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Poor air quality influences the quality of life in the urban environment. The regulatory

observation stations provide the backbone for the city administration to monitor urban air

quality. Recently a suite of cost-effective air quality sensors has emerged to provide novel

insights into the spatio-temporal variability of aerosol particles and trace gases. Particularly

in low concentrations these sensors might suffer from issues related e.g., to high detection

limits, concentration drifts and interdependency between the observed trace gases and

environmental parameters. In this study we characterize the optical particle detector used

in AQT530 (Vaisala Ltd.) air quality sensor in the laboratory. We perform a measurement

campaign with a network of AQT530 sensors in Helsinki, Finland in 2020–2021 and

present a long-term performance evaluation of five sensors for particulate (PM10, PM2.5)

and gaseous (NO2, NO, CO, O3) components during a half-year co-location study with

reference instruments at an urban traffic site. Furthermore, short-term (3–5 weeks) co-

location tests were performed for 25 sensors to provide sensor-specific correction

equations for the fine-tuning of selected pollutants in the sensor network. We

showcase the added value of the verified network of 25 sensor units to address the

spatial variability of trace gases and aerosol mass concentrations in an urban environment.

The analysis assesses road and harbor traffic monitoring, local construction dust

monitoring, aerosol concentrations from fireworks, impact of sub-urban small scale

wood combustion and detection of long-range transport episodes on a city scale. Our

analysis illustrates that the calibrated network of Vaisala AQT530 air quality sensors

provide new insights into the spatio-temporal variability of air pollution within the city. This

information is beneficial to, for example, optimization of road dust and construction dust

emission control as well as provides data to tackle air quality problems arising from traffic

exhaust and localized wood combustion emissions in the residential areas.
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INTRODUCTION

Air quality is one of the grand challenges that the society faces at
the moment (Gimeno, 2013; Lappalainen et al., 2014; Arnold
et al., 2016; Kulmala et al., 2016). The problem arises from a suite
of anthropogenic activities including e.g., traffic, biomass
combustion and industrial emissions of gases and particulate
matter and associated land use changes (e.g., Foley et al., 2005;
Baklanov et al., 2016). Furthermore, the air quality can deteriorate
via atmospheric chemical reactions producing harmful
pollutants, such as ozone (Zhang et al., 2004) and secondary
particulate matter (Chu et al., 2019). Meteorology governs the
dispersion of pollutants, both vertically and horizontally (e.g., He
et al., 2017; Teinilä et al., 2019; Kurppa et al., 2020) and various
feedback mechanisms can deteriorate the local air quality within
cities even further (e.g., Ding et al., 2016; Petäjä et al., 2016).
Regulations have already improved the air quality regionally and
globally (Crippa et al., 2016), but more targeted restrictions and
support from observations are needed to further tackle the air
quality problem in the future (Zheng et al., 2018).

The urban air quality is monitored with a network of in-situ
analyzers for key gas phase pollutants (such as O3, NOx, CO, and
SO2) and particulate mass below 2.5 μm or 10 μm (PM2.5 and
PM10, respectively). The regulatory observations typically represent
different urban environments (e.g., traffic sites, urban background,
and rural) and the air pollution at these sites are reported and taken
as representatives for similar urban environments (e.g., Duyzer
et al., 2015; Rohde and Mu;̈ller, 2015). Recently, this view has
evolved to include dense supplementary air quality observations
with a suite of air quality sensors (e.g., Popoola et al., 2018; Kuula
et al., 2020a), combining this sensor network with more
comprehensive benchmarking supersites and integrating the
observed air quality situation and prediction with spatially and
temporally high-resolution models (e.g., Johanssen et al., 2015).
Although no official definition exists, air quality sensors are usually
perceived as relatively low-cost, small, and easy to use (e.g, WMO,
2018). Wireless data transfer is a characteristic feature of sensors,
and low power consumption coupled with a possibility for battery
operation enables them to be placed more freely within the urban
infrastructure. These features are the foundation of cost-efficient
and convenient air quality monitoring, which facilitates the high-
density deployment and the consequent higher spatiotemporal air
quality data.

For sensor type devices, the most common measurement
techniques applied for gas phase pollutants include
electrochemical and metal oxide detectors (Mead et al., 2013;
Spinelle et al., 2015). These detectors have been utilized
successfully in dense air quality monitoring networks, although
cross-sensitivity between different gases (e.g., O3 and NO2),
influence of relative humidity, temperature dependency and long-
term drift may often hinder their overall performance (Jiao et al.,
2016; Cross et al., 2017). For particle phased pollutants, the dominant
detection technique is based on the detection of light scattered from
illuminated particles (Karagulian et al., 2019; Alfano et al., 2020). This
technique is applicable mainly for the particle mass concentration
monitoring as its sensitivity for the detection of ultrafine particles is
limited (Hinds, 1999). Particle sensors also include measurement

devices for the particle lung deposited surface area (LDSA) and black
carbon (BC) measurements, which utilize diffusion charging and an
aethalometer-based detection technique, respectively, (Caubel et al.,
2018; Rostedt and Keskinen, 2018; Kuula et al., 2020a; Kuula et al.,
2020b). Although LDSA and BC are not regulated pollutants, they
have been shown to be valuable parameters in air quality assessments
(Caubel et al., 2019; Hama et al., 2017; Kuula et al., 2020a; Luoma
et al., 2021). Previous studies investigating the characteristics of light
scattering sensors have identified factors, which affect the sensors’
response characteristics, namely relative humidity and particle size-
selectivity (e.g., Di Antonio et al., 2018; Jayaratne et al., 2018; Kuula
et al., 2020b; Kosmopoulos et al., 2020). In comparison to light
scattering-based sensors, LDSA and BC sensors have been shown to
be technicallymoremature, but they are often also considerablymore
expensive (Kuuluvainen et al., 2016; Holder et al., 2018).

The usefulness of low-cost sensors for air quality monitoring
has been underlined by multiple different studies; however, it is
often reminded that the risk of data misinterpretation due to
inadequate device specifications provided by the manufacturers is
still a valid concern, and that caution should be applied when
using advanced modelling techniques for the calibration of
sensors (e.g., Liu et al., 2019). Correction factors for known
artefacts, such as relative humidity, can be justifiable, but it is
also important to ensure that the data generated from advanced
calibration processes are still true and independent
measurements of the sensor system and not a combination of
secondary data and statistical prediction (Hagler et al., 2018;
Schneider et al., 2019). Furthermore, the lack of standardization
and inconsistent evaluation protocols used in the research
community hinder the wide-scale adoption of sensors to
routine air quality monitoring, where higher data quality and
traceability are required (e.g., Williams et al., 2019).

In the Helsinki metropolitan area, the observations from two
supersites—one representing urban background and the other an
urban street canyon—and a regulatory network of air quality
stations are extended with supplementary observations with
AQT530 (Air Quality Transmitter 530, Vaisala Ltd.) sensors.
The aim of this work is to 1) characterize the Vaisala AQT530 air
quality sensors’ laser particle counters in the laboratory for their
detection efficiency as a function of particle size and number
concentration using monodisperse particles, 2) conduct a co-
location study with a suite of sensors to explore the long-term
performance of the sensors against verified instrumentation of
gaseous and particulate pollutants at an air quality monitoring
station, and 3) deploy the sensor network consisting of 25 sensor
units in different regions in the Helsinki metropolitan area to
explore the benefits of such a network of sensors for specific air
quality challenges, such as long-range transport, local hot-spot of
trace gas or aerosol emissions and road dust episodes.

EXPERIMENTAL

Vaisala AQT530 Sensor
The Vaisala Air Quality Transmitter AQT530 (Figure 1)
combines electrochemical sensors for trace gas measurements
and optical single particle counting for aerosol mass
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determination. The former provides ppb level observation
capacity of common gas phase pollutants, such as nitrogen
dioxide (NO2), nitric oxide (NO), carbon monoxide (CO) and
ozone (O3) and the latter provide a measure of aerosol mass
concentration. The instrument also has a built-in temperature
and humidity sensor for compensation purposes. The Vaisala
AQT530 sensor package enables compact and cost-effective
observations of air quality parameters in a dense observation
network.

The air pollution data from the AQT530 sensors was recorded
as 1-min data. In the ambient applications, we typically calculated
1-h averaged concentrations. We only included hours that had at
least 75% data coverage. For specific cases, we calculated 15-min
averages to better capture rapidly changing concentrations, such
as during the New Year celebration case study.

Aerosol mass concentrations are determined as follows. First,
aerosol count size distribution is detected with a laser particle
counter. The raw measurement results are then converted to
aerosol mass in PM2.5 and PM10mass categories using sensor flow
rate and sensor’s internal algorithms. According to
manufacturer’s specifications the lower detection limit of the
laser particle counter is 600 nm, and the upper limit of
measurement range is 10 µm. The mass concentration range is
from 0 to 1,000 μg m−3 for PM2.5 and from 0 to 2,500 μg m−3 for
PM10, with measurement resolution of 0.1 μg m−3.

Laboratory Calibration Setup
The performance of the Vaisala AQT530 laser particle counter
was determined in the laboratory. The sensor operation relies on
single particle counting with optical detection of the particles.
This principal operation was tested by comparing sensor particle
count rates with known flow rate to reference particle number
concentrations in laboratory conditions with monodisperse
particles using methods traceable to the Système International
(SI), the International System of Units.

The calibration setup is presented in Figure 2. The particles
were generated using the Single Charged Aerosol Reference
(SCAR, Yli-Ojanperä et al., 2010), modified to extend the size

FIGURE 1 | Vaisala AQT530 sensor installation on the top an infopylon in

Jätkäsaari and a close view of the sensor.

FIGURE 2 | The calibration setup for the Vaisala AQT530 sensors. Silver

nanoparticles are produced by evaporation–condensation technique, which

are charged with a radioactive source. The primary particles are small enough

so that they accommodate only one elementary charge. A well-defined

electrical mobility equivalent size is selected from the generated silver particle

(Continued )
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range up to 5 µm (Järvinen et al., 2018). The system produces
dioctyl sebacate (DOS) particles with a single elementary charge
enabling both accurate measurement of particle concentration
through electrical detection of particles and accurate
determination of particle size through electrical classification.
Particle size information in the calibration was determined by
electrical classification with Differential Mobility Analyzers
(DMA). A commercial DMA (Model 3,071, TSI Inc.) was used
up to 1 µm and larger particle sizes were covered with the
Tampere Long DMA (Järvinen et al., 2018). Both DMAs were
calibrated with SI-traceable standard particles (Product number
95585, Sigma-Aldrich). After the DMA, the aerosol passed
through a static mixer and subsequently it was directed into
equal length rigid stainless-steel lines leading to the instruments.

A Condensation Particle Counter (CPC, Model 3,750, TSI
Inc.) was used as a concentration reference in the size range
between 0.3 and 2 µm and a Faraday Cup Aerosol Electrometer
(FCAE) at 4.8 µm particle size. The CPC was calibrated at 0.5 and
1.9 µm particle sizes with the FCAE before the calibration
measurements. All the main components of the FCAE,
i.e., measurement of the electric current, flow, pressure and
temperature were calibrated with traceability to SI primary
units. In addition, the FCAE has participated to the
international inter-comparison (Högström et al., 2014).

Co-Location Study of the Sensors
The AQT530 sensors were first co-located at the Mäkelänkatu air
quality supersite, which is operated by the Helsinki Region
Environmental Services Authority (HSY), as a reference
station for in-field calibration. The sensors we distributed as
an air quality monitoring network within three selected areas
(Pakila, Vallila, and Jätkäsaari) within the Helsinki Metropolitan
Area (HMA). The total number of sensors distributed in these
areas was 25 sensors: eight sensors in Pakila, six sensors in Vallila,
and eleven sensors in Jätkäsaari.

Co-Location at the Mäkelänkatu Supersite
TheMäkelänkatu air quality supersite is located at the curbside of
a street canyon with a high traffic rates of approximately 28,100
vehicles per weekday in 2019 (Kuuluvainen et al., 2018). Traffic
volumes were clearly lower in 2020 due to Covid-19 restrictions,
but official traffic estimates were not yet available. Concentrations
of particulate matter (PM2.5 and PM10) and gaseous pollutants
(NOx, O3, CO) are continuously monitored at the site (e.g.,
Anttila, 2020; Barreira et al., 2021). The air quality parameters
were measured with the following reference instruments: PM2.5

and PM10 with Fidas 200 (Palas), NOx with APNA 370 (Horiba),

O3 with APOA 370 (Horiba), and CO with APMA 360 (Horiba).
The sensors were installed on a platform on top of the container,
which hosted the reference instruments. The sampling height of
the sensors were at the same level as the reference instruments,
4 m above ground level.

FIGURE 2 | population with a differential mobility analyer (nano-DMA). These

particles are then grown by condensing dioctyl sebacate (DOS) onto the seed

particles under controlled conditions. This leads to a population of singly

charged micrometer sized aerosol particles. The AQT sensors (Sensors 1,2,3)

are compared against a reference instrument, which is either a Condensation

Particle Counter (CPC) or Faraday Cup Aerosol Electrometer (FCAE),

depending on the particle size and number concentration. In the figure, MFC

refers to a mass flow controller and PTH to a pressure, temperature and

humidity instrument.

FIGURE 3 | A map of Helsinki area with the AQT530 sensor network

sites in Jätkäsaari, Pakila and Vallila as well as the location of three reference

air quality monitoring stations. The color codes show the sensor environment

classification.
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We installed all the AQT530 sensors first to the Mäkelänkatu
supersite for short co-location tests and then distributed the
sensors to their specified locations (Figure 3). This ensured
that all the sensors were performing adequately for
atmospheric observations and their data communication
systems were operational. We kept five of the AQT530 sensors
for an extended half-year period at the Mäkelänkatu site to
explore the stability and long-term capacity of the sensors for
ambient applications.

Hourly mean reference pollutant concentrations as well as
temperature and relative humidity at the Mäkelänkatu supersite
between 23 May 2020 and 28 February 2021 is illustrated in
Supplementary Figure 1. The diagrams of Supplementary

Figure 1 covers the short-term tests and long-term co-location
study period as well as the demonstration periods of the sensor
network showcases, described in the next sections. The short-
term tests were performed in summer (see Sect. 2.4) and the long-
term co-location study between August 2020 and January 2021
(see Co-location study results—in–field calibration). During the
co-location study period the temperature ranged between −21
and +26°C and the typical air quality characteristics of Nordic
urban traffic site in late-summer, autumn and winter were
present: high concentration peaks of NO, NO2, and CO from
exhaust gases as well as high PM10 concentration peaks in
November and December caused by road dust due to studded
tyres and occasionally drying street surfaces (Supplementary

Figure 1). CO concentration increased towards winter, due to
the reduced atmospheric mixing in winter and increased
emissions in the region from residential wood combustion. In
contrast, O3 concentrations decreased towards winter due to
reduced O3 formation in dark conditions and increased O3

depletion by local NO emissions from traffic. Elevated PM2.5

concentrations are mainly caused by three different factors:
regionally and long-range transported particles, local road dust
and exhaust emissions.

Network of Sensors in the Helsinki Metropolitan Area
After the co-location study, the AQT530 sensors were distributed
within the HMA in different regions (Jätkäsaari, Vallila, and
Pakila) as indicated in Figure 3. The three districts experience
different air quality problems. Jätkäsaari hosts a large harbor
(Länsisatama), which suffers from emissions not only from ships
but also consequently increased vehicular traffic in the area. In
addition, Jätkäsaari is a rapidly growing district with a
considerable amount of construction and thus dust emissions
(PM10). Vallila is an old city district mainly influenced by
emissions from busy main streets and street canyons with high
exhaust gas and seasonal street dust concentrations. Pakila
consists of detached and semi-detached housing, where
residential wood combustion in fireplaces and sauna stoves
causes air quality problems particularly in winter during cold
inversion periods. Two of the main roads in area, Tuusulanväylä
towards the Helsinki city center (Tuusulanväylä) and the first ring
road (Kehä I) with very high traffic volumes go through the Pakila
district.

A total of 25 sensors deployed in the HMA are listed in
Supplementary Table 1 with characteristic features of the

environment and placement details. The overall sensor
network design reflected Healthy Outdoor Premises for
Everyone (HOPE)-project aim to provide novel information
on air quality on a higher spatial scale resolution that is
available through regulatory air quality observation networks.
In particular, we targeted air quality in the developing area of
Jätkäsaari and therefore we deployed 11 sensors in this area. They
were placed into representative locations, such as close to traffic,
in the vicinity of construction sites or in urban background
environments. In the region of Vallila we wanted to explore
local scale variability and traffic related air pollution. There we
placed six Vaisala AQT530 sensors into spatially representative
locations. In Pakila we wanted to test the sensor capacity to detect
small scale wood combustion aerosols and contrast the traffic
sites between the residential area against the results from Vallila.
In Pakila we accomplished this with eight sensors. As a summary,
the exact position of each sensor was determined by several
factors. For example, spatial representativeness, target air
pollutant (e.g., PM10, NO2) and availability of electricity and
data connectivity. The sensor placements are summarized in
Supplementary Table 1.

The air quality monitoring stations operated by HSY provided
reference air quality data during the deployment period. In this
study we used reference data for comparisons from Mäkelänkatu
supersite in a street canyon in Vallila and Länsisatama station,
located nearby a street and vehicle route to the harbor in
Jätkäsaari. Furthermore, data from SMEAR III research station
in Kumpula (Järvi et al., 2006) situated in an urban background
area near Vallila district, operated by the University of Helsinki
and Finnish Meteorological Institute, were used in this study.

RESULTS AND DISCUSSION

Laboratory Calibrations
The laser particle counter in three Vaisala AQT530 sensors were
tested in laboratory conditions. The key parameter is the
detection efficiency (Deff), which is defined as:

Deff �
Cs

Cref

(1)

where Cs is the particle concentration measured by the sensor and
Cref the particle number concentration measured by the reference
instrument. The detection efficiency was determined as a function
of particle concentration and particle diameter, because these
factors usually affect the detection efficiency. For the optical
counters, high particle number concentrations induce detector
deadtime and coincidence, which lower the counting accuracy.
The detection efficiency generally falls from unity at both ends of
the size range. This is due to the fact that the scattering signal
from the small particles is low, which reduces the detection
efficiency for the small particle sizes. In contrast, large
particles are easily lost in the inlet region due to their inertia,
reducing the detection efficiency at the larger sizes.

The effect of particle size on the sensor response is presented in
Figure 4A. All three sensors showed similar particle detection
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characteristics. Based on our observations, 50% of detection
efficiency is achieved at approximately 0.6 µm particle
diameter and the detection efficiency saturates (95–105%)
from 0.8 µm up to the last measurement point with size of
4.8 µm. The local maximum in the detection efficiency
between 0.4 and 0.5 µm probably is a display of Mie-scattering
oscillations. In the detection efficiency measurements, a
calibrated CPC was used as a reference instrument between
0.3 and 2 µm particle sizes. The largest 4.8 µm particle size
was covered with a FCAE. In this case, sensor two was first
calibrated with the FCAE and then the other two sensors were
calibrated using the sensor 2 as a reference.

Detection efficiency as a function of particle concentration is
presented in Figure 4B. These measurements were conducted
with singly charged aerosol particles at 1 µm and at 2 µm particle
diameters using a CPC as a reference instrument and at 4.8 µm
using the FCAE as a reference instrument. The AQT530 sensors
seem to have slightly increasing detection efficiency towards the
highest concentrations. This effect is not an artefact caused by the
reference instrument. However, the response curves are relatively
flat up to 1,000 cm−3. Assuming 1,000 kg m−3 bulk density and
spherical shape, this corresponds to circa 4,200 μg m−3 mass
concentration at 2 µm particle diameter. Such high ambient
mass concentrations are unlikely in the PM2.5 range.

Co-Location Study Results–In-Field
Calibration
We performed a short co-location experiment with 25 sensors at
the Mäkelänkatu supersite and an extended co-location study at
the same site for five sensors for six months.

The short co-location tests at the Mäkelänkatu supersite were
performed for all 25 sensor units before their installation to the
sensor network. The tests were conducted in three sensor batches
during the following summer periods: 23 May—15 June
(23 days), 18 June—27 July (39 days) and 5 August—7
September (33 days) in 2020. The NO2 and NO concentrations
were unusually low (Supplementary Figure 1), especially during
the first testing period, since vehicle traffic volume was reduced

(about −33% based on the traffic data from the City of Helsinki)
by the Covid-19 restrictions. During the second testing period,
summer holidays also significantly reduced traffic volumes.

The hourly averaged concentrations of reference instruments
and sensors were described by scatter plots, correlation analysis
(coefficient of determination r2) as well as the slopes and
intercepts of linear fits (not shown here; the more important
long-term characterization shown below). Based on the tests, all
25 sensors seem to perform properly. The linear correction
equations (slopes and intercepts) of the sensor test were
decided to apply for CO and NO2 measurements to fine-tune
the accuracy results in the sensor network. However, NO2

correction was not applied to the sensors of the first co-
location test batch, since the combination of unusually low
NO2 concentrations (maximum hourly mean only 61 μg m−3)
and relatively short testing period (23 days) leads to too scattering
results, which were not accurate enough to provide correction
equations. For the CO correction equations, the slopes and
intercepts varied in the range of 0.89–1.09 and 12–79 μg m−3,
respectively. For the NO2 correction equations, the slopes and
intercepts were in the range of 0.81–1.35 and −4–3 μg m−3,
respectively.

For other pollutant components, correction equations were
not applied, since low concentrations and three different test
periods were not favorable to obtain accurate and uniform
correction equations. The variation in pollutant concentration
levels and weather conditions during the short co-location
periods slightly affect the comparison results. Especially, the
changes in size distributions of particles also affect the PM
response of optical sensors (e.g., smallest particles are not
detected, see Laboratory Calibrations). Therefore, spring would
have been the optimal testing period for PM10 measurements in
Helsinki, since high PM10 concentrations and dust problems are
mainly caused by spring-time road dust in Finnish cities.
However, it was not possible to carry out the comparisons in
spring and simultaneously for 25 sensors in this study due to
practical reasons.

Five AQT530 sensors were co-located at the Mäkelänkatu
supersite for six months (from August 11, 2020 to January 31,

FIGURE 4 | Detection efficiency as a function of particle diameter (A) and as a function of particle concentration (B). In figure (A) points marked with circles refer to

CPC-based points and points marked with squares refers to a point where Sensor two was calibrated with the FCAE and other sensors were compared to Sensor 2. In

figure (B) detection efficiency of Sensor 2 as a function of concentration is presented for three different particle sizes.
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2021) for an extended quality control. The correlation between
the individual sensors against the corresponding reference
measurements for all components (NO, NO2, CO, O3, PM2.5,
PM10) is presented in Supplementary Table 2. The general
description of reference pollutant concentrations and weather
are presented in Supplementary Figure 1 and in Co-location
study of the sensors, respectively.

In general, the measurements by the individual AQT530
sensors correlate well with the reference measurements for
NO, NO2, CO and PM10. The coefficients of determination
(r2) for NO2 and CO reach a good level of 0.8 while that for NO
and PM10 even exceed 0.9. The range of their r2 is also narrow
which suggests that the individual sensors work similarly.
However, the correlations of AQT530 sensors and the
reference instruments for O3 and PM2.5 are weaker, and they
have stronger inconsistency among the five AQT520 sensors
(O3: r2 � 0.35−0.49, PM2.5: r2 � 0.66−0.82). The weaker
correlations of PM2.5 results are probably partly explained by
the inability of the sensors to detect very small particles (50%
detection efficiency about 0.6 µm, Laboratory Calibrations), and
therefore the size distribution of PM2.5 particles in the ambient
air affects the sensor response. By comparing the normalized
root mean squared error (NRMSE) between low-cost sensors
and reference instrument data, NO has the highest values
(NRMSE � 0.34−0.41) which indicate the absolute errors of
some data points are large compared to the mean NO
concentration measured by reference instrument. On the
other hand, CO has the lowest NRMSE of 0.08−0.10 while
the NRMSE of the rest of the parameters fall in the range
between 0.15 and 0.27.

Overall, in comparison with the reference instruments, the
AQT530 sensors tended to underestimate concentrations at high
concentrations for all the parameters measured by the AQT530
sensors, i.e., NO, NO2, O3, CO, PM2.5, PM10, as indicated by the
slopes smaller than 1 (Supplementary Figure 2, Supplementary

Table 2). This appeared to be the most severe for O3 as the slopes
ranged from 0.32 to 0.39. However, at low concentrations, the
AQT530 sensors appeared to overestimate NO as seen by the
relatively large intercepts compared with the mean reference
concentrations. For all pollutant components, there is also
internal variation between sensor units that is visible in the
differences of slope and intercept values of linear fits
(Supplementary Table 2).

The residuals of the AQT530 sensors for all the reported
variables were also calculated throughout the co-location study
period (Supplementary Figure 3). They are the difference
between the measured values and the fitted values and
describe how much a fitted line vertically misses a data point.
The residuals of CO and O3 appear to drift with time. The
values of residuals increase throughout the whole
measurement period for the former while a sudden drop of
residuals for O3 can be identified in mid-January probably
due to the very low ambient temperature. The gradual
drifting of CO during the 6-months co-location period
might be partly caused by the aging of electrochemical
sensor. Furthermore, there seem to be clear temperature
dependency in CO results, causing underestimation of

CO concentrations in low temperatures (Supplementary

Figure 4).
The impact of very high relative humidity (about >95%) was

clearly visible in PM10 results (Supplementary Figure 5), as
typical in optical sensors without sample line heating or other
drying method. The highest PM10 artefact peaks were observed in
foggy conditions.

Results From Air Quality Showcases
In this section we explore the air quality in different regions of the
Helsinki metropolitan area based on the network of AQT530
sensor network during specific periods that represent local
challenges.

Detection of Traffic and Shipping Emissions
Both road traffic and shipping are significant sources of
pollutants, especially in urban areas (e.g., Lelieveld et al., 2015;
Kuittinen et al., 2020). Traffic exhaust emissions contain a
mixture of submicron size particles and gaseous compounds
such as NOx, CO2, CO, and hydrocarbons (Aakko-Saksa
et al., 2020). Traffic exhaust emission have been shown to
have both climate (IPCC, 2014) and health effects (e.g., Gan
et al., 2011; Atkinson et al., 2016) and thus it is of utmost
importance to accurately characterize the spatial and temporal
variation of traffic emissions.

Impact of Local Traffic in Vallila Area
In the urban district of Vallila, all six sensors were installed in
street canyons. Consequently, the concentrations measured by
the sensors reflect the temporal pattern of the traffic emissions.
The traffic temporal pattern was clearly seen in the results of
sensors deployed in roadside environment (Figures 5–7). For CO
(Figure 5), elevated concentrations were observed in weekdays
between 7–21 and in weekends between 10–22. Similar diurnal
cycle for CO was observed at close-by air quality station in
Mäkelänkatu. The concentrations shown by the sensors were
slightly lower when compared to that of CO measured with the
reference analyzer, but the diurnal behavior of the sensors was in
line with the reference analyzers. The lower CO concentration
levels by the sensors were probably caused by their aging and cold
temperatures in late autumn and winter (Co-location study results –
in-field calibration).

For NO2 (Figure 6), the maximum concentrations were
measured during the traffic rush-hour, between 7–10 and
15–18 local time concurrent with the traffic intensity. The
observed concentrations by the individual sensors varied
between the median concentrations observed at the Kumpula
urban background station (SMEAR III station) and the median
concentrations observed at the roadside AQ station
(Mäkelänkatu station) by reference level instruments. In the
weekend the variation in the concentrations was smaller with
some increase in the concentrations as the anthropogenic activity
increased during 9–20 local time.

For PM2.5 (Figure 7), mass concentration an increase
in concentrations was seen during the workdays during
morning rush-hour (7–10) and during weekends at the
evening time (18–24). The observed PM2.5 concentrations by
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FIGURE 5 | Median CO diurnal cycles during 5-month period (1.8.-31.12.2020) for sensors located in Vallila (left) workdays (Mon-Fri) and (right) weekends (Sat-

Sun). Reference measurements show median (dashed line) and 25th and 75th percentiles (shaded area) from nearest reference instruments. Black dashed line shows

median diurnal cycle calculated for all data from that location.

FIGURE 6 |Median diurnal cycle of NO2 during 5-month period (1.8.-31.12.2020) for sensors located in Vallila (left) workdays (Mon-Fri) and (right) weekends (Sat-

Sun). Reference measurements show median (dashed line) and 25th and 75th percentiles (shaded area) from nearest reference instruments. Black dashed line shows

median diurnal cycle calculated for all data from that location.
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individual sensors were fairly similar and on the same level as the
results obtained by reference instruments at the roadside AQ
station.

Impact of Harbor Activities in Jätkäsaari
At the Jätkäsaari area, the road traffic and shipping emissions were
measured with 11 sensors. Two of the sensors were located at

FIGURE 7 |Median diurnal cycle of PM2.5 mass concentration during 5-month period (1.8.-31.12.2020) for sensors located in Vallila (left) workdays (Mon-Fri) and

(right) weekends (Sat-Sun). Reference measurements showmedian (dashed line) and 25th and 75th percentiles (shaded area) from nearest reference instruments. Black

dashed line shows median diurnal cycle calculated for all data from that location.

FIGURE 8 |Median diurnal cycles of CO during 5-month period (1.8.-31.12.2020) for sensors located in Jätkäsaari (left) workdays (Mon-Fri) and (right) weekends

(Sat-Sun). Black dashed line shows median diurnal cycle calculated for all data from that location.
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locations defined as urban background, four of the sensors were
located along the main streets leading to the harbor and five of the
sensors were located along the streets nearby active construction sites.

The highest CO concentrations were detected during the
daytime, both morning (7–10 local time) and evening (15–18
local time) rush hour were easily detectable from the CO
timeseries measured with sensors during weekdays (Figure 8).
During weekends a large increase in CO was seen at daytime
between 11 and 17 local time, correlating well with diurnal
variation typically observed in weekends (e.g., Helin et al.,
2018). The highest CO concentrations were observed by
sensors located along the main streets whereas the lowest
concentrations were observed at the urban background sites.

For NO2 an increase in concentrations was observed between
6–22 local time both on weekdays and on weekends (Figure 9).
The maximum concentrations were observed during traffic rush
hour (morning 8–9, afternoon 15–17 local time); however, clearly
detectable spikes in NO2 concentrations were seen also at the
times when the ferry ships were leaving the harbor. Most easily
detectable increase was seen at 21.30 local time, which was the
scheduled departure time of the last ferry from Helsinki to
Tallinn. These increases in the NO2 concentrations were likely
caused both by the ship exhaust emissions and cars and trucks
loaded into the ferry or leaving the ferry and consequently
queueing in Tyynenmerenkatu street.

For PM2.5 the elevated concentrations were observed during
daytime from 7 to 18 local time during weekdays and at evening
between 18–24 local time on weekends (Figure 10). On weekdays
a larger variation in the PM2.5 concentrations was observed with
the individual sensors when compared to weekends. A plausible

reason for this is the higher heterogeneity of anthropogenic
particle emissions in the Jätkäsaari area during the work weeks.

Impact of Construction Dust (PM10) in Jätkäsaari
PM10 concentrations are influenced by long-range transport and
local anthropogenic activities (e.g., Querol et al., 2019; Hussein
et al., 2020). In Helsinki area, one of the main air quality
challenges particularly in the springtime is connected to high
concentration of PM10 mass due to a combination of sanding the
streets and use of studded tyres (e.g., Kupiainen et al., 2016). Road
dust problems are tackled by street cleaning (Stojiljkovic et al.,
2019), which reduces both the street wear as well as the
resuspension of the dust. Furthermore, dusts binding with
CaCl2 solution (∼10 weight% in water) is commonly applied
to dusty streets in Helsinki downtown (Stojiljkovic et al., 2019).
Another localized air quality effect linked to the coarse particles is
construction site emitted dust (e.g., Amato et al., 2016). The
construction sites have a negative impact on the quality of life of
the people. The cost-effective sensor network provides new tools
to monitor and control the dispersion of the dust emissions in the
urban environment.

Jätkäsaari neighborhood is currently under active
development and new residential buildings are being
constructed. We explored how the local construction
emissions are detected with the Vaisala sensor network. The
results depicted in Figure 11 show the typical diurnal cycles of
PM10 mass concentration in Jätkäsaari in summer and autumn
conditions (July-October 2020), before the start of the use of
studded winter tyres and the winter-sanding of streets. The
reference observations show that the PM10 mass

FIGURE 9 |Median diurnal cycles of NO2 during 5-month period (1.8.-31.12.2020) for sensors located in Jätkäsaari (left) workdays (Mon-Fri) and (right) weekends

(Sat-Sun). Reference measurements show median (dashed line) and 25th and 75th percentiles (shaded area) from nearest reference instrument. Black dashed line

shows median diurnal cycle calculated for all data from that location.

Frontiers in Environmental Science | www.frontiersin.org July 2021 | Volume 9 | Article 71956710

Petäjä et al. Vaisala AQT530

https://www.frontiersin.org/journals/environmental-science
www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles


concentration remains below 10 μg m−3 during the nighttime and
has a maximum concentration of 15 μg m−3 during afternoon
hours. The diel cycles of the individual sensors show a large

variability. For example, the sensor J8 located in the vicinity of
both the main street and a construction site showed maximum
mass concentrations up to twice the regional average and

FIGURE 10 |Median diurnal cycles of PM2.5 mass concentration during 5-month period (1.8.-31.12.2020) for sensors located in Jätkäsaari (left) workdays (Mon-

Fri) and (right) weekends (Sat-Sun). Reference measurements show median (dashed line) and 25th and 75th percentiles (shaded area) from nearest reference

instrument. Black dashed line shows median diurnal cycle calculated for all data from that location.

FIGURE 11 |Median diurnal cycles of PM10 mass concentration during 4-month period (1.7.-31.10.2020) for sensors located in Jätkäsaari (left) workdays (Mon-

Fri) and (right) weekends (Sat-Sun). Reference measurements show median (dashed line) and 25th and 75th percentiles (shaded area) from nearest reference

instrument. Black dashed line shows median diurnal cycle calculated for all data from that location.
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reaching values up to 30 μg m−3. However, there was a
considerable range between the sensors and depending on the
location the mass concentrations varied between the extreme
concentrations and the regional average. The coarse particles
were clearly connected to anthropogenic actions as the
concentrations were below 10 μg m−3 in all sensor locations
with a flat diurnal cycle during weekends. Our results show
that the network of AQT530 sensors were able to detect the
spatio-temporal variability of the dust emissions in the urban
environment.

Detection of the Influence of Residential
Wood-Combustion
Residential small-scale combustion of biomass, mostly wood, is
one of the major pollution sources affecting air quality in urban
areas across the globe (e.g., Chen et al., 2017, Helin et al., 2018;
Olsen et al., 2020; Luoma et al., 2021). Wood combustion in
Finland is typically a source for residential heating including
saunas and fireplaces, especially during cold season (Savolahti
et al., 2016). A recent study estimated that residential wood
combustion constitutes approximately 13% of the total disease
burden caused by PM2.5 concentrations in Finland (Savolahti
et al., 2019). The influence of residential wood combustion in
Helsinki is the largest in wintertime due to increased residential
heating (Helin et al., 2018; Luoma et al., 2021). Residential
wood combustion produces a complex mixture of gaseous (e.g.,
CO, CO2, hydrocarbons, and Polyaromatic hydrocarbons
PAHs) and particulate emissions (e.g., Kortelainen et al.,
2018). The particulate emissions are known to be mostly in
PM2.5 size fraction and composed of wide variety of organic
compounds, black carbon and inorganic ions (Lamberg et al.,

2011; Frey et al., 2014; Kortelainen et al., 2018; Luoma et al.,
2021).

A previous study indicated that during wintertime Pirkkola
area air quality is strongly influenced by the biomass burning
during winter (Kuula et al., 2020c). Furthermore, previous studies
in similar residential areas conducted with the reference level
instrumentation have indicated that the biggest increases in PM2.5

and BC are seen during evening times (18–21 local time), both on
weekdays and on weekends (Helin et al., 2018).

In this study we focused on the ability of the sensors to
detect combustion emissions and studied PM2.5 and CO
concentrations and their diurnal variation during the cold
season (January–February 2021) using eight AQT350 sensors
(Figure 3) in Pakila region. The diurnal variation of CO
(Figure 12) and PM2.5 (Figure 13) concentrations showed
clear spikes in the morning during the traffic rush hour on
weekdays. The observed CO and PM2.5 concentrations
remained elevated until the afternoon rush hour. On
weekends, the morning or afternoon high concentrations
due to rush hour were not seen in the PM2.5 and CO
timeseries.

Another increase in PM2.5 and CO concentrations was seen
in the evening, between 18–22 local time. A plausible
explanation for this is local biomass combustion associated
with wood burning in fireplaces and sauna stoves in the area.
In the case of CO, the evening maximum exceeded the values
detected during daytime. On weekends the evening
concentrations of CO and PM2.5 were roughly two times
larger than the daytime concentrations. Within the area,
the observed CO concentrations were relatively similar in
all seven measurement locations, whereas significant

FIGURE 12 | Median diurnal cycles of CO during 1.1.-28.2.2021 for sensors located in Pakila (left) workdays (Mon-Fri) and (right) weekends (Sat-Sun). Black

dashed line shows median diurnal cycle calculated for all data from that location.
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variation in the PM2.5 concentration levels were observed
between the sensor measurement locations. The particulate
emissions seemed to vary more in the area while the gas phase
combustion product dispersed more evenly based on the
sensor network data.

Detection of Long-Range Transport of Air Pollution
The air quality in Helsinki is influenced by long-range
transport episodes, when air masses with high aerosol
concentrations arrive from Central and Eastern Europe and
from Russia. Based on data from 1999 to 2007, Niemi et al.
(2009) summarized that the WHO guideline level of diurnal
average concentration of 25 µg m-3 is exceeded 1–7 times per
year due to such episodes. Approximately half of these events
were partly caused by wildfires and agricultural waste burning
and the rest from anthropogenic emissions through industrial
activities, traffic or wood-combustion (Niemi et al., 2009). In
sub-micron size range majority of these particles are
composed of inorganics followed by organic compounds,
nitrate and black carbon (Barreira et al., 2020).

In September–October 2020, Helsinki experienced
deteriorated air quality due to long-range transport event. This
can be seen from Figure 14, which shows that a large contribution
of accumulation mode (larger than 100 nm in electrical
equivalent diameter) was observed at SMEAR III station in
Kumpula (Järvi et al., 2009; Luoma et al., 2021). This is a
characteristic feature of the aerosol size distribution that is
influenced by long-range transport (Hussein et al., 2014). The
episode started on September 23 and lasted until October 6, 2020.
The higher PM2.5 mass concentrations were observed with the
sensor network in a consistent manner. Long-range transported

particles are typically quite large in size and thus they are easily
detected by optical sensors, such as AQT530. The intermittent
improvement in air quality can be attributed to the changes in the
air mass back trajectories.

Impact of New Year Celebrations
Fireworks are known to cause a significant short-term increase in
air pollution during celebrations (e.g., Hoyos et al., 2019; Singh
et al., 2019; Foreback et al., 2021; Lorenzo et al., 2021). The
pollution consists mainly of PM2.5, PM10, black carbon (BC) and
trace gases, such as NOx, CO, and SO2 (Singh et al., 2019).
Especially particulate matter mass concentrations can be several
times higher during firework events (Seidel and Birnbaum, 2015;
Wang et al., 2007; Hoyos et al., 2019), and the levels usually return
to normal in the following day (Drewnick et al., 2006; Seidel and
Birnbaum, 2015). Particles produced by fireworks have increased
metal content from colorants and black gun powder, resulting in
distinctly different chemical composition compared to
background aerosols (Drewnick et al., 2006; Wang et al., 2007).

In the HMA, the use of fireworks is permitted during New
Year in the period stating from 31.12. at 18 local time and ending
on 1.1. at 2 after midnight. PM10 concentrations measured by the
sensors started increasing around 22 local time and the maximum
was reached just after midnight (Figure 15). The levels stayed
elevated until next morning. The night was rather cold and
humid. Consequently, the relative humidity remained high
during the night. Especially in Jätkäsaari the PM10

concentration increased with the increasing RH during the
early hours of 2021, implying that the ground level conditions
were foggy and the aerosol particles grew by condensation of
water vapor. Since the sensors do not dry the aerosol, the

FIGURE 13 | Median diurnal cycles of PM2.5 mass concentrations during 1.1.-28.2.2021 for sensors located in Pakila (left) workdays (Mon-Fri) and (right)

weekends (Sat-Sun). Black dashed line shows median diurnal cycle calculated for all data from that location.
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FIGURE 14 | (Top) Aerosol number size distribution measured at SMEAR III station in Helsinki during September 2020. (Bottom) Aerosol mass measurements

during September 2020 with a reference instruments and with the sensor network. The air mass backtrajectories indicate that the elevated accumulation mode aerosol

particles originate from Eastern Europe. During the long-range transport episodes, aerosol mass concentration is elevated from a typical 5 µg m-3 up to 25 µg m-3

throughout the Helsinki Metropolitan Area. The intermittent lower mass concentrations are concurrent with back trajectories from West Atlantic.

FIGURE 15 | PM10 mass concentration during the New Year celebrations as 15-min averages. Shaded areas show range of diurnal cycles in workdays (Mon-Fri)

during 1.12.2020–31.1.2021 for sensors at different locations.
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observations are influenced by the high humidity conditions.
However, the impact of fireworks is seen in the reference data as
well. At the reference site at SMEAR III in Kumpula, where the
mass concentration was determined with a TEOM instrument
and dried before sampling, the mass concentration reached values
as high as 62 μg m−3 just after midnight. Although the high mass
concentrations from the sensor network were influenced and
overestimated by the fog, the firework emissions seemed to
increase the aerosol mass concentrations in the Helsinki area
as seen from the reference observations.

CONCLUSION

Air quality is monitored with standardized air quality stations
representing different urban environments. An arising trend is to
supplement the spatio-temporal data on air quality with a suite of
cost-effective air quality sensors. It is therefore important to
understand the performance characteristics of sensing technologies
used in this type of instruments. Here we characterized the
performance of the optical detector used in Vaisala AQT530 air
quality sensor in the laboratory. The results indicated that the sensors
can detect the aerosol particles down to 600 nm in diameter and the
mass concentration determined from the optical sensor is linear in the
typical mass concentration range in urban areas.

We deployed a set of AQT530 sensors in the Mäkelänkatu
curbside air quality monitoring site for a half-year period of time
to explore the long-term stability of the instruments. The results
from the five individual sensors correlated well with the reference
data for NO, NO2, CO and PM10 with correlation coefficients (r

2)
of 0.77–0.95. The variability between the sensors was relatively
small indicating stable quality of the sensors. PM2.5 mass
concentrations exhibited lower correlation (r2 � 0.66–0.82)
against the reference instruments and larger sensor-to-sensor
variability. The weaker correlations of PM2.5 results are partly
explained by the inability of the sensors to properly detect small
particles (Dp<0.6 µm), and therefore the variation in particle size
distributions in the ambient air affects the PM results of sensors.
The O3 results of sensors were clearly the weakest with r

2 values of
0.36–0.49.

In the long-term co-location study, we observed: 1) PM10

artefact peaks caused by very high humidity (RH>95%, especially
fog) and 2) the long-term drifting of CO results probably due to
the combined effects of aging and ambient temperature on
electrochemical cells. The co-location study at the traffic site
in Helsinki was performed between August and January, in the
temperature range of −21 to +26°C. It is important to continue the
evaluation of sensor performance in co-location tests covering the
whole year in different urban sites and climate zones, including
higher temperatures and humidity.

The accuracy of sensor results can be improved using correction
equations based on co-location tests in local conditions. Therefore,
we performed short-term (3–5 weeks) co-location tests at the
reference site for all 25 sensors before their installation to the
sensor network. These results were used to calculate sensor-specific
correction equations for selected pollutants (CO and partly NO2).
We did not get reliable enough correction equations for all

pollutant components, since we had to carry out the co-location
tests in three subsequent sensor batches and in unusually low
pollutant concentration levels caused by COVID-19 related
restrictions (e.g., Torkmahalleh et al., 2021) and summer
holidays. Based on these experiences, it would be optimal to
perform short co-location test at the same time, containing also
typical and high pollutant concentrations.

We deployed Vaisala AQT530 sensors in different urban
environments in Helsinki Metropolitan Area (HMA) to
showcase the added value and novel insights that can be gained
through the combination of regulatory air quality monitoring
stations and the AQT530 sensor network. Eleven sensors in
Jätkäsaari environment and six in Vallila underlined the role of
road traffic and harbor activities particularly in the local NO2 and
PM2.5 concentrations. The PM10 mass concentrations showed a
considerable variability between locations close to construction
sites and the regional reference measurements. With eight sensors
in the suburban Pakila residential area, the Vaisala AQT530
network indicated the role of small-scale wood combustion
particularly during evening times to contribute to CO and
PM2.5 concentrations. The network of sensors reacted to the
long-range transport episode in a harmonized manner during
the period in September–October 2020, when air masses
brought polluted air from the Central and Eastern Europe and
European Russia. During the New Year celebrations, the sensors
detected elevated aerosol mass concentrations, but the absolute
concentration was influenced by high humidity and fog causing a
bias in the optical detection.

As a summary, our results underline the importance of co-
located on-site calibration period before deploying the sensor
network to the different environments. This provides data on
sensor-to-sensor variability for each air pollution component. A
network of calibrated Vaisala AQT530 air quality sensors
provided new insights into the variability of gas phase and
particulate phase air pollution within the city. This can be
utilized by the city administrations to optimize control of road
and construction dust emissions and raising awareness of air
quality problems connected to residential wood combustion.
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