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Abstract In this note, we show how the dual approach in its particular form presented
in [1] can be fitted into the framework of the recent work [2].
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In the recent paper [2], a class of methodologies for developing upper bounds for
Bermudan derivatives via Monte Carlo simulation is studied. This class, in particular,
is designed to study methods that involve sub-simulations.Unfortunately, one of the
most popular upper bound methodologies, that of Andersen and Broadie [1], does not
lie within this class, since while the process used is an approximation to a martingale,
the approximation itself is not a martingale with respect tosome enlarged filtration as
in Example 3.1 in [2].

We recall the dual approach, originally proposed by Rogers [4] and Haugh and
Kogan [3], in the setup of [2]. Let

(Zi : i = 0, 1, . . . , T), T ∈ N,

be a discrete-time, nonnegative stochastic process on a filtered probability space
(Ω,F ,F,P) and adapted to the filtrationF := (Fi : 0 ≤ i ≤ T). It is assumed
that

E[Zi ] < ∞ for 0 ≤ i ≤ T.

The problem is to find the optimal time to stop in order to maximize the value of(Zi ).
LetTi denote the set of stopping times taking values in{i , i +1, . . . , n}. A well-known
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fact is that the value of the optimal stopping problem is given by the Snell envelope

Y∗
i = sup

τ∈Ti

Ei [Zτ ], 0 ≤ i ≤ T,

at time i = 0, i.e., byY∗
0 . In the following,τ denotes a stopping time,Ei := EFi

denotes the conditional expectation with respect to theσ -algebraFi , and sup (inf) is
to be understood asessential supremum(essential infimum).

The dual approach is based on the following observation: forany martingale(M j )

with M0 = 0, we have

Y∗
0 = sup

τ∈T0

E0[Zτ ] = sup
τ∈T0

E0 [Zτ − Mτ ] ≤ E0

[
max

0≤ j ≤T
(Z j − M j )

]
, (0.1)

so that the right-hand side provides an upper bound forY∗
0 . In [3] and [4], it is shown

that (0.1) holds with equality (and the equality is almost sure) for the martingale part
of the Doob decomposition ofY∗, that is,

Y∗
j = Y∗

0 + M∗
j − A∗

j ,

where

M∗
j =

j∑

i=1

(Y∗
i − Ei−1[Y

∗
i ]), A∗

j =

j∑

i=1

(Y∗
i−1 − Ei−1[Y

∗
i ]). (0.2)

In practice, there is a variety of ways to implement the dual method of [4] and [3].
A straightforward way is to approximate the Doob martingaleof the Snell envelope
by using sub-simulations to estimate continuation values,for example due to a given
approximate value function or due to a given suboptimal exercise strategy. These
approaches naturally lead to an upper-biased estimate and one objective in [2] was to
treat them in a unified way. To this end, Belomestny, Schoenmakers and Dickmann
[2] choose a setup where theapproximated martingales are martingalesthemselves
with respect to some enlarged filtration, thus allowing direct application of the results
of [4] and ensuring upper-biased estimates. Although various sub-simulation-based
algorithms fall into this setup, the particular Andersen and Broadie [1] algorithm
(based on suboptimal stopping families) does not.

Let us recap in more detail. First, a strategy is fixed. Since we have to consider
values from forward starting points, this is a vector(τ j ) of stopping times withτ j ≥ j
and

τ j > j =⇒ τ j +1 = τ j .

Given these, we define a value process

Yj = E j [Zτ j ].

[1] define a martingale analogously to (0.2) by

M AB
j =

j∑

i=1

(Yi − Ei−1[Yi ]) = E j [Yj +1] − Y0 +

j∑

i=0

(Yi − Ei [Yi+1])

= E j [Yj +1] − Y0 +

j∑

i=0

(Zi − Ei [Yi+1]) 1{τi =i }.
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The expectations in this martingale are not immediate and have to be estimated via
Monte Carlo simulation. The termY0 may be computed with high accuracy based on
non-nested Monte Carlo simulations, and soM AB

j may be approximated by

M AB,k
j =

1

k

k∑

ℓ=1

ξ
(ℓ)
j +1 − Y0 +

j∑

i=0

(
Zi −

1

k

k∑

ℓ=1

ξ
(ℓ)
i+1

)
1{τi =i }, (0.3)

where, just as in [2], the conditionally onFT independent random variablesξ
(ℓ)
j are

characterized by

ET [ξ
(ℓ)
j ] = E j −1[ξ

(ℓ)
j ] = E j −1[Yj ] = E j −1[Zτ j ], j = 1, . . . , T,

and in particular it holds that

E j
[
M AB,k

j

]
= M AB

j (0.4)

is a martingale with respect to the filtrationF.

The problem is that(M AB,k
j ) is not a martingale with respect to the canonically

enlarged filtrationF′ := (F ′
i : 0 ≤ i ≤ T) with

F
′
j := F j ∨ σ

(
ξ (ℓ)

p , p = 1, . . . , j , ℓ = 1, . . . , k
)
,

unlike the martingale (3.2) of Example 3.1 in [2], since (0.3) is even not adapted to
F

′. In fact, the adaptedness is destroyed by the presence of theindicator in (0.3), that
is, by the fact that in general 1{τi =i } 6= 1 with positive probability.

The lack of the martingale property for the “true” algorithmfrom [1] is not taken
into account in [2]; but it turns out that the full martingalecondition is not necessary
to obtain an upper bound. Consider equation (0.1). There we assumed that(M j ) is a
martingale with respect toF. We now show that the weaker condition that(E j [M j ])

is a martingale with respect to the filtrationF is sufficient (cf. (0.4)). Indeed, if(M j ),
with M0 = 0, is adapted to some extended filtration such that(M̃ j ) := (E j [M j ]) is a
martingale, we have

Y∗
0 := sup

τ
E[Zτ ] = sup

τ
E[Zτ − M̃τ ] = sup

τ
E

T∑

j =0

1{τ= j }(Z j − E j [M j ])

= sup
τ

E

[
T∑

j =0

E j [1{τ= j }(Z j − M j )]

]
= sup

τ
E[Zτ − Mτ ] ≤ E

[
max

j =0,...,T
(Z j − M j )

]
.

Under this extension of the framework, we can setM j = M AB,k
j , and then the al-

gorithm from [1] is encompassed by the proofs of [2] and all the results go over.
In particular, it then follows that the rate of convergence of the bias caused by sub-
simulations is as in that paper and a multi-level methodology can be implemented.
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