector and FA is
the acoustic excitation (incident acoustic field).4

The added mass matrix is found by elimination of Q from
Eq. (5) and assuming free vibration (zero force on right-hand
side):

{Q} = -p^-[H(k)]->[C]{U} (6)

This is substituted into the upper equation in Eq. (5) to obtain:

([K.] - «2(fAf.v] + [MA(k)])){U] = {0} (7)

where

is the added mass matrix. To this point, the added mass is
frequency dependent, so that the eigenvalue problem in Eq.
(7) is not a conventional algebraic eigenvalue problem. We
now, however, assume that the fluid is incompressible, i.e.,
k is zero. This ensures synchronous motion of the entire fluid-
solid system. The added mass can be shown to be real in this
case. (If k =£ 0, the motion will not be synchronous, and will
have traveling-wave character.) Equation (7) can then be solved
using subspace iteration, for example.

The added mass matrix [MA] is a full symmetric matrix due
to the use of the boundary element model for the fluid. The
banded character of the original structural mass matrix [Ms]
is therefore of little value, because bandedness is lost in the
assembled system matrix.

There has been conflicting use of the words "added mass"
and "virtual mass" in the literature. Hydrodynamicists5 have
used added mass to describe the fluid contribution only, and
virtual mass to refer to the total mass of the structure and
fluid. Aeroelasticians,6 however, have used virtual mass to
apply to the fluid contribution only. In this article the term

virtual mass will be avoided because it has been compromised
by the two usages. The term added mass will be used for the
fluid contribution, alone.

Preliminary Studies (Classical)
To develop some feeling for the added mass calculations,

one can repeat some classical cases. This will also aid in de-
termining the mesh refinement needed.

The first case studied is a thin, rigid, circular disk of 1 m
radius, moving normal to its plane in air at standard sea level
conditions (assumed inviscid and incompressible). This case
is difficult numerically because of the sharp edge of the disk.
The fluid velocity around this sharp edge reaches infinity.
This "potential" singularity is similar to the leading-edge sin-
gularity in subsonic thin-airfoil theory. Care must be taken
to set the pressure jump across this cut edge to zero. The
solution for the added mass of a thin disk is given by Lamb5:

MA = 2.6667 kg (9)

Because of the potential singularity at the cut edge, it is
important to have a layer of narrow elements close to that
edge (Figs. 1-3). Three mesh densities were used to study
convergence. Because the outer nodes are placed on the ref-
erence diameter, the disk area is slightly underestimated.

Added mass results for the disk are given in Fig. 4. The
error consists of two major parts: 1) that due to underesti-
mation of the disk area and 2) that due to the interpolation
error inherent in a coarse mesh. The fine mesh has less than
1% error in added mass.

Fig. 1 Coarse mesh for circular disk.

Fig. 2 Medium mesh for circular disk.
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Fig. 3 Fine mesh for circular disk.
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Fig. 4 Mesh refinement study for circular disk.

Fig. 5 Coarse mesh for sphere, with hidden lines removed.

The second case studied is a sphere. The general problem
can be solved in closed form.5 The added mass is found to be
one-half the displaced fluid mass. This holds for accelerations
in all directions, of course. The sphere has no "cut edges,"
and there is no need to apply side conditions on pressure
jump. A coarse mesh is shown in Fig. 5.

The nodal points for the boundary elements are placed on
the reference diameter. The boundary elements form a fac-
eted surface that lies inside the reference sphere, and hence,
displaces a smaller amount of fluid than the reference sphere.
As a result, the "raw" answer obtained for added mass is for
a smaller body than the reference sphere. An inertia coeffi-
cient is defined for a perfect sphere as the ratio of added mass
to enclosed mass (of the same fluid). One can correct the
inertia coefficient by using the actual enclosed mass in the
faceted sphere as the reference, rather than the mass of a
perfect sphere. This reduces the convergence issue to one
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Fig. 6 Inertia coefficient for sphere, with and without volume cor-
rection.
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Fig. 7 Cross sections of balloons for varying inflation.7

involving the coarseness of the mesh, and removes the ques-
tion of the reference volume. Convergence studies (below)
for the balloon also show better convergence with such volume
correction.

The use of volume-correction is also needed for a second
reason. The boundary element solution for the sphere in-
cludes not only the outer fluid field, but also the (same) fluid
within the sphere. This internal air mass is not appropriate
in our case since actual balloons carry helium, not air, and
must be subtracted out. The mass of helium must then be
added in. The inertia coefficient calculation is sensitive to
volume error if this correction is not done.

An acoustic study was done for the sphere using SYSNOISE
with three boundary element mesh densities (Fig. 6). Volume-
corrected inertia factors for all meshes were within 1% of the
analytical value of 0.5. This shows the effectiveness of the
volume correction, because the displaced volume of the coars-
est mesh was 8% lower than the smooth reference sphere.

Balloon Studies
A family of balloons of the Smalley type (zero circumfer-

ential stress) will be considered. Five balloon inflation ratios
will be considered. Rand7 has provided a procedure to size
the balloons for given inflation ratios. This procedure will be
used to lay out the balloon shapes (Fig. 7) corresponding to
inflation fractions from 0.0031 to 1.000.

The balloon mesh was constructed by creating a * section
of the balloon and then replicating it eight times with the
preprocessor I-DEAS. The completed model is faceted (e.g.,
with flat elements), i.e., no attempt was made to account for
the scalloped nature of the segments as the film bulges from
the load tapes.
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The "float" (fully inflated) balloon case has been studied
intensively, in order to resolve the mesh density issue. Figures
8-10 show the three mesh densities. From the experience
with the sphere, one would expect this more complicated body
to be adequately modeled with 256 elements (medium mesh),
and rather accurately modeled with 432 elements (fine mesh).

The float results for added mass in the vertical (on-axis)
and horizontal (lateral) directions are given in Table 1. The
difference between the fine and the medium mesh is 2.8 and

Table 1 Inertia coefficients for balloons at float

Mesh Coarse Medium Fine
Elements
Nodes
Enclosed volume
Raw vertical inertia
Raw horizontal inertia
Corrected vertical inertia
Corrected horizontal inertia

112
114
1.6416
0.540
0.337
0.673
0.453

256
226
1.7152
0.599
0.380
0.663
0.435

432
218
1.7262
0.592
0.387
0.645
0.433

Fig. 8 Coarse mesh for balloon at float.

Fig. 9 Medium mesh for balloon at float.

0.5% for the axial and lateral cases, respectively. Perhaps the
results are converging more slowly on axis because the balloon
presents a "flatter" (more bluff) profile in that direction.

Convergence is from above, therefore, the true values for
added mass will be slightly lower than the fine mesh result.
For engineering purposes, the medium mesh is sufficient to
study the partially inflated family of balloons.

Results for a family of partially inflated balloons are plotted
in Fig. 11. The full balloon has one characteristic of the flat
disk, i.e., the vertical (on-axis) inertia is higher than the hor-
izontal (lateral). The inertial coefficients range from 0.42 to
0.64, depending on the inflation and the orientation of ac-
celeration.

It is useful to have an analytical expression for the added
mass, for use in balloon trajectory computer programs. The
best fit for vertical added mass is a cubic, as shown in Fig.
12:

y(x) = 0.39967 + 0.47881* - 0.30341*2 + 0.069664*3

The coefficient of determination r- is a measure of quality of
fit, where 1.0 represents an ideal fit.9

The best fit for horizontal added mass is a quadratic, shown
in Fig. 13:

y(x) = 0.64944 - 0.50739* + 0.29101*2

The erratic nature of the coefficients at small inflation frac-
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Fig. 11 Added mass for high-altitude balloon.
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Fig. 12 Cubic fit to vertical added mass for balloon.
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Fig. 10 Fine mesh for balloon at float.
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Fig. 13 Quadratic fit to horizontal added mass for balloon.
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tions is due to the difficulty in defining the small bubble at
the end of a long "rope" of collapsed polyethylene film. The
volume of the rope has been neglected in these calculations.
The values for added mass at small inflation fractions should
be viewed as having less precision.

To date there have been limited experimental results to
compare with this theory. The NASA/GSFC Wallops Flight
Facility has flown tethered small-scale balloons and has mea-
sured inertia coefficients for vertical acceleration of approx-
imately 0.55.8 In the past, researchers often applied the value
of 0.5 for spheres to the study of high-altitude balloons.1() The
current values will allow added mass to be adjusted contin-
uously with flight conditions (fraction of inflation). Although
there is little experimental confirmation of the acoustic theory
for added mass, the infinitesimal acoustic theory is on a similar
firm foundation as the infinitesimal theory of elasticity, so no
surprises are expected.

Computational Details
Three software packages were used for this study. The I-

DEAS preprocessor was used to generate the mesh. MSC/
NASTRAN was used to generate the rigid body mode infor-
mation. SYSNOISE was used for the numerical acoustics. An
alternate approach would have been to use ANSYS for the
generation of the mesh and modal information and SYS-
NOISE for the acoustic analysis.

The computers used were Apollo 3500 workstations, on the
University of Michigan Computer Aided Engineering Net-
work (CAEN). The computer time expended was far greater
for mesh generation and modal analysis than for the acoustic
solution.

Concluding Remarks
A numerical method has been used to find added mass for

high-altitude balloons. The method will be useful for other
bodies immersed in fluids, whether planar or solid bodies.
One must account for the presence of sharp edges (and the
need for a zero pressure jump across the edge) and the pres-
ence of fictitious interior fluid in solid bodies.

The specific inertia coefficients obtained for high-altitude
balloons will help in developing flight simulation codes that
model dynamic balloon behavior. Common sources of exci-
tation include ballast drops that cause axial acceleration and

side winds that cause lateral accelerations. The inertia coef-
ficients obtained range from 0.43 to 0.64, depending on in-
flation and direction of acceleration. These new values should
replace the classical value of 0.5 for a sphere, which has been
used in many calculations to date.
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