Addendum to
 "On the Variation in the Cohomology of the Symplectic Form of the Reduced Phase Space"

J.J. Duistermaat and G.J. Heckman*
Mathematisch Instituut der RUU, Budapestlaan 6, Utrecht, Netherlands
Mathematisch Instituut der RUL, Wassenaarseweg 80, Leiden, Netherlands

1. Introduction

Let M be a compact symplectic manifold with symplectic form σ, and let T be a torus acting on M in a Hamiltonian way. The symbol X is used both for an element of the Lie algebra \underline{t} of T and for the corresponding vector field on M. A Hamiltonian action means that there is a momentum mapping

$$
\begin{equation*}
J: M \rightarrow \underline{\mathrm{t}}^{*} \tag{1.1}
\end{equation*}
$$

having the properties

$$
\begin{align*}
& (\sigma \mid X)=-d J_{X}, \quad X \in \underline{t}, \tag{1.2}\\
& \sigma(X, Y)=0, \quad X, Y \in \underline{t} . \tag{1.3}
\end{align*}
$$

Here we have used the notation $(\sigma \mid X)$ for the inner product of the vector field X with the form σ, and $J_{X}(m)=\langle X, J(m)\rangle$ for the X-component of J.

In an earlier paper [4] it was shown that the push forward $J_{*}(d m)$ of the Liouville measure $d m$ on M under the momentum mapping J is a piecewise polynomial measure on \underline{t}^{*}. Moreover, in case X has isolated isolated zeros on M an explicit formula for the integral

$$
\begin{equation*}
\int_{M} e^{i\langle X, J(m)\rangle} d m \tag{1.4}
\end{equation*}
$$

was obtained using the method of stationary phase. The goal of this note is to extend this formula to the case that the zeros of X are not necessarily isolated.

If we write N for the zero set of X and $i: N \rightarrow M$ for the inclusion, then $i^{*}(\sigma)$ is a symplectic form on N. The normal bundle E of N in M has the structure of a symplectic vector bundle. Denote this symplectic structure on E by τ. By linearization X induces a fiber preserving automorphism $L X: E \rightarrow E$ leaving τ invariant. Here invariant is meant in the infinitesimal sense. We can

[^0]choose an automorphism $i: E \rightarrow E$ commuting with $L X$ such that $i^{2}=-$ id and $\tau(i .,$.$) is a Riemannian structure on E$. Conclusion is that E becomes a complex vector bundle over N, and $L X$ a complex automorphism of E.

Choose an $L X$-invariant connection D on E, and let Ω be the curvature matrix. Now we can formulate the following

Theorem. If $\lambda_{1}, \ldots, \lambda_{r}$ are the different weights for the action of $L X$ on E, then

$$
\begin{equation*}
\int_{M} e^{J_{x}} e^{\sigma}=\int_{N} \frac{e^{i * J_{x}} e^{i^{*} \sigma}}{\operatorname{det}\left(\frac{L X+\Omega}{2 \pi i}\right)} \tag{1.5}
\end{equation*}
$$

$$
\begin{equation*}
\left\langle X, \lambda_{j}\right\rangle \neq 0, \quad j=1, \ldots, r \tag{1.6}
\end{equation*}
$$

Here J_{X} and $L X$ are extended linearly for $X \in \underline{1}_{\mathbb{C}}$.
Decompose $E=\oplus E_{\lambda}$ according to different weights λ, and let Ω_{λ} be the curvature matrix of E_{λ}. Clearly $L X$ acts on E_{λ} by multiplication with $\langle X, \lambda\rangle$. Now

$$
\begin{aligned}
\left\{\operatorname{det}\left(\frac{L X+\Omega}{2 \pi i}\right)\right\}^{-1} & =\left\{\operatorname{det}\left(\frac{L X}{2 \pi i}\right)\right\}^{-1}\left\{\operatorname{det}\left(1+L X^{-1} \Omega\right)\right\}^{-1} \\
& =\left\{\operatorname{det}\left(\frac{L X}{2 \pi i}\right)\right\}^{-1}\left\{\prod_{\lambda} \operatorname{det}\left(1+L X^{-1} \Omega_{\lambda}\right)\right\}^{-1} \\
& =\left\{\operatorname{det}\left(\frac{L X}{2 \pi i}\right)\right\}^{-1}\left\{\sum_{k \geqq 0} \alpha_{k}(X)\right\}^{-1} \\
& =\left\{\operatorname{det}\left(\frac{L X}{2 \pi i}\right)\right\}^{-1}\left\{\sum_{k \geqq 0} \beta_{k}(X)\right\} .
\end{aligned}
$$

Here $\alpha_{k}(X)$ and $\beta_{k}(X)$ are differential forms on N of degree $2 k$ with $\alpha_{0}(X)$ $=\beta_{0}(X)=1$. Their cohomology classes in $H^{2 k}(N, \mathbb{C})$ are polynomials in the Chern classes of the various E_{λ}. The coefficients of these polynomials are rational functions in X, and homogeneous of degree $-k$. Because $i^{*} J_{X}$ is locally constant on N we obtain that the integrand in the right hand side of (1.5) is a closed form on N whose cohomology class is a polynomial in the cohomology class of $i^{*} \sigma$ and the Chern classes of E_{λ}. The coefficients of this polynomial are meromorphic in X, and analytic for $X \in \underline{\mathrm{t}}_{\mathbb{C}}$ satisfying (1.6). Because the left hand side of (1.5) is an analytic function in X on all of $\underline{t}_{\mathbb{C}}$ it is sufficient to prove (1.5) for $X \in t$ satisfying (1.6).

The proof of the theorem follows with minor adaptions [2] where a similar formula is obtained for M a complex manifold, L a holomorphic line bundle on M with Chern class $[\sigma]$ and X a holomorphic vector field on M which acts on L.

That Bott's ideas could be extended from the holomorphic to the symplectic case was observed in [1], at least in the situation that X has isolated zeros. ${ }^{1}$

[^1]The purpose of this paper is just to carry out the explicit calculation needed for this extension. The proof presented here is self-contained modulo the citation of formula (2.28).

2. Proof of the Theorem

Fix a T-invariant Riemannian metric g on M. Using the exponential mapping we obtain a diffeomorphism ψ from a neighborhood U of the zero section in E onto a neighborhood $\psi(U)$ of N in M. We can take U invariant under multiplication μ_{ε} in the fiber by positive constants $\varepsilon \leqq 1$. The push forward under ψ of the linear vector field $L X$ on U is equal to X. Suppose $L \theta$ is a 1 form on $E \backslash N$ having the properties

$$
\begin{align*}
& (L \theta \mid L X)=1 \tag{2.1}\\
& (d L \theta, L X)=0 \tag{2.2}\\
& \mu_{\varepsilon}^{*} L \theta=L \theta \tag{2.3}
\end{align*}
$$

Given (2.1) the condition (2.2) is equivalent to $\mathscr{L}_{L X}(L \theta)=0$. Using the 1 -form $g(X, X)^{-1} g(X,$.$) on M \backslash N$ and a partition of unity we obtain a 1-form θ on $M \backslash N$ satisfying

$$
\begin{array}{r}
(\theta \mid X)=1 \\
(d \theta \mid X)=0 \tag{2.5}
\end{array}
$$

and such that the pull back under ψ of the form θ on $\psi(U)$ is equal to $L \theta$.
Consider the $(2 n-1)$-form

$$
\begin{equation*}
\nu=-\sum_{k=1}^{n}(-1)^{k} e^{J_{X}} \theta \wedge(d \theta)^{k-1} \wedge \frac{\sigma^{n-k}}{(n-k)!} \tag{2.6}
\end{equation*}
$$

on $M \backslash N$. An easy computation shows that

$$
\begin{equation*}
(d v \mid X)=\left(\left.e^{J_{X}} \frac{\sigma^{n}}{n!} \right\rvert\, X\right) \tag{2.7}
\end{equation*}
$$

which in turn implies that

$$
\begin{equation*}
d v=e^{J x} \frac{\sigma^{n}}{n!} \tag{2.8}
\end{equation*}
$$

on $M \backslash N$. For positive ε denote by B_{ε} the ε-ball bundle in E, and by S_{ε} the boundary of B_{ε}. Clearly

$$
\begin{equation*}
\int_{M} e^{J_{X}} \frac{\sigma^{n}}{n!}=\lim _{\varepsilon \downarrow 0} \int_{M \backslash \psi\left(B_{\varepsilon}\right)} e^{J_{X}} \frac{\sigma^{n}}{n!} \tag{2.9}
\end{equation*}
$$

which by Stokes' theorem is equal to

$$
\begin{equation*}
\lim _{\varepsilon \downarrow 0} \int_{\psi\left(S_{\varepsilon}\right)} \sum_{k=1}^{n}(-1)^{k} e^{J_{x}} \theta \wedge(d \theta)^{k-1} \wedge \frac{\sigma^{n-k}}{(n-k)!} \tag{2.10}
\end{equation*}
$$

The mapping $\psi \mu_{\varepsilon}$ is a diffeomorphism from the unit normal sphere bundle S to $\psi\left(S_{\varepsilon}\right)$. Applied to forms which are smooth on all of $U \lim _{\varepsilon \downarrow 0}\left(\psi \mu_{\varepsilon}\right)^{*}$ is equal to $(i \pi)^{*}=\pi^{*} i^{*}$. Here $\pi: E \rightarrow N$ is the natural projection. The 1 -form $\left(\psi \mu_{\varepsilon}\right)^{*} \theta=L \theta$ does not depend on ε. Hence (2.10) is equal to

$$
\begin{equation*}
\int_{S} \sum_{k=1}^{n}(-1)^{k} e^{\pi^{*} i^{*} J} L \theta \wedge(d L \theta)^{k-1} \wedge \frac{\left(\pi^{*} i^{*} \sigma\right)^{n-k}}{(n-k)!} \tag{2.11}
\end{equation*}
$$

In order to construct the 1 -form $L \theta$ on $E \backslash N$ we choose a connection

$$
\begin{equation*}
D: \Gamma(E) \rightarrow \Gamma\left(T^{*} N \otimes E\right) \tag{2.12}
\end{equation*}
$$

on E. For an exposition of the theory of connections and characteristic classes see Chern's book [3]. From now on we will replace N by one of its connected components. Let q be the rank of E as a complex vector bundle.

Let $V \subset N$ be an open set, and ${ }^{t} s=\left(s_{1}, \ldots, s_{q}\right)$ a frame field over V. This gives a trivialization of E over V by

$$
\begin{gather*}
V \times \mathbb{C}^{q} \rightarrow \pi^{-1}(V) \\
(n, z) \rightarrow \sum z_{i} s_{i}(n), \quad{ }^{t} z=\left(z_{1}, \ldots, z_{q}\right) . \tag{2.13}
\end{gather*}
$$

If $s^{\prime}=g s$ is a new frame field over V, then

$$
\begin{equation*}
z=^{t} g z^{\prime}, \quad d z={ }^{t} d g z^{\prime}+{ }^{t} g d z^{\prime} \tag{2.14}
\end{equation*}
$$

The connection matrix ω of D relative to the frame field s is defined by

$$
\begin{equation*}
D s=\omega s \tag{2.15}
\end{equation*}
$$

The transformation formula for a change of frame field is

$$
\begin{equation*}
\omega^{\prime} g=d g+g \omega \tag{2.16}
\end{equation*}
$$

Consider the vector valued 1-form $D z$ on E given by

$$
\begin{equation*}
D z=d z+{ }^{t} \omega z \tag{2.17}
\end{equation*}
$$

The form $D z$ transforms under a change of frame field according to

$$
\begin{equation*}
D z={ }^{t} g D z^{\prime} \tag{2.18}
\end{equation*}
$$

Moreover, an easy calculation shows that

$$
\begin{equation*}
d(D z)={ }^{t} \Omega z-{ }^{t} \omega \wedge D z \tag{2.19}
\end{equation*}
$$

where

$$
\begin{equation*}
\Omega=d \omega-\omega \wedge \omega \tag{2.20}
\end{equation*}
$$

is the curvature matrix relative to s.

Let H be a Hermitean structure on E. Assume that the connection D is admissable with respect to H. Hence, for a unitary frame field s over V we have

$$
\begin{equation*}
\omega+{ }^{t} \bar{\omega}=0, \quad \Omega+{ }^{t} \bar{\Omega}=0 . \tag{2.21}
\end{equation*}
$$

From now on s and $s^{\prime}=g s$ will be unitary frame fields over V. Because X generates a compact group we may assume that $L X$ is leaving both the Hermitean structure H and the connection D invariant, i.e.

$$
\begin{gather*}
L X+{ }^{t} \overline{L X}=0, \tag{2.22}\\
{[L X, \omega]=0, \quad[L X, \Omega]=0 .} \tag{2.23}
\end{gather*}
$$

Moreover we will choose the frame fields s and $s^{\prime}=g s$ in such a way that $d(L X)=0$.

Consider the 1 -form

$$
\begin{equation*}
L \theta=(z, z)^{-1}\left(z,{ }^{t} L X^{-1} D z\right) \tag{2.24}
\end{equation*}
$$

on $E \backslash N$. Clearly $L \theta$ is independent of the choice of the frame field s, and satisfies the conditions (2.1), (2.2) and (2.3). Using (2.19), (2.21) and (2.23) one has

$$
L \theta \wedge(d L \theta)^{k-1}=(z, z)^{-k}\left(z,{ }^{t} L X^{-1} D z\right) \wedge\left\{\left(D z,{ }^{t} L X^{-1} D z\right)+\left(z,{ }^{t} L X^{-1 t} \Omega z\right)\right\}^{k-1}
$$

Hence (2.11) can be rewritten as

$$
\begin{align*}
& \int_{N} e^{i^{*} J_{X}} e^{i^{i * \sigma}} \sum_{k=q}^{n} \sum_{j=1}^{k}(-1)^{k}\binom{k-1}{j-1} \\
& \quad \times \quad \int_{S^{2}-1}\left(z,{ }^{t} L X^{-1} D z\right) \wedge\left(D z,{ }^{t} L X^{-1} D z\right)^{j-1} \wedge\left(z,{ }^{t} L X^{-1}{ }^{t} \Omega z\right)^{k-j} . \tag{2.26}
\end{align*}
$$

Here $S^{2 q-1}$ is the unit sphere in \mathbb{C}^{q}. The second integrand has to be integrated point wise for $n \in N$. The outcome of this integral is independent of the choice of the frame field s. But for fixed $n \in V$ one can always choose a frame field s, which is horizontal at n. Therefore, in the summation over j in (2.26) all summands vanish except the one with $j=q$. Hence (2.26) becomes

$$
\begin{equation*}
\int_{N} e^{i * J_{X}} e^{i^{i *} \sigma}(-1)^{q} \int_{S^{2} q-1} \frac{\left(z,{ }^{t} L X^{-1} d z\right) \wedge\left(d z,{ }^{t} L X^{-1} d z\right)^{q-1}}{\left\{(z, z)+\left(z,{ }^{t} L X^{-1} \Omega z\right)\right\}^{q}} . \tag{2.27}
\end{equation*}
$$

Using a formula of Bott ([2], p. 327)

$$
\begin{equation*}
\int_{S^{2} q-1} \frac{(z, d z) \wedge(d z, d z)^{q-1}}{\{(z, z)+t(z, S z)\}^{q}}=\frac{1}{\operatorname{det}(1+t S)_{S^{2 q-1}}} \int(z, d z) \wedge(d z, d z)^{q-1} \tag{2.28}
\end{equation*}
$$

for any $q \times q$ Hermitean matrix S, we can rewrite (2.27) as

$$
\begin{equation*}
\int_{N} \frac{e^{i^{*} J_{X}} e^{i * \sigma}(-1)^{q} \operatorname{det}\left({ }^{(} \overline{L X}{ }^{-1}\right)}{\operatorname{det}\left(1+{ }^{t} L X^{-1 t} \Omega\right)} \int_{S^{2} q-1}(z, d z) \wedge(d z, d z)^{q-1} . \tag{2.29}
\end{equation*}
$$

With our orientation of \mathbb{C}^{q} we get

$$
\begin{equation*}
\int_{S^{2} q-1}(z, d z) \wedge(d z, d z)^{q-1}=\int_{B^{2 q}}(d z, d z)^{q}=(2 \pi i)^{q} \tag{2.30}
\end{equation*}
$$

and because $L X^{-1}$ is skew-Hermitean (2.29) can be written as

$$
\begin{equation*}
\int_{N} \frac{e^{i * J_{X}} e^{i^{i *} \sigma}}{\operatorname{det}\left(\frac{L X+\Omega}{2 \pi i}\right)} \tag{2.31}
\end{equation*}
$$

This finishes the proof of the theorem.

References

1. Berline, N., Vergne, M.: Zeros d'un champ de vecteurs et classes caracteristiques equivariantes. Preprint M.I.T. 1982
2. Bott, R.: A residue formula for holomorphic vector fields. J. Diff. Geometry 1, 311-330 (1967)
3. Chern, S.S.: Complex manifolds without potential theory. Van Nostrand Math. Studies \#15 (1967)
4. Duistermaat, J.J., Heckman, G.J.: On the variation in the cohomology of the reduces phases space. Invent. Math. 69, 259-268 (1982)

[^0]: * Partially supported by NSF Grant MCS-8203769

[^1]: 1 After this note was written we learned that the case of non isolated zeros has also been treated in a somewhat more general context in: N. Berline et M. Vergne, Classes caractéristiques équivariantes. Formule de localisation et chomologie équivariante, to appear in the Comptes Rendus

