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OF THE UNIT POLYDISC
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Abstract

In 2008, we obtained an intrinsic characterization of the unit polydisc Dn in Cn

from the viewpoint of the holomorphic automorphism group. In connection with this,

A. V. Isaev investigated the structure of a complex manifold M with the property that

every isotropy subgroup of the holomorphic automorhism group of M is compact, and

obtained the same characterization of Dn as ours among the class of all such mani-

folds. In this paper, we establish some extensions of these results. In particular,

Isaev’s characterization of the unit polydisc Dn is extended to that of any bounded

symmetric domain in Cn.

1. Introduction

This is a continuation of our previous paper [8], and we retain the termi-
nology and notation there.

Let M be a connected complex manifold and AutðMÞ the group of all
biholomorphic automorphisms of M. Then, equipped with the compact-open
topology, AutðMÞ is a topological group acting continuously on M. It should
be remarked here that AutðMÞ does not have the structure of a Lie group, in
general; this often causes di‰culties in studying various problems related to
AutðMÞ.

In 1907, it was shown by Poincaré [10] that the Riemann mapping theorem
does not hold in the higher dimensional case. In fact, he proved that there exists
no biholomorphic mapping from the unit polydisc D2 onto the unit ball B2 in C2

by comparing carefully the topological structures of the isotropy subgroups of
AutðD2Þ and AutðB2Þ at the origin o of C2. In view of this fact, for a given
complex manifold M, it seems to be an interesting problem to bring out some
complex analytic nature of M under some topological conditions on AutðMÞ.
Taking this into account, we asked the following question in [8]: Let M and N
be connected complex manifolds and assume that their holomorphic automorphism

182

2000 Mathematics Subject Classification. Primary 32M05; Secondary 32Q28.

Keywords and phrases. Holomorphic automorphism groups, Reinhardt domains, Torus actions,

Unit polydisc.

Received September 15, 2009; revised November 10, 2009.



groups AutðMÞ and AutðNÞ are isomorphic as topological groups. Then is M
biholomorphically equivalent to N? And, as our main result, we obtained the
following intrinsic characterization of the unit polydisc Dn from the viewpoint of
the holomorphic automorphism group:

Theorem A ([8, Theorem]). Let M be a connected complex manifold of
dimension n that is holomorphically separable and admits a smooth envelope of
holomorphy. Assume that AutðMÞ is isomorphic to AutðDnÞ as topological
groups. Then M is biholomorphically equivalent to Dn.

Later, related to this theorem, Isaev [6] investigated the structure of a
complex manifold M with the property that every isotropy subgroup of the
AutðMÞ-action is compact, and showed the following:

Theorem B ([6, Theorem 1.2]). Let M be a connected complex manifold of
dimension n satisfying the following two conditions:

(1) The isotropy subgroup of AutðMÞ at every point of M is compact.
(2) AutðMÞ is isomorphic to AutðDnÞ as topological groups.

Then M is biholomorphically equivalent to Dn.

The main purpose of this paper is to establish the following extensions of
Theorems A and B, which were announced at the 17th International Conference
on Finite or Infinite Dimensional Complex Analysis and Applications in Ho Chi
Minh City, Vietnam, August 2009:

Theorem 1. Let M be a connected complex manifold of dimension n that is
holomorphically separable and admits a smooth envelope of holomorphy. Assume
that there exists a topological subgroup G of AutðMÞ that is isomorphic to the
identity component of AutðDnÞ as topological groups. Then M is biholomorph-
ically equivalent to Dn.

This theorem will be proved in Section 2 by modifying the proof of Theorem
A.

Let W be an arbitrary domain in Cn. Then it is well-known that W admits
a smooth envelope of holomorphy (cf. [9]). Hence, as an immediate consequence
of this theorem, we obtain the following:

Corollary 1. Let M be a connected Stein manifold of dimension n or a
domain in Cn. Assume that there exists a topological subgroup G of AutðMÞ that
is isomorphic to the identity component of AutðDnÞ as topological groups. Then
M is biholomorphically equivalent to Dn.

A bounded domain D in Cn is called symmetric if, for each point p A D,
there exists an element sp A AutðDÞ such that sp � sp ¼ idD, sp 0 idD and p is an
isolated fixed point of sp. Clearly, the unit polydisc Dn as well as the unit ball
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Bn in Cn is a typical example of bounded symmetric domains. As a natural
generalization of Theorem B, we can prove the following theorem in Section 3:

Theorem 2. Let M be a connected complex manifold of dimension n and let
D be a bounded symmetric domain in Cn. Assume that there exists a topological
subgroup G of AutðMÞ satisfying the following two conditions:

(1) The isotropy subgroup of G at every point of M is compact.
(2) G is isomorphic to the identity component of AutðDÞ as topological groups.

Then M is biholomorphically equivalent to D.

Recall that the isotropy subgroup of AutðMÞ at every point of M is
compact, provided that M is hyperbolic in the sense of Kobayashi [7]. Hence
we have the following:

Corollary 2. Let M be a connected hyperbolic manifold of dimension n and
let D be a bounded symmetric domain in Cn. Assume that AutðMÞ is isomorphic
to AutðDÞ as topological groups. Then M is biholomorphically equivalent to D.

Finally, it should be remarked that, for a given connected complex manifold
M, the following conditions (A) and (B) are mutually independent (for the detail,
see Section 4):

(A) M is holomorphically separable and admits a smooth envelope of
holomorphy.

(B) The isotropy subgroup of AutðMÞ at every point of M is compact.
In this sense, our Theorems 1 and 2 may be considered as characterizations of
model domains from di¤erent viewpoints.
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are grateful to the referee for comments leading to improvements of the present
paper. The authors are partially supported by the Grant-in-Aid for Scientific
Research (C) No. 21540169 and (C) No. 18540154, the Ministry of Education,
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2. Proof of Theorem 1

Our proof is based on the argument developed in our previous paper [8].
Although there are some overlaps with that paper, we carry out the proof for the
sake of completeness and self-containedness.

Let us start with fixing a coordinate system z ¼ ðz1; . . . ; znÞ in Cn and setting

Dj ¼ fzj A C j jzjj < 1g ð1a ja nÞ and Dn ¼ D1 � � � � � Dn:

Recall that AutðDjÞ is a connected, real simple Lie group of dimension 3 with
trivial center. Let AutoðDnÞ be the identity component of AutðDnÞ. Then we
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know that AutoðDnÞ can be identified with the direct product of AutðDjÞ:
AutoðDnÞ ¼ AutðD1Þ � � � � �AutðDnÞ. Let gðDjÞ and gðDnÞ, respectively, denote
the real Lie algebras consisting of all complete holomorphic vector fields on
Dj and on Dn. Then it is well-known that these Lie algebras are canonically
identified with the Lie algebras of AutðDjÞ and AutðDnÞ, respectively. Therefore
we have

gðDnÞ ¼ gðD1Þl � � �l gðDnÞ; ½gðDiÞ; gðDjÞ� ¼ f0g for 1a i; ja n; i0 j:ð2:1Þ

Moreover, we see that gðDjÞ contains the holomorphic vector fields

Hj :¼
ffiffiffiffiffiffiffi

�1
p

zjq=qzj and Vj :¼ ð1� z2j Þq=qzj

induced by the one-parameter subgroups

zj 7! ðexp
ffiffiffiffiffiffiffi

�1
p

tÞzj and zj 7!
ðcosh tÞzj þ sinh t

ðsinh tÞzj þ cosh t

ðt A RÞ of AutðDjÞ, respectively. Then, putting Wj ¼ ½Hj;Vj �, we have

gðDjÞ ¼ RfHj;Vj;Wjg and ½Hj ; ½Hj;Vj �� ¼ �Vj; ½Wj;Vj� ¼ 4Hjð2:2Þ

for 1a ja n. These bracket relations will be very important in our proof.
As in Theorem 1 in the introduction, let M be a connected complex

manifold of dimension n that is holomorphically separable and admits a smooth
envelope of holomorphy and assume that there exists a topological group iso-
morphism F : AutoðDnÞ ! G, where G is the given topological subgroup of
AutðMÞ. Since Dn is a Reinhardt domain in Cn, the n-dimensional torus T n acts
naturally on Dn as a connected Lie transformation group, so that, via the
isomorphism F, T n now acts e¤ectively and continuously on M by biholomor-
phic transformations. Hence this action is necessarily real analytic by a classical
result of Bochner and Montgomery [3]. Therefore, by a well-known fact due to
Barrett, Bedford and Dadok [1], we may assume that M is a Reinhardt domain
D in Cn and that there exists a topological group isomorphism F : AutoðDnÞ !
GHAutðDÞ such that FðTðDnÞÞ ¼ TðDÞ, where TðDnÞ and TðDÞ, respectively,
denote the subgroups of AutðDnÞ and of AutðDÞ induced by the restrictions of the
standard T n-action on Cn to Dn and to D.

Now, the group G can be turned into a Lie group by transferring the Lie
group structure from AutoðDnÞ by means of F. Since the Lie group G endowed
with the compact-open topology acts continuously on D by biholomorphic
transformations, the action is real analytic with respect to the Lie group structure
induced from AutoðDnÞ (cf. [3]). Thus G is now a Lie transformation group of
D acting e¤ectively on D by biholomorphic transformations; accordingly, the Lie
algebra of G can be identified with the Lie algebra g consisting of all holomor-
phic vector fields on D induced by one-parameter subgroups of G (so-called

185addendum to our characterization of the unit polydisc



G-vector fields on D). We thus obtain the Lie algebra isomorphism
dF : gðDnÞ ! g induced by F. From now on, for the sake of simplicity, let
us put

Gj ¼ FðAutðDjÞÞ; gj ¼ dFðgðDjÞÞ and

Ij ¼ dFðHjÞ; Xj ¼ dFðVjÞ; Yj ¼ dFðWjÞ

for 1a ja n. Then G ¼ G1 � � � � � Gn and, by (2.1) and (2.2), we have

g ¼ g1 l � � �l gn; ½gi; gj� ¼ f0g for 1a i; ja n; i0 j;ð2:3Þ
gj ¼ RfIj;Xj ;Yjg and ½Ij ; ½Ij;Xj�� ¼ �Xj; ½Yj;Xj� ¼ 4Ijð2:4Þ

for every 1a ja n.
Put D� ¼ DV ðC�Þn and, for a point z A D, let ðgjÞz denote the subspace of

the tangent space to D at z that consist of the values of the elements of gj at z.

Then, using the bracket relations (2.3) and (2.4), one can verify the following
assertion:

1) For every point zo A D�, there exist a local holomorphic coordinate system
ðU ;w1; . . . ;wnÞ on D�, centered at zo, and a nowhere dense real analytic subset A
of U such that ðgjÞp ¼ Cfðq=qwjÞpg for p A UnA and 1a ja n.

Therefore, if we choose a point p A UnA and consider the orbits

Dp :¼ G � p and Sj :¼ Gj � p ð1a ja nÞ

of G and of Gj passing through p, then the assertion 1) together with (2.3)
guarantees us that every Sj is a complex submanifold of D and Dp is an open
subset of D. Hence Dp is a Reinhardt domain in Cn, because G is connected
and contains the torus TðDÞ ¼ T n. More precisely, in exactly the same way as
in the proof of [8, Theorem], it can be shown that

2) every Sj is biholomorphically equivalent to the unit disc Dj;
3) Dp is biholomorphically equivalent to the unit polydisc Dn; and
4) D is a bounded domain in Cn and Dp is an open dense subset of D.

Thus the proof of Theorem 1 is now reduced to showing that Dp is also closed in
D. If G is a closed subgroup of AutðDÞ, then G acts properly on D, as seen in
the proof of [8; Theorem]. Consequently, the orbit Dp ¼ G � p has to be closed
in D in this case. Here, whether or not G is closed in AutðDÞ, we want to verify
the closedness of Dp in D. To this end, assume the contrary that there exists a
boundary point q A qDp in D. Let dD denote the Kobayashi distance on D and
let Kðx; rÞ ¼ fy A D j dDðx; yÞ < rg be the Kobayashi ball of radius r > 0 with
center x A D. Since dD induces the standard topology of D (cf. [2], [12]) and p
is an interior point of Dp, one can pick a small r > 0 in such a way that
Kðp; rÞHDp. For such an r > 0, choose a point xo A Dp VKðq; rÞ arbitrarily and
let go be an element of G such that xo ¼ go � p. Then, since dD is invariant under
the action of GHAutðDÞ, we have

dDðg�1
o � q; pÞ ¼ dDðq; go � pÞ ¼ dDðq; xoÞ < r;
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which means that g�1
o � q A Kðp; rÞHDp and hence q A go �Dp ¼ Dp, a contra-

diction to q A qDp. Therefore Dp is, in fact, closed in D and accordingly D ¼ Dp

is biholomorphically equivalent to Dn; completing the proof of Theorem 1. r

3. Proof of Theorem 2

We shall use several fundamental facts on symmetric spaces without proofs.
For the details, the reader may consult, for instance, Helgason’s book [4].

Let M be a connected complex manifold of dimension n and let D be a
bounded symmetric domain in Cn. Let G be the identity component of AutðDÞ
and let G be its Lie algebra. Fix a point o A D once and for all and let K be the
isotropy subgroup of G at o. Then G is a semi-simple Lie group with trivial
center that acts transitively on D and K is a maximal compact subgroup of G.
Note that, since a maximal compact subgroup of a connected Lie group is always
connected, K is a connected Lie subgroup of G. Moreover, D can now be
represented as the coset space D ¼ G=K. Consider here the involutive automor-
phism s : g 7! sogso of G, where so denotes the symmetry of D with respect to o,
and put s ¼ ds, the involutive automorphism of G induced by s. Let K and
P be the eigenspaces of s for the eigenvalues þ1 and �1, respectively. Then K
coincides with the Lie algebra of K and we have

G ¼ KlP; ½K;K�HK; ½K;P�HP and ½P;P�HK:ð3:1Þ
As usual, we identify P with the tangent space ToðDÞ to D at o; accordingly,
P ¼ ToðDÞ has the complex structure JD

o induced by the standard complex
structure tensor JD on D. Thus P can be regarded as a complex vector space.
Moreover, under the identification ToðDÞ ¼ P, the linear isotropy group K� of G
at o is just the group AdGðKÞ, where AdG is the adjoint representation of G. We
will often use this fact in the proof.

Assume now that there exists a topological group isomorphism F : G ! G,
where G is the given topological subgroup of AutðMÞ in Theorem 2. Since G is
a Lie group, G has a unique Lie group structure with respect to which F : G ! G
is a Lie group isomorphism. Thus, by the same reasoning as in the proof of
Theorem 1, G becomes a Lie transformation group of M acting e¤ectively on M
by biholomorphic transformations. We denote by g the Lie algebra of G and by
dF : G ! g the Lie algebra isomorphism induced by F.

Fix a point p A M arbitrarily and denote by K the isotropy subgroup of G at
p. Then, by our assumption, K is a compact subgroup of G. Here, along the
same line as in [6], we shall show that G acts transitively on M; accordingly, M
can be written in the form M ¼ G=K . To this end, choose a maximal compact
subgroup K̂K of G containing K. Then, since any two maximal compact sub-
groups of G are always conjugate under an inner automorphism of G, one can
find an element go A G such that K̂K ¼ goFðKÞg�1

o . Moreover, notice that the
orbit G � p ¼ G=K of G passing through p is a real analytic submanifold of M.
Thus

2nb dim G=K b dim G=K̂K ¼ dim G=K ¼ 2n;
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from which we have K ¼ K̂K , dim G=K ¼ 2n and hence the orbit G � p ¼ G=K
is open in M. Since this is true for any point q A M with q0 p and since M
is connected, we conclude that M ¼ G=K , as desired. Therefore, by replacing
F by goFð�Þg�1

o if necessary, one may assume that K̂K ¼ FðKÞ; consequently, F
induces a real analytic di¤eomorphism, say again,

F : D ¼ G=K ! G=K ¼ M:ð3:2Þ
Put k ¼ dFðKÞ and p ¼ dFðPÞ. Then k is the Lie subalgebra of g correspond-
ing to K and we have the direct sum decomposition g ¼ kl p with the same
properties as in (3.1). Let JM be the G-invariant complex structure tensor on M
and let JM

p be the complex structure on TpðMÞ ¼ p induced by JM . Then, since
JM
p commutes with each element in the linear isotropy group K � of G at p, so

does with AdGðkÞ for all k A K , where AdG is the adjoint representation of G.
In order to complete the proof of Theorem 2, we need to prove that, after

a slight modification if necessary, the di¤eomorphism F in (3.2) gives rise to a
biholomorphic equivalence between D and M. For this purpose, by using the
fact that dF gives a linear isomorphism from P onto p, let us define the
endomorphism J �

o of P by the formula

dFðJ �
o XÞ ¼ JM

p ðdFðXÞÞ for all X A P:ð3:3Þ
Then J �

o � J �
o ¼ �I and moreover, since

dFðAdGðkÞXÞ ¼ AdGðFðkÞÞ dFðXÞ for all k A K and all X A P;

it can be easily seen that J �
o commutes with AdGðkÞ for all k A K. Therefore

D ¼ G=K admits a unique almost complex structure tensor J � which coincides
with J �

o at o and is invariant under the action of G. The proof is now divided
into two cases as follows:

Case 1. D is irreducible. In this case, G is a simple Lie group and K is a
maximal compact subgroup of G with one-dimensional center isomorphic to the
circle group S1. By definition of the irreducibility, AdGðKÞ now acts irreducibly
on P. Hence, Schur’s lemma implies that J �

o ¼ cI with some constant c A C;
accordingly J �

o ¼G
ffiffiffiffiffiffiffi

�1
p

I ¼GJD
o and J � ¼GJD, because ðJ �

o Þ
2 ¼ �I . More-

over, we would like to assert here the following: one may assume, without loss of
generality, that D is invariant under the complex conjugation c : z ! z of Cn

with respect to Rn. Indeed, in the case where D is one of the four classical
domains, it is well-known that D can be realized as a subdomain ~DD in some
complex matrix space (cf. [5]). Then, a glance at ~DD tells us that it is invariant
under the complex conjugation c. On the other hand, in the case where D is an
exceptional bounded symmetric domain, it is shown in Roos [11; Section 3] that
its Harish-Chandra realization ~DD has an explicit algebraic and geometric de-
scription using exceptional Jordan triple systems; from which it follows at once
that ~DD is invariant under the complex conjugation c, as asserted. Thus, taking
the di¤eomorphism F � c instead of F in (3.2) if necessary, we may assume that
J � ¼ JD. This combined with (3.3) yields that F : D ! M is holomorphic;
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consequently, it gives a biholomorphic equivalence between D and M, as
required.

Case 2. D is reducible. In this case, D can be uniquely (up to an order)
decomposed into the direct product

D ¼ D1 � � � � �Dr;ð3:4Þ
where the factors Di are irreducible bounded symmetric domains in Cni with
n1 þ � � � þ nr ¼ n. Here, as in Case 1, one may assume that each Di is invariant
under the complex conjugation. Let G and Gi be the identity components of
AutðDÞ and of AutðDiÞ. And, writing o ¼ ðo1; . . . ; orÞ with oi A Di according to
the decomposition (3.4), we denote by K and Ki the isotropy subgroups of G
and of Gi at o and at oi, respectively. Then, as mentioned in Case 1, each Gi

is a simple Lie group with Ki as a maximal compact subgroup of it and Di is
a homogeneous space of Gi. Moreover, we have G ¼ G1 � � � � �Gr and K ¼
K1 � � � � � Kr, so that D can be expressed as

D ¼ G=K ¼ G1=K1 � � � � �Gr=Kr:ð3:5Þ
Let Gi be the Lie algebra of Gi. Let si be the involutive automorphism
g 7! soigsoi of Gi and put si ¼ dsi. Then, denoting by Ki and Pi, respectively,
the eigenspaces of si for the eigenvalues þ1 and �1, we obtain the direct sum
decomposition Gi ¼ Ki lPi as in (3.1). As before, we identify Pi ¼ ToiðDiÞ and
we denote also by JDi the standard complex structure tensor on Di. Let J �

o be
the complex structure on P ¼ P1 l � � �lPr defined by (3.3). Then, since J �

o

commutes with AdGðkÞ for all k A K and since AdGðKiÞ acts irreducibly on Pi

and trivially on Pj for j0 i, it follows that each Pi is invariant under J
�
o . Thus

J �
o is decomposed J �

o ¼ J �
o1
� � � � � J �

or
, where each J �

oi
is the restriction of J �

o to
Pi. Therefore, letting J �

i be the unique Gi-invariant almost complex structure
tensor on Di which coincides with J �

oi
at oi, we have J � ¼ J �

1 � � � � � J �
r . More-

over, since AdGi
ðKiÞ acts now irreducibly on Pi, Schur’s lemma again implies

that J �
i ¼GJDi for each 1a ia r. Finally, consider a real analytic di¤eomor-

phism F̂F : D ¼ D1 � � � � �Dr ! M given by

F̂FðuÞ ¼ Fðg1ðu1Þ; . . . ; grðurÞÞ for u ¼ ðu1; . . . ; urÞ A D1 � � � � �Dr ¼ D;

where giðuiÞ ¼ ui or giðuiÞ ¼ ui, the complex conjugation in Cni , for 1a ia r and
F is the di¤eomorphism appearing in (3.2). Then, replacing F by a suitable F̂F
if necessary, we have J � ¼ JD. This means that F : D ! M is holomorphic.
Therefore, we have shown that F gives a biholomorphic equivalence between D
and M; thereby completing the proof of Theorem 2. r

4. A concluding remark

In this section, we would like to illustrate that the conditions (A) and (B)
stated in the introduction are mutually independent, in general, with concrete
examples as follows:
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Example 1. Consider the two-dimensional complex Euclidean space C2, for
instance. Then, the condition (A) is trivially satisfied for C2. On the other
hand, notice that the isotropy subgroup AutoðC2Þ of AutðC2Þ at the origin o of

C2 contains the biholomorphic mappings jn : C
2 ! C2 defined by

jnðz;wÞ ¼ ðz;w expðnzÞÞ; ðz;wÞ A C2 for n ¼ 1; 2; . . . :

Clearly this says that AutoðC2Þ is not to be compact; hence, the condition (B) is
not satisfied for C2.

Example 2. Take an arbitrary compact connected hyperbolic manifold X of
dimensionf 2 and consider the manifold M obtained from X by deletion of one
point, say M ¼ Xnfpg ðp A X Þ. Then, being a complex submanifold of the
hyperbolic manifold X , M is also hyperbolic. Accordingly, the condition (B) is
automatically satisfied for M. However, we assert that M is not holomorphi-
cally separable and does not admit a smooth envelope of holomorphy. To
verify this, note that any holomorphic function on M can be holomorphically
extended to X and hence it must be constant, because X is a compact connected
complex manifold of dimensionf 2. Thus, M is never holomorphically sepa-
rable. Moreover, assume that there exists a smooth envelope of holomorphy of
M. Then, since every Stein manifold can be realized as a closed complex sub-
manifold of some CN , we have a holomorphic imbedding F : M ! CN . But,
since any holomorphic function on M is now constant as mentioned above, F
must be also constant. Clearly, this is a contradiction. Therefore the condition
(A) is not satisfied for this manifold M.
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