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Abstract

Anomaly detection in dynamic graphs becomes
very critical in many different application scenar-
ios, e.g., recommender systems, while it also raises
huge challenges due to the high flexible nature of
anomaly and lack of sufficient labelled data. It is
better to learn the anomaly patterns by consider-
ing all possible hints including the structural, con-
tent and temporal features, rather than utilizing
heuristic rules over the partial features. In this pa-
per, we propose AddGraph, a general end-to-end
anomalous edge detection framework using an ex-
tended temporal GCN (Graph Convolutional Net-
work) with an attention model, which can capture
both long-term patterns and the short-term patterns
in dynamic graphs. In order to cope with insuffi-
cient explicit labelled data, we employ a selective
negative sampling and margin loss in training of
AddGraph in a semi-supervised fashion. We con-
duct extensive experiments on real-world datasets,
and illustrate that AddGraph can outperform the
state-of-the-art competitors in anomaly detection
significantly.

1 Introduction

The recent years witness the rapid development of dynamic
graphs. Taking the e-commerce sites as an example. Massive
users perform different operations, such as item clicking, item
buying, in the sites every day, which contribute to millions of
newly-added edges into the graph. The modification of other
attributes for accounts/items also produces a large amount of
content information. These dynamic graphs serve as the basis
for the most important tasks in the e-commerce sites like the
query and item recommendation.

Anomalous users may perform some operations to gener-
ate fake data in the dynamic graphs to achieve the potential
gain. These fake data are called anomaly in this paper. Taking
the anomaly in the recommendation as an example. Anoma-
lous users can improve the popularity of their target items
through a large number of new operations related to target

∗Contact Author

items, like clicking both target items and popular ones fre-
quently. Then, the target items may show some similarities to
other popular ones, which increases the chances and upgrade
rankings in the recommendation [Hooi et al., 2016]. In order
to achieve the goal quickly, anomalous users usually control
multiple accounts to perform these operations in a short time
period. The anomaly detection in dynamic graph, especially
anomalous edges detection, is then highly needed before the
data are fed into the following tasks [Akoglu et al., 2015;
Ranshous et al., 2015].

It is not trivial to detect the anomaly due to its flexible and
dynamic nature. Some anomalous operations show some ex-
plicit patterns but try to hide them in a large graph, while oth-
ers are with implicit patterns. Take an explicit anomaly pat-
tern in the recommender system as an example. As anoma-
lous users usually control multiple accounts to promote the
target items, the edges between these accounts and items may
compose a dense subgraph, which emerge in a short time pe-
riod. In addition, although the accounts which involve the
anomaly perform anomalous operations sometimes, these ac-
counts perform normally most of the time, which hides their
long-term anomalous behavior and increases the difficulty of
detection. The similar anomaly pattern appears in the net-
work attack against IP-IP network [Eswaran et al., 2018],
where there are sudden large number of connections, forming
a very dense subgraph in the network. Such cases indicate
the flexible nature of anomaly, which requires us to learn the
anomaly patterns by combining all available hints like struc-
tural, temporal and content features.

Another challenge in the anomaly detection lies in the in-
sufficient labelled data. Even if the initial data are normal,
anomaly data will be finally mixed with the normal ones in
the real-world applications as time goes by. It results in high
burden or is even infeasible if we check the anomaly every
day by hand. Even if we can label some anomaly operations,
they may occupy a small part of anomalies. It indicates that
the explicit labelled data may be not representative, and re-
sults in the poor performance if we learn a detection model in
a supervised way.

Most of existing approaches to detecting the anomalies in
dynamic large graphs rely on the heuristic rules which con-
sider the above features in a rigid way. For example, [Hooi
et al., 2016] mainly relies on the structural features. They
define a density function and discover the target mainly us-
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ing structural features. Other works [Zhao and Yu, 2013;
McConville et al., 2015] consider content feature or even
temporal factor. However, the way taking the content, struc-
tural and temporal factors into account is not flexible, which
makes it restricted in a specific pattern. In addition, it is more
difficult to detect anomalies using the long-term features due
to their sparsity in the time dimension.

The advance of deep learning is very helpful in anomaly
detection, with its ability to combine different features in a
reasonable way and to learn implicit rules from the given
data. GCN(Graph Convolutional Network) is a representa-
tive model to combine the content and structural features in
a graph [Kipf and Welling, 2017]. Compared with traditional
graph methods, GCN can automatically propagate the infor-
mation carried by neighboring nodes, which can then be used
to spread the anomalous probabilities of nodes. The ma-
jor issue of direct usage of GCN in the anomaly detection
lies in the fact that GCN does not consider the timing fac-
tors, which cannot be ignored in the dynamic graphs. The
more recent works, like CAD [Sricharan and Das, 2014] and
Netwalk [Yu et al., 2018] have applied the graph embedding
method to dynamic graph. Their methods are well designed
and have achieved good results on detecting anomalies in dy-
namic graphs. However, they cannot capture the long-term
and short-term patterns of nodes, which are highly needed in
a more general graph model framework to detect anomalies.

In order to overcome the limitations of the existing works,
this paper extends the original GCN model to support tem-
poral information using GRU(Gated Recurrent Unit) with a
contextual attention-based model, and then introduces a se-
lective negative sampling and margin loss in model training
for anomalous edges incrementally. Specifically, the main
contributions of our work are summarized as follows.

• We propose AddGraph, a semi-supervised learning
framework for anomalous edge detection, using an ex-
tended temporal GCN with an attention-based GRU,
which can combines the hidden states for long-term be-
havior patterns and the window information containing
the short-term patterns of the nodes.

• We introduce a selective negative sampling strategy and
margin loss in the training of AddGraph for detecting
anomalous edges, inspired by the advances in embed-
ding of knowledge graph. Those strategies attempt to
handle the insufficient labelled anomaly data.

• Experiments on two real-world datasets achieve state-
of-the-art performance, which proves the effectiveness
of AddGraph on detecting anomalies in different kinds
of graphs.

2 Related Work

In this section, we review the existing anomaly detection ap-
proaches, the graph embedding model, and some attempts to
detect anomaly on embeddings.

2.1 Anomaly Detection in Dynamic Graph

Goutlier [Aggarwal et al., 2011] is proposed with an ob-
servation that anomalous edges always appear between two

different node clusters. Specifically, it first partitions nodes,
and then builds an edge generative model for the edges in-
side partition. The scores produced by the model can be
used as an important measure in detecting anomalous edges.
The works [Sun et al., 2006; Shin et al., 2016; Shin et al.,
2017] view the anomaly as a dense sub-graph. Shin [2016;
2017] define a density function in the dynamic bipartite
graph, and employ a greedy search strategy or sequence
search to find these most dense sub-graphs. These works
mainly rely on structural features lacking in flexibility as pat-
terns are given in advance.

Besides the structural features, the temporal ones are con-
sidered in the anomaly detection. CM-Sketch [Ranshous et
al., 2016] is a sketch-based method, which uses the local
structural information and historical behavior near an edge
to decide whether the edge is anomalous or not. Spot-
Light [Eswaran et al., 2018] randomly samples a series of
node sets from the entire node set, and encodes the the graph
at each timestamp to a vector by computing the overlap be-
tween these sets and the nodes of current edge set. The
method finds out the anomalous graph by clustering these
vectors. However, it can only catch instantaneous anomalies.

2.2 Graph Embedding

Graph embedding maps the nodes into a K-dimensional vec-
tor space, which preserves certain properties among nodes.
Deepwalk [Tang et al., 2015], LINE [Tang et al., 2015] and
Node2vec [Grover and Leskovec, 2016] are the methods to
yield node embeddings so that two structural similar nodes
have the similar embeddings. The difference of these works
lies in the meaning of structural similarities. Deepwalk uses
random walk to get an ordered sequence of nodes. LINE at-
tempts to preserve the first-order similarity and the second-
order proximity. Node2vec improves random walk by intro-
ducing two parameters to balance the breadth-first search and
depth-first search. Those methods can be used to yield node
embeddings for detecting anomaly. However, they mainly fo-
cus on the preservation of structural similarity.

The work of GCN and following extensions can process
structural features and content features. GCN extends the
idea of convolution model over regular graphs (i.e., im-
age) to general graphs. The works [Defferrard et al., 2016;
Kipf and Welling, 2017]improve the performance of ba-
sic GCN from different viewpoints, like the optimization in
time/space complexity. Due to its ability to handle both struc-
tural and content features, GCN can be leveraged as the basis
in our anomaly detection approach. However, we cannot di-
rectly use GCN in our work, as it does not consider temporal
features in dynamic graphs. Note that we choose the basic
GCN in this paper, and its extensions can also be used with
minor modification.

Knowledge graph embedding projects a triple (h, r, t) to
low-dimensional vector spaces to preserve potential similar-
ities and differences between multi-relational data. Insuffi-
cient data is also a key challenge for knowledge graph em-
bedding, because there are only golden triples in the original
dataset, which may result in weak distinction of data in dif-
ferent relationships. In order to solve this challenge, negative
sampling is used to produce edges by randomly replacing the
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Figure 1: AddGraph framework

head or tail entities [Bordes et al., 2013]. In [Wang et al.,
2014], a Bernoulli distribution is used for negative sampling,
which holds different probabilities to replace head and tail in
relations. To make the triple produced by negative sampling
different from the golden one, margin loss is used to enlarge
the difference between positive triples and negative samples.
In this paper, we use a similar idea of negative sampling and
margin loss from knowledge graph embedding to solve the
problem of insufficient data in anomaly detecting.

2.3 Anomaly Detection over Graph Embedding

Some works began to combine the graph embedding into the
anomaly detection. In [Sricharan and Das, 2014], a time-
commute distance is used to detect anomalous changes in
dynamic graph, while the method mainly focuses on struc-
tural features and cannot catch long-term anomalies. [Yu et
al., 2018] proposed NetWalk, a dynamic graph embedding
model based on random walks. The anomaly detection is re-
alized by the dynamic clustering model of node representa-
tion. Our work roughly follows a similar idea. However, we
extend GCN to the temporal GCN so that we can capture the
temporal features in a more reasonable way, and we build an
end-to-end semi-supervised learning model to detect anoma-
lous edges rather than two-phases clustering, which has the
potential to achieve better results.

3 Proposed Method

In this section, we first formulate the problem, propose an
AddGraph framework for anomaly detection, and then dis-
cuss its training strategies.

3.1 Problem Definition

Let T be the maximum timestamp. A graph steam G takes
the form of {Gt}Tt=1, where each Gt = (Vt, Et) represents
the entire snapshot at timestamp t, and Vt and Et are the set
of nodes and edges respectively. An edge e = (i, j, w) ∈ E t

means that the i-th node and the j-th node have a connection
in the dynamic graph at the timestamp t with its weight w.
For unweighted graphs, w is always 1; for weighted graphs,
w ∈ R

+. An adjacency matrix At ∈ R
m×n is to represent

the edges in Et, where ∀(i, j, w) ∈ E t,At[i][j] = w. For
convenience, let G = (V,E) be the union of G, i.e., V =⋃T

t=1V
t and E =

⋃T
t=1E

t. We let n = |V | and m = |E|.
The goal of this paper is to detect anomalous edges in Et.

Specifically, for each e ∈ E t, this paper produces f(e), the

Algorithm 1 AddGraph algorithm

Input: Edge stream {Et}Tt=1
Parameter: β, µ, λ, γ, L, ω, d
Output: {Ht}Tt=1

1: Initialize H0

2: repeat
3: for t = 1 to T do
4: Let Lt = 0
5: Currentt = GCN(Ht−1)
6: Short

t = CAB(Ht−w; ...;Ht−1)
7: Ht = GRU(Currentt,Shortt)
8: for all (i, j, w) ∈ E t do
9: Sample(i′, j′, w) for f(i, j, w)

10: Lt = Lt +max(0, γ + f(i, j, w) + f(i′, j′, w))
11: end for
12: Lt = Lt + Lreg

13: Minimize Lt

14: end for
15: until Convergence
16: return {Ht}Tt=1

anomalous probability of e. We do not need the labelled data
for anomaly in the training phase, but assume that all edges
in sets at the initial timestamps are normal, i.e., t is smaller
than the timestamp Ttrain in training phase. In the test phase,
we use the labelled anomaly data to measure f(e) produced
in different methods.

3.2 AddGraph Framework

The overview of our AddGraph framework is illustrated in
Figure 1. The core idea behind AddGraph is to build a frame-
work to describe the normal edges by using all possible fea-
tures in the snapshots in the training phase, including struc-
tural, content and temporal features. The framework then
can be further refined and used to measure the anomalous
edges in the following snapshots. Roughly, AddGraph em-
ploys GCN to process the previous node state with edges in
the current snapshot by considering the structural and content
features of nodes. The node states in a short window are then
summarized as the short-term information with a contextual
attention-based model. We put the output of GCN and short-
term information into GRU to get the hidden state of nodes at
a new timestamp. We will use the hidden state of the nodes
at each timestamp to calculate the anomalous probabilities of
an existing edge and a negative sampled edge, and then feed
them to a margin loss.

GCN for content and structural features. At timestamp
t, we receive the snapshot Gt = (Vt, Et) with its adjacency
matrix At and the output hidden state matrix Ht−1 ∈ R

n×d

of the framework at timestamp t− 1. First, we propagate the
hidden state matrix with GCN,

Currentt = GCNL(H
t−1), (1)

where Currentt represents current state of nodes combining
the current input with the long-term hidden state, and GCNL

denotes an L-layered GCN which is proposed in [Kipf and
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Welling, 2017]. The details of GCNL are shown below:

Z(0) =Ht−1, (2)

Z(l) =ReLU(ÂtZ(l−1)W(l−1)), (3)

Currentt =ReLU(ÂtZ(L−1)W(L−1)), (4)

where l ∈ [1, L − 1]. Ât = D̃− 1

2 ÃtD̃− 1

2 is the regular-

ized adjacency matrix with self loops, where Ãt = At + In
denotes the adjacency matrix with self loops, and D̃ii =∑

j Ã
t
ij denotes the degree of node i.

GRU with attention to combine short-term and long-term
states. To catch the short-term pattern of nodes, we apply the
contextual attention-based model which is inspired by [Liu et
al., 2017] and proposed by [Cui et al., 2017]. In our frame-
work, we construct short state of local window as follow:

Ct
h,i = [ht−ω

i ; ...;ht−1
i ] Ct

h,i ∈ R
ω×d (5)

eth,i = rT tanh(Qh(C
t
h,i)

T ) eth,i ∈ R
ω (6)

ath,i = softmax(eth,i) ath,i ∈ R
ω (7)

short
t
i = (ah,iC

t
h,i)

T short
t
i ∈ R

d (8)

where ht
i denotes the hidden state of the i-th node, and ω is

the size of the window to catch short-term pattern. Qh and
r are parameters to optimize the contextual attention-based
model. We brief (5)− (8) to a single function:

short
t
i = CAB(ht−ω

i ; ...;ht−1
i ) (9)

For all nodes in V , the function is written as:

Short
t = CAB(Ht−ω; ...;Ht−1) (10)

Now we get Currentt and Short
t. Currentt represents

current states of nodes which combine the current input with
the long-term hidden state, and Short

t represents the win-
dow information which catches the short-term interest of
nodes. To make AddGraph encode temporal features, we use
GRU to process Currentt and Short

t:

Ht = GRU(Currentt,Shortt) (11)

GRU is a variant of LSTM network. It is simpler and more
effective than LSTM network [Chung et al., 2014]. GRU can
record long-term information, and avoid gradient vanishing
and exploding problems. The forward propagation equations
of GRU in our framework are:

Pt = σ(UPCurrentt +WPShort
t + bP ) (12)

Rt = σ(URCurrentt +WRShort
t + bR) (13)

H̃t = tanh(UcCurrentt +Wc(R
t ⊙ Short

t)) (14)

Ht = (1−Pt)⊙ Short
t +Pt ⊙ H̃t (15)

where Pt is the update gate to control output and Rt is the
reset gate to balance input and memory. Now we get Ht con-
taining the structural, content and temporal features.

Anomalous score computation for edges. Now, we get the
hidden state of nodes Ht at timestamp t. For each edge
(i, j, w) ∈ E t, we locate the embeddings for the i-th node and

the j-th node in Ht, on which we can compute the anomalous
scores:

f(i, j, w) = w · σ(β · (||a⊙ hi + b⊙ hj ||
2
2 − µ)) (16)

where hi and hj are the hidden state of the i-th and j-th node

respectively, and σ(x) = 1
1+ex is the sigmoid function. a

and b are parameters to optimize in the output layer. β and
µ are the hyper-parameters in the score function. Note that
the single layer network used in this paper can be replaced by
other sophisticated networks.

3.3 Selective Negative Sampling and Loss

In order to handle the insufficiency of anomaly data, we try to
build a model to describe the normal data instead. Recall that
we assume that all edges are normal in the training phase. For
each normal edge in the graph, we generate a negative sam-
ple as an anomalous edge. Inspired by the method proposed
in [Wang et al., 2014], we define a Bernoulli distribution with

parameter di

di+dj
for sampling: given a normal edge (i, j), we

replace i with probability di

di+dj
and replace j with probabil-

ity
dj

di+dj
, where di and dj denote the degree of the i-th node

and the j-th node respectively.
As the generated sampled edges may be still normal, we

cannot use a strict loss function such as cross entropy to dis-
tinguish the existing edges and the generated ones. We then
take the same idea in [Bordes et al., 2013] and use margin-
based pairwise loss in training of AddGraph:

Lt = min
∑

(i,j,w)∈Et

∑

(i′,j′,w)/∈Et

max{0, γ + f(i, j, w)− f(i′, j′, w)}, (17)

where f(·, ·, ·) is the anomalous score function for edges,
and γ ∈ (0, 1) is the margin between the possibilities of nor-
mal edge and anomalous one. The minimization of the loss
function Lt encourages that f(i, j, w) becomes smaller while
f(i′, j′, w) becomes larger, which is in the same line with our
expectation.

We cannot assume that all edges are still completely nor-
mal in the snapshots after training phase, while we need to
compute the hidden states for each snapshot. In the process
of sampling on the graph mixed with normal and anomalous
edges, we actually select partial edges which are more cred-
ible for the training. Specifically, for each edge (i, j, w), we
produce a negative sampled edge (i′, j′, w). The sampled
edge pair is discarded if f(i, j, w) > f(i′, j′, w). The se-
lective negative sampling strategy ensures the stability of Ad-
dGraph framework for a long time.

The overall loss function is summarized as follows:

L = Lt + λLreg (18)

where λ is a hyper-parameter, and Lreg is an L2-
regularization loss to avoid overfitting, which is shown as fol-
lows:

Lreg =
∑

(||W1||
2
2 + ||W2||

2
2 + ||Qh||

2
2 + ||r||22

+||Uz||
2
2 + ||Wz||

2
2 + ||bz||

2
2 + ||Ur||

2
2 + ||Wr||

2
2

+||br||
2
2 + ||Uc||

2
2 + ||Wc||

2
2 + ||a||22 + ||b||22) (19)

We summarize our algorithm as Algorithm 1.
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Dataset Anomaly proportion GOutlier CM-Sketch Netwalk AddGraph

UCI Message 1% 0.7181 0.7270 0.7758 0.8083
5% 0.7053 0.7086 0.7647 0.8090

10% 0.6707 0.6861 0.7226 0.7688
Digg 1% 0.6963 0.6871 0.7563 0.8341

5% 0.6763 0.6581 0.7176 0.8470
10% 0.6353 0.6179 0.6837 0.8369

Table 1: AUC results for anomalous scores on graphs without timestamps

Dataset #Node #Edge
Max.

Degree
Avg.

Degree

UCI Message 1,899 13,838 255 14.57
Digg 30,360 85,155 283 5.61

Table 2: Statistics of Datasets

4 Experiment

In this section, we first describe the experimental setup, and
then compare AddGraph with other competitors.

4.1 Experimental Setup

Dataset. We evaluate our framework on two datasets and the
details of these two datasets are shown in Table 2. UCI Mes-
sage is a directed network containing messages among an on-
line community at University of California, Irvine. Each node
represents a user and each directed edge is for a message be-
tween two users. Digg is a response network of Digg, a social
news site. Each node in the network is a user of the site, and
each edge indicates that one user replies to another. Edges in
both datasets are annotated with timestamps. We randomly
generate an initial vector for each node as its content feature.
We need to manually build the required datasets because the
ground-truth for the test phase is difficult to obtain [Akoglu
et al., 2015], and we follow the approach used in [Yu et al.,
2018] to inject anomalous edges into two datasets.

Baselines. We compare AddGraph with three anomaly detec-
tion methods.

• GOutlier [Aggarwal et al., 2011]. It builds a generative
model for edges in a node cluster, and the model can also
be used to produce anomalous score for a given edge.

• CM-Sketch [Ranshous et al., 2016]. It uses the local
structural feature and historical behavior near an edge to
measure whether the edge is anomalous or not.

• NetWalk [Yu et al., 2018]. The method first builds node
embeddings based on random walks, and then detects
anomaly using the clustering on the node embedddings.

Experimental Design. We will test the anomaly detection
methods over graphs without timestamps to see whether the
framework can exploit the content and structural features ef-
fectively, and then extend to the dynamic graphs with all fea-
tures. We will study the impacts of different parameters on
AddGraph. The metric used to compare the performance of
different methods is AUC (the area under the ROC curve).

4.2 Experimental Results

Results on Graphs without Timestamps

The tests over graphs without timestamps mainly focus on
the exploration of structural and content features. As for Ad-
dGraph, a simplified version without window information is
conducted for this experiment. We divide the dataset into two
parts, the first 50% as the training data and the latter 50% as
the test data. The number of GCN layers is 2. The weight de-
cay λ for regularization is 5e-7. The learning rate lr is 0.002.
The dropout rate is 0.2. For UCI Message dataset, the size of
dimension is 500 for hidden state. The margin γ is set to 0.5.
The parameters β and µ is set to 1.0 and 0.3 respectively. For
Digg dataset, the size of dimension is 200 for hidden state.
The margin γ is set to 0.7. The parameters β and µ is set to
3.0 and 0.5 respectively. We injected 1%, 5%, and 10% of the
anomalous data into the test data of different datasets.

The results are shown in Table 1, in which the data of base-
lines are reported by [Yu et al., 2018]. We can see that Ad-
dGraph beats all baselines on the two datasets with varying
anomaly proportions and has better ability to catch structural
and content features. This is mainly due to the underlying
GCN, which enables the framework to spread information be-
tween nodes and its neighbors better. In particular, on Digg
dataset, our approach has gained more than 10% improve-
ment. This outstanding effect proves that our framework can
exploit the content and structural features effectively. Unlike
the trend of baselines’ results, AUC produced by our frame-
work with 1% anomaly is a little lower than that with 5%
anomaly, while it’s still higher than all baselines. This may
be due to the fact that when the anomaly proportion of the test
set is low, the scores computed on the original data and nega-
tive samples cannot distinct them well, resulting in a decline
of prediction accuracy.

Results on Dynamic Graphs

In the tests over dynamic graphs, we use the first 50% as
the training data and the latter 50% as the test data. After
anomaly injection with proportion of 5%, we split the train-
ing data and test data into snapshots. According to the size
of dataset, the snapshot size is set to 1,000 and 6,000 for UCI
Message and Digg respectively. In training phase, we use
snapshots of training data to build an initial model. In test
phase, we maintain the model incrementally as each snapshot
at timestamp t arrives. The number of GCN layers is set to 3.
The learning rate lr is 0.001. For UCI Message dataset, the
size of dimension is 100 for hidden states. For Digg dataset,
the size of dimension is 50 for hidden states. The margin γ
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Figure 2: AUC results for anomalous scores on dynamic graphs

is set to 0.6. The rest parameters are with the same values as
above.

Figure 2 illustrates the results on dynamic graph, in which
the data of baselines are reported by [Yu et al., 2018]. The
results indicate that AddGraph beats baselines on almost all
snapshots except the last one in Digg. The prediction re-
sults show our framework is able to catch temporal features.
The attention mechanism enables our framework to notice the
changes of nodes during the window period. The extended
GCN with GRU makes it possible to record long-term depen-
dency. The decline on the last snapshot may be due to the fact
that too many new nodes emerge in the test phase, which are
not processed before.

Parameter Sensitivity

Now, we attempt to find out the influence of hyper-parameters
on AddGraph, including L for the total number of layers in
GCN, d for the size of dimension of hidden state, and the
training ratio of the entire dataset.

First, we evaluate the influence of L and d. The range of
L is {1, 2, 3, 4, 5} and the range of d is {10, 25, 50, 100,
200}. Other parameters are set to optimum. In order to show
the influence of different values of the parameters, we choose
a relatively more challenging task in this study. We use Digg
dataset with 10% anomalies in test data and detect anomalies
at the last timestamp in terms of the AUC metric. For ease
of observation, we use log(d) instead of d as the x-axis. As
shown in Figure 3, AUC increases significantly when L in-
creases from 1 to 2, and reaches its peak when L is 3. With
the increase of d, the performance of AddGraph is gradually
improved, and reaches the optimal value when d is 50. After
d and L reach the optimal configuration, AUC decreases as
they continue to increase. When there are too many layers,
GCN may capture useless information of remote neighbors,
which reduces the accuracy of the framework. Larger d will
increase the complexity of the framework and make it more
difficult in converging to the optimal point.

Second, we evaluate the influence of the training ratio of
the entire dataset. The range of training ratio is {10%, 20%,
30%, 40%, 50%, 60%} and other parameters are set to opti-
mum. We use Digg dataset with 10% anomalies in test data
and record the AUC score of each timestamp at the test phase.
As shown in Figure 4, with the decrease of training ratio, the
average and maximum AUC values of AddGraph show an
upward trend, while the minimum values indicate a down-
ward trend. Since there is no anomalous data in the training
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Figure 3: AUC results on Digg with different parameters
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set, a higher proportion of test data contains more anoma-
lous edges, which enables AddGraph to increase the distance
between the scores of positive and negative samples. These
results show the strong ability of our framework to detect
anomalous edges in dynamic graphs with insufficient train-
ing data. The decrease of the minimum value is due to the
reduction of the training data, which reduces the stability of
Addgraph.

5 Conclusion

We propose an anomaly detection framework, AddGraph, on
dynamic graphs which can detect the patterns of anomalies
flexibly without explicit labelled anomaly data. AddGraph
attempts to learn the anomaly patterns by considering all pos-
sible hints including the structural, content and temporal fea-
tures using the temporal GCN with a contextual attention-
based model. It also employs a selective negative sampling
strategy and margin loss in training to handle the insuffi-
cient labelled anomaly data. Experiments on several real-
world datasets show that AddGraph outperforms other exist-
ing anomaly detection methods significantly.
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