
 Open access Proceedings Article DOI:10.1109/PDP.2009.46

Adding Aspect-Oriented Concepts to the High-Performance Component Model of
SBASCO — Source link

Manuel Díaz, Sergio Romero, Bartolomé Rubio, Enrique Soler ...+1 more authors

Institutions: University of Málaga

Published on: 18 Feb 2009 - Parallel, Distributed and Network-Based Processing

Topics: Programming paradigm, Aspect-oriented programming, Component-based software engineering,
Distributed memory and Object-oriented programming

Related papers:

 Applying aspect-orient programming concepts to a component-based programming model

 A Knowledge-Based Scientific Parallel Programming Environment

 Aspect-oriented component assembly—a case study in parallel software design

 A framework for raising the level of abstraction of explicit parallelization

 Aspect oriented pluggable support for parallel computing

Share this paper:

View more about this paper here: https://typeset.io/papers/adding-aspect-oriented-concepts-to-the-high-performance-
tdn5dn2tex

https://typeset.io/
https://www.doi.org/10.1109/PDP.2009.46
https://typeset.io/papers/adding-aspect-oriented-concepts-to-the-high-performance-tdn5dn2tex
https://typeset.io/authors/manuel-diaz-3zjs10ym7e
https://typeset.io/authors/sergio-romero-9exrmzth9d
https://typeset.io/authors/bartolome-rubio-1jhu2yt0td
https://typeset.io/authors/enrique-soler-4r9dei7a1g
https://typeset.io/institutions/university-of-malaga-3vu4mjof
https://typeset.io/conferences/parallel-distributed-and-network-based-processing-2780pr4d
https://typeset.io/topics/programming-paradigm-24gyfr9i
https://typeset.io/topics/aspect-oriented-programming-2s2r3j6k
https://typeset.io/topics/component-based-software-engineering-34zosnte
https://typeset.io/topics/distributed-memory-3uk95ox4
https://typeset.io/topics/object-oriented-programming-2b1z2v1q
https://typeset.io/papers/applying-aspect-orient-programming-concepts-to-a-component-4vnvs6csj4
https://typeset.io/papers/a-knowledge-based-scientific-parallel-programming-4ndt8his8m
https://typeset.io/papers/aspect-oriented-component-assembly-a-case-study-in-parallel-3x6geqi4on
https://typeset.io/papers/a-framework-for-raising-the-level-of-abstraction-of-explicit-1ruf1vz5vo
https://typeset.io/papers/aspect-oriented-pluggable-support-for-parallel-computing-1zz01qm8ew
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/adding-aspect-oriented-concepts-to-the-high-performance-tdn5dn2tex
https://twitter.com/intent/tweet?text=Adding%20Aspect-Oriented%20Concepts%20to%20the%20High-Performance%20Component%20Model%20of%20SBASCO&url=https://typeset.io/papers/adding-aspect-oriented-concepts-to-the-high-performance-tdn5dn2tex
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/adding-aspect-oriented-concepts-to-the-high-performance-tdn5dn2tex
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/adding-aspect-oriented-concepts-to-the-high-performance-tdn5dn2tex
https://typeset.io/papers/adding-aspect-oriented-concepts-to-the-high-performance-tdn5dn2tex

Adding Aspect-Oriented Concepts to the

High-Performance Component Model of SBASCO

Manuel Dı́az, Sergio Romero, Bartolomé Rubio, Enrique Soler and Jose Marı́a Troya

Dpto. Lenguajes y Ciencias de la Computación

University of Málaga

29071 Málaga, SPAIN

{mdr,sromero,tolo,esc,troya}@lcc.uma.es

Abstract

SBASCO provides a new programming model for parallel

and distributed numerical applications which exploits the

combination of software components and skeletons. This

paper presents an extension to both the model and imple-

mentation of SBASCO, so that the notion of aspect is applied

in conjunction with the original paradigms. The objective

is to achieve a higher level of modularity and reuse in

parallel scientific codes and applications. Our aspects are

managed as components which implement the (sequential

or parallel) cross-cutting functionality. Aspects interact with

the base code by means of connectors that express the cross-

cutting nature of the target concerns. The way in which both

aspect weaving and advice code execution are managed is

critical for preserving the performance of applications. An

implementation of the abstractions for distributed memory

parallel systems based on MPI is discussed.

1. Introduction

Parallel scientific applications are characterized by the use

of low-level abstractions mechanisms to achieve accurate

performance control. Some examples are the use of parallel

libraries (e.g. MPI, p-threads, PVM) from a host program-

ming language. As the application developer is aware of

the cost of the communication primitives on specific target

platforms, she/he can design efficient algorithms.

Despite parallel programming techniques having greatly

evolved in recent years, modern paradigms of software

engineering are hardly ever applied to High-Performance

Computing (HPC). One example is that of Aspect-Oriented

Programming (AOP) [8], the solution for modular and cen-

tralized management of cross-cutting concerns which aims

at achieving simpler code, easier to develop and maintain,

and which has greater potential for reuse. The proposals

that use aspects for the modularization of high-performance

concerns are often based on AspectJ [13], a general purpose

language extension to Java for AOP. Although the amount

of work in this area is relatively limited, some significant

efforts can be found in [11][12][16].

In SBASCO [5][6], the development of parallel and

distributed numerical applications is carried out combining

components and parallel skeletons. On the one hand, soft-

ware components [10] represent the key for the construction

of extensible and adaptable systems. On the other hand,

skeletons [14] (also known as patterns) are generic and

reusable parallelism forms which can be used to establish

the parallel structure of an application in a high-level and

elegant way.

Other component-based approaches oriented to HPC ap-

plications are CCA [1], ASSIST [18] and PaCO [15]. With

respect to skeletal programming, eSkel [2], Muskel [4] and

LLC [7] are interesting proposals. With the exception of

ASSIST, none of these technologies combine the notion of

skeleton with software component, as is done in SBASCO.

Although SBASCO represents an improvement on clas-

sical development styles, designs based on this model may

suffer from a lack of modularity if the application concerns

spread over (i.e. cross-cut) the set of participant components.

In order to ease the level of code-tangling as well as

achieving finer grain application designs, this work defines

new concepts on top of SBASCO to allow aspects to be used

in conjunction with the previously used paradigms.

In the new approach, aspects represent well-modularized

cross-cutting concerns which are encapsulated into compo-

nents. In this scenario, aspect weaving becomes component

composition, and interactions between aspects and base

code are defined in terms of invocations on the component

interface. Extra-functional properties, typically managed by

means of aspects, can be plugged into the application more

easily (or unplugged if necessary). Our aspects are not

invasive in the sense that they are not allowed to alter the

implementation of the base components. As a consequence,

the main principles of component-based development are

preserved in this hybrid model. The base components are

dealt with as black-boxes that will execute aspect code at

different points of the control flow. The base components are

aware of the potential effects caused by aspect execution, as

the former specify the set of methods aspects can invoke to

access the application internal state.

The nature of aspects in our application domain can be

very diverse: from specific features of the numerical methods

(e.g. convergence, linear solvers) to generic concerns such

as parallel I/O, dynamic processor re-mapping, persistence

of the computation state, and so on. The goal pursued is a

clear separation of concerns which allows the mathematical

model and core functions to be expressed better.

The high-level abstractions that extend SBASCO need to

be supported by an efficient implementation. Actually, the

mechanisms proposed for aspect execution are added to the

current system implementation in a way that the performance

is not compromised. This paper not only describes the

language and model extension, but it also explores a way

to execute the new applications (which include the layer of

aspects) with minimum overhead.

This paper is organized as follows. In Section 2 we

describe both, the original model of SBASCO and the

aspect-oriented extension proposed. In Section 3, a system

implementation which is based on the message passing

interface is discussed. An example that shows the use of

aspects is described in Section 4. The paper finishes with

some conclusions.

2. Aspect-Oriented Extension to SBASCO

This section provides a description of SBASCO (Skeleton-

BAsed Scientific COmponents). Then, the new abstractions

which allow the developer to include aspects in her/his

applications are defined.

2.1. The Component Model of SBASCO

SBASCO provides a new component model focussed on

the efficient development of scientific software.

The different (parallel or sequential) tasks that solve

the numerical problem are encapsulated into the so-called

Scientific Components (SCs). A SC represents an applica-

tion composition unit which can be executed on a set of

processors.

Communication between SCs is based on a data-flow

style governed by two primitives, called get_data() and

put_data(). The SC interface is the element used to

express the input and output arguments of the component. In

addition, the SC interface also describes information about

the argument data distribution and component processor

layout. This type of information, available at the component

interface level, is the key to implementing efficient point-to-

point data communication between SCs.

SBASCO defines a family of parallel skeletons which can

be used to express the internal structure of a SC, so that the

interaction among the internal tasks of the component is

carried out following a static and predictable pattern.

• multiblock is a pattern used for the solution of domain

decomposition and multi-block problems.

• farm improves the throughput of a task, as the different

data sets can be computed in parallel.

• pipe is used to pipeline a sequence of tasks that

communicate using array interchange.

In addition, components with a structure that does not fit

these skeletons are also considered. In this case, they are

dealt with as (sequential or data-parallel) black boxes where

the only information available is related to input/output

arguments.

The code below shows an example of the interface of an

hypothetical component named my_sc.

CONFIGURATION INTERFACE my_sc

STREAM, complex, INOUT, DOMAIN2D :: a

DISTRIBUTE IN a(*,BLOCK)

DISTRIBUTE OUT a(BLOCK,BLOCK)

STRUCTURE

PIPE my_pipe

c1(a) ON PROCS(2)

FARM my_farm (?n) c2(a) ON PROCS(1)

c3(a) ON PROCS(4)

END

END

END

The SC accepts an input stream of matrices (of base type

complex) and produces an output stream of the same type.

Input data are distributed by columns and output data by

regular blocks. The interface also expresses that the SC is

internally structured as a pipe of other SCs. The second

stage of this pipeline is replicated by means of a farm

structure. This can be very useful in the case where c2

is a sequential SC. The parameter n indicates that the total

number of replicas can be established at composition time.

For the other SCs, the number of processors is indicated. A

graphical description of my_sc is shown in Fig. 1, where

the component is being executed using nine processors in

total (in this case, the number of replicas of the farm equals

three).

c1

c2

c3

a

my_sc

a

�

�
Figure 1. Pipe- and farm-based structure

The component composition language syntax is very

similar to the one used in SC interfaces. In other words,

SBASCO applications are set up as groups of SCs executed

on disjoint sets of processors and coordinated by the skeleton

definitions.

2.2. Aspects, Join Points and Connectors

The adding of aspects is carried out by defining an

additional layer on top of the existing elements of SBASCO,

which do not change their original meaning.

Up to this point, SCs are the only way to design the

tasks of a numerical problem. These components are coarse

grain as they implement complete tasks with possibly a

high degree of functionality. Due to this fact, it is likely

that a SC suffers from code tangling problems, as different

characteristics may be mixed in the same blocks of code.

In addition, such characteristics may affect several SCs. By

using aspects, these concerns will be programmed outside

the SCs. This decreases the complexity of the SCs which

become easier to develop and reuse.

A new element called Aspect Component (AC) is defined

for encapsulating aspects. An AC offers operations with the

aspect implementation (i.e. advice code). These operations

will be called at different points of the application control

flow. Unlike SCs which use data-flow primitives for the

interactions, the ACs are based on traditional method calls.

The idea of using components to model aspects aims to

achieve a symbiosis similar to the one that is discussed in

proposals dealing with non-parallel models [9][17]. In our

context, the SCs do not call the methods of the ACs in

an explicit way. Instead invocations are controlled by a new

type of element called Aspect Connectors (ACNs) that allow

the interaction information to be declared in a separate layer.

The SCs themselves may even not be aware of the execution

of aspects.

Computational tasks and aspects can be reused more

easily due to the component-based approach which enables

the pluggability of aspects into applications to add specific

modularized concerns.

In order to implement complex characteristics, the ACs

will often need to access some properties that belong to the

internal state of the SCs. For this reason, the SCs can also

supply interfaces to the ACs in such a way that the latter are

able to access data of the former. Unlike classical approaches

such as AspectJ-like languages, our ACs can not alter the

SCs arbitrarily. Instead, the ACs are limited to using only

the operations exported by the SCs. This means that SCs

can control the effects of executing (non-invasive) aspects.

In summary, apart from the data-flow interface of the

SCs, both SCs and ACs now implement the so-called aspect

interface that enables both types of component to interact.

We have adopted an IDL language for the aspect interface

definition. The IDL is a subset of OMG IDL (used, for

example, in CCM). Some of the main elements of CCM (e.g.

attributes, events, exceptions) have been excluded since they

may be difficult to manage in a high-performance scenario.

The data types chosen for the method parameters can be

either a predefined type or a reference to an object which

will have to be implemented.

Fig. 2 depicts a hypothetical composition of SCs and

ACs. The SCs are executed following the pipe algorithmic

pattern. In addition, three aspects add functionality affecting

different components in the application. For example, at

specific points of the control flow either SC1 or SC2 can

call functions on the AC A1. The advice code encapsulated

in A1 may require access to properties of the two SCs, and

so the aspect component is allowed to invoke methods on the

SCs. Another concern is encapsulated in A2 and affects only

SC1. In the figure, the interface operations painted black

implement the aspect code. On the other hand, interfaces

painted white define the methods offered to the aspects.
�

�

SC1 SC2

A1

A2 A3

�

�Figure 2. Connecting SCs and ACs

In aspect-oriented languages a join point model estab-

lishes the set of points on which it is possible to execute

aspect code. A way to define subsets of these join points is

typically needed to indicate the cross-cutting nature of the

aspects modeled.

Most of the proposals unifying components and aspects

use the interface operations as the potential join points. How-

ever, in SBASCO the interaction between SCs is carried out

only by calling the two data-flow functions get_data()

and put_data(). In order to provide a richer set of valid

join points we have identified a collection of fixed points (i.e.

internal actions) that are generic for our skeletal applications.

These are the only points at which aspect code can be run.

It can be an advantage to use join points that are common

to a family of applications since the ACs developed become

easier to reuse.

Examples of valid join points in our model are: init, for

data initialization; create, for the creation of new instances;

getdata, for receiving data from other SCs; putdata, for

sending data to other SCs; iterate, for processing the SC

main body; step, for computing a time step in a multiblock;

converge, for evaluating local convergence in a multiblock;

resize, for varying the number of processors used by a SC;

terminate, for doing resource liberation.

The way to exploit the join points is by means of aspect

connectors. This element is used to declare the interactions

between SCs and ACs. The advantages of expressing inter-

action in a separate unit are improved modularity and better

AC reuse. The code below shows the scheme of an ACN.

ACN acn_name ON COMPONENT list_of_SCs {

ADVICE [BEFORE|AFTER] ON list_of_actions {

advice body (AC method invocations)

}

}

An ACN declaration contains a name and a list of SCs to

be affected by the aspect. The body of the ACN has advice

declarations. An advice indicates an interaction (involving a

set of ACs) which will happen before or after the execution

control flow reaches any of the points declared in the header.

The advice body consists of one or several methods calls

to be done on the ACs. The language to express such

invocations is C++ although they could be based on any

other syntax.

To summarize, the effect of ACNs is to carry out calls

to the AC methods at specific points of the SCs. Typically,

in every invocation a reference to the caller component is

passed so that the AC can, in responde, call the methods on

the participant SCs.

3. System Implementation

This section describes the implementation of the aspect

logic. First, the original SBASCO implementation is de-

scribed. Then, the mechanisms are extended to support the

efficient execution of aspects. Although this work assumes a

distributed memory parallel systems as target platform, the

abstractions defined can be implemented on other types of

architecture.

3.1. The Original SBASCO System

SBASCO offers the programmer a framework of C++

classes for application development. The most important

element of the framework is the class ScRoot, which is the

base class of every SC. The development of a SC involves

the creation of a new subclass of ScRoot. The program-

ming of the component consists of coding (overwriting)

a collection of virtual methods with the specific scientific

code. If a skeleton was used to establish the internal parallel

structure, the developer does not need to write parallel code

as the SC will be automatically decomposed into the various

base SCs. Each one of these SCs can be either, sequential or

parallel. A parallel SC which is not based on a skeleton has

to be programmed using MPI. ScRoot offers operations to

access the arguments declared in the component interface.

Another important class is Framework. There is one in-

stance of this class (per process) that can be retrieved by any

component in the application. Framework has methods that

return an MPI intra-communicator representing the commu-

nication context for a single SC. It should be noted that one

SC communicates with others by means of get_data()

and put_data() primitives. These functions act hiding the

complexity of parallel communication which is managed by

the runtime system. A SC typically has to receive input data

by calling get_data(), then perform a computation, and

finally set the values of the output arguments, which are sent

to other SCs via put_data(). The Framework instance

provides a data of class CommScheme that encapsulates all

the parameters that describe the application structure: the

SCs being used, the number of processors assigned to each

component, the distribution of data, the skeletons applied,

and so on. This type of information is useful to determine,

at runtime, the SCs that participate in a communication as

well as the data that should be sent to other peer components.

A SBASCO application is executed as a set of MPI

processes. Specifically, one MPI application is used to imple-

ment each one of the SCs. If a SC is a parallel component

its corresponding MPI application will be executed using

N processes, the parameter N being indicated by using the

composition language.

An additional application, called manager, is in charge of

starting the components on disjoint sets of processors. Appli-

cations are launched using MPI_Comm_spawn(). Manager

interacts with the SCs to send them the CommScheme

object. As soon as the SCs receive this information,

they can establish the corresponding connections using

MPI_Comm_accept() and MPI_Comm_connect().

The SCs use the information encapsulated in the

CommScheme instance to achieve efficient point to point

data communication.

3.2. Aspect Layer Implementation

The existing implementation mechanisms have been ex-

tended to consider the execution of aspect components pre-

serving, at the same time, the performance of applications.

Our ACs are implemented using standard C++ classes.

The class that represents an AC has to provide aspect

code for the different method interfaces declared in IDL.

Furthermore, the SCs (or more specifically, the subclasses

of ScRoot) have to implement the methods (declared in

IDL) that enable aspects accessing the SC internal state.

The next step is to implement an efficient weaving mech-

anism by which aspects can be mixed with the base code in

order to compose final applications. A new group of virtual

functions is added to the class ScRoot. To be precise, a

new pair of functions is added for each one of the predefined

join points. As an example, the point getdata is the origin

of the two virtual functions: before_getdata() and

after_getdata(). These methods are initially “empty”.

They have to be overwritten in the subclasses of ScRoot

with code for specific aspect interactions. In AOP, the tool

in charge of combining aspects and base code is called

aspect weaver. In our system, the weaver is a source-to-

source compiler that proceeds as follows: for each aspect

connector being declared, the source code of the participant

SCs (the ones being affected) is changed in such a way

that the advice body (method calls on the ACs) is inserted

into the corresponding methods. For instance, if an ACN

on a component SC1 declares one advice of type before

on the point getdata, the interaction code of the advice

will be copied into before_getdata() in the class

that implements SC1. During execution, each time the user

invokes get_data(), the code of before_getdata()

will be triggered first. As a result, the method call on the

AC is performed.

In Section 2.2, Fig. 2 showed a composition example.

Such a composition has the run-time structure in terms of

processes and class instances depicted in Fig. 3.
�

�

�

P0

���

P1

���

pr_SC1

��� ���

�������

�	��

�������

�	��

�������

�	
�

�������

�	
�

�
� �
� ��� ���

P0 P1

pr_SC2

�

� Figure 3. Structure of processes

Fig. 3 clarifies many of the details about the execution of

SBASCO applications and the new aspect layer. There are

two MPI programs in total, called pr_SC1 and pr_SC2.

Each one is associated to one single SC. We are assuming

that each SC is being executed using two processes (P0

and P1). Inside a process, one single instance of the SC

is managed. In addition, the set of ACs that affect such a

SC are also instantiated. For example, if A1 can invoke a

method on SC1, an instance of the former will be created

in every process that contains the latter. This structure is

replicated, as observed in the figure. Since the aspect A2

can only call methods on SC1, the former is created in the

processes running pr_SC1 only.

In addition, Fig. 3 also depicts the different types of

communication which can happen in our applications. Com-

munication is represented by arrows in the figure. Let us

review each scenario. Firstly, vertical arrows indicate that the

SCs can invoke operations on the ACs. As described before,

this type of interaction is always triggered by the ACN

declarations. If an advice causes the SC to call a method on

an AC, the call will be done, in parallel, in all processes that

contain the two entities. As can be observed, the overhead

of executing aspects is only the invocation of an additional

C++ virtual function, followed by a standard (non-virtual)

call. This is a major advantage of our execution environment.

We are not applying any type of complex runtime structure

to support aspects. Weaving is done statically, and the cost

of invoking aspect functionality can be considered negligi-

ble, as is to be expected in high-performance computing

scenarios.

Horizontal arrows in Fig. 3 are inter-process communi-

cations based on message passing. Both, SCs and ACs,

can exploit internal parallelism. For that purpose, they can

implement the parallelism using a MPI intra-communicator

obtained from the Framework instance. This context is

represented by the short solid arrows. The longer dotted

arrows represent interactions between different sets of pro-

cesses based on inter-communicators. On the one hand,

the SCs use this interaction by calling get_data() and

put_data(). In this case, the communication is auto-

matically managed by the system in accordance with the

application structure and the skeletons used. On the other

hand, the ACs may also exploit this type of interaction. To

do that, the interface of Framework is extended so that not

only intra-, but also inter-communicators can be retrieved.

This extension is not difficult to implement because the

system already uses these objects internally for the data-

flow communication. Once aspects can access the structure

of communicators, they are able to carry out data communi-

cation between different groups of processes (obviously, an

AC only can communicate the groups of processes in which

it is instantiated).

The mechanisms described allow aspects to carry out

a wide variety of interactions. For example, let us focus

on aspect A1 of Fig. 3. This component may perform a

simple local computation and access the SC to modify some

values without the need for communication. The AC may

also implement a parallel computation inside each group of

processes. Finally, the aspect may implement some sort of

complex parallel interaction, retrieving data from processes

running pr_SC1, then sending values to processes running

pr_SC2, and finally accessing the interface of SC2 to fill

some properties using the values received from the other

group of processes.

4. Application Example: 2D-FFT

This section shows a simple example that uses many of

the elements defined. The application proposed computes

the two-dimensional Fast Fourier Transform (2D-FFT) [3]

in parallel. This is a kernel widely used in multiple domains

such as image and signal processing. The 2D-FFT of a

matrix can be solved using (one-dimensional) FFT on the

columns of the matrix first, and then using FFT on the rows

of the result. A pipeline structure composed by two data-

parallel stages represents an efficient and scalable solution.

The goal is to compute 2D-FFT of a set (input stream)

of matrices which can be read from I/O (e.g. database, file,

CORBA server). Our purpose is the separation of the I/O

concern from the numerical code. Two data-parallel SCs,

named cfft and rfft, are used to compute FFT on

columns and rows, respectively. An AC, named dataIO,

manages the way in which the input data are acquired and

the results saved. The resultant design has a high degree

of modularity in the three dimensions: all the numerical

code is written in the SCs; the interaction between the

two data-parallel tasks is expressed by the pipe pattern; the

characteristic of I/O, which affect both SCs, is implemented

in the AC. By replacing the AC, we can plug different I/O

mechanisms into the application.

The following code describes the configuration interface

of the SCs.

CONFIGURATION INTERFACE cfft

STREAM, complex, OUT, DOMAIN2D :: a

DISTRIBUTE OUT a(*,BLOCK)

END

CONFIGURATION INTERFACE rfft

STREAM, complex, IN, DOMAIN2D :: a

DISTRIBUTE IN a(BLOCK,*)

END

The solution based on the SBASCO composition language

is designed as follows.

PROGRAM 2D-FFT

integer :: nrow = 512, ncol = 512

STREAM,complex,DOMAIN2D::a/1,1,nrow,ncol/

STRUCTURE

PIPE my_2dfft_pipe

cfft(a) ON PROCS(4)

rfft(a) ON PROCS(4)

END

END

END

The code above indicates the size of the matrix and the

number of processors to execute each one of the SCs. Up

to this point, no aspects have been considered yet.

The next step is the declaration of dataIO and the aspect

interfaces of both the AC and the SCs. The following code

is expressed using the IDL.

interface IOState {

void initGet(in Sc sc);

void initPut(in Sc sc);

void initCommScheme(in Sc sc);

};

interface IOFunctions {

void setInput(in Domain2D m);

Domain2D getResult();

};

interface Configuration {

void go(in CommScheme cs,in unsigned mts);

void setDataIO(in dataIO dio);

dataIO getDataIO();

};

component dataIO {

provides IOState state;

uses IOFunctions funcs;

};

component Sc {

provides IOFunctions funcs;

provides Configuration con;

uses IOState state;

};

component cfft : Sc {};

component rfft : Sc {};

The AC dataIO implements IOState, which is the

interface that declares the aspect operations. The type of

component Sc is the base class for cfft and rfft. This

enables the definition of functions which are common to

both SCs. The SCs implement the IOFunctions and

Configuration interfaces. The first one has methods to

get a result and to set new input data, while the second one

has methods needed to start the computation and to set an

instance of type dataIO.

The next step is the definition of the connectors (ACNs).

The code below declares the interaction with the aspect

component.

ACN scheme_acn ON COMPONENT Sc {

ADVICE BEFORE ON init_call {

getDataIO()->initCommScheme(this);

};

};

ACN input_acn ON COMPONENT cfft {

ADVICE BEFORE ON iterate_call {

getDataIO()->initGet(this);

};

};

ACN output_acn ON COMPONENT rfft {

ADVICE AFTER ON iterate_call {

getDataIO()->initPut(this);

};

};

The advice code declared in the ACNs is statically woven

into the SCs. For example, scheme_acn causes a call

to initCommScheme() on dataIO when the applica-

tion starts. The implementation of this method accesses

the CommScheme object to set up the AC. The ACN

input_acn indicates that every time cfft processes its

main body, a call to initGet() on the AC is performed.

In response, dataIO reads a new matrix from I/O, then

divides the data according to the information of the object

CommScheme (in the case where data are read only from

one process, dataIO internally communicates the data

pieces to the rest of the processes). The final step is to

invoke setInput() on cfft. To save the result, the

ACN output_acn triggers the execution of initPut(),

which collects and stores distributed output data from the

processes that host rfft.

5. Conclusions

This paper describes a way to extend the high-

performance component model of SBASCO. The objec-

tive is to define new concepts and abstractions for the

management of cross-cutting functionality using aspect-

oriented programming. The resulting model uses a type of

component, the so-called aspect component, to implement

the application concerns in a modular way. The aspect

components interact with the original scientific components

by means of aspect connectors, which exploit a simple join

point model to express the cross-cutting nature of aspects.

The ACs can be either sequential or parallel, and they

can implement different types of communication styles. By

using components to manage both computational tasks and

aspects, applications are easier to develop and reuse.

Besides the abstractions introduced, an efficient imple-

mentation of the high-level mechanisms based on MPI

and focussed on distributed memory parallel systems is

presented. Our aspects interact with the base code efficiently

since the overhead of aspect execution is equivalent to

the cost of a C++ virtual function call, followed by a

standard C++ method call on the corresponding object that

implements the AC. Both invocations are executed locally.

The aspect developer is free to implement parallelism in the

ACs if required.

References

[1] R. Armstrong, G. Kumfert, et. al., The CCA Component Model
for High Performance Scientific Computing, Concurrency and
Computation: Practice and Experience, 18 (2), pp. 215 - 229,
2006.

[2] A. Benoit, M. Cole, S. Gilmore, J. Hillston, Flexible Skeletal
Programming with eSkel, in Proc. of the 11th International
Euro-Par Conference, Lisboa, Portugal, LNCS 3648, pp. 761
- 770, 2005.

[3] E.O. Briham, The Fast Fourier Transform and Its Applications.
Prentice-Hall International, 1988.

[4] M. Danelutto, QoS in Parallel Programming Through Applica-
tion Managers, in Proc. of the 13th Euromicro Conference on
Parallel, Distributed and Network-Based Processing, Lugano,
Switzerland, pp. 282 - 289, 2005.

[5] M. Dı́az, B. Rubio, E. Soler, J.M. Troya, SBASCO: Skeleton-
Based Scientific Components, in Proc. of the 12th Euromicro
Conference on Parallel, Distributed and Network-Based Pro-
cessing, A Coruña, Spain, pp. 318 - 324, 2004.

[6] M. Dı́az, S. Romero, B. Rubio, E. Soler, J.M. Troya, Us-
ing SBASCO to Solve Reaction-Diffusion Equations in Two-
Dimensional Irregular Domains, in Proc. of the 3rd Interna-
tional Workshop on Practical Aspects of Parallel Programming,
Reading, UK, LNCS 3992, pp. 912 - 919, 2006.

[7] A. Dorta, P. López, F. Sande, Basic Skeletons in LLC, Parallel
Computing, 32 (7-8), pp. 491 - 506, 2006.

[8] T. Elrad, R. Filman, A. Bader, Aspect-Oriented Programming:
Introduction, Communications of the ACM, textbf44 (10), pp.
29 - 32, 2001.

[9] M. Frantz, A. Gal, D. Beuche, Learning From Components:
Fitting AOP for System Software, in Proc. of the 2nd AOSD
2003 Workshop on Aspect, Components and Patterns for
Infrastructure Software, Boston, USA, pp. 51 - 55, 2003.

[10] G. Heinemann, W. Council, Component-based Software En-
gineering: Putting the Pieces Together. Addison-Wesley, 2001.

[11] B. Harbulot, J. Gurd, Using AspectJ to Separate Concerns
in Parallel Scientific Java Code, in Proc. of the 3rd Interna-
tional Conference on Aspect-Oriented Software Development,
Lancaster, UK, pp. 122, 2004.

[12] B. Harbulot, J. Gurd, A Join Point for Loops in AspectJ, in
Proc. of the 5th International Conference on Aspect-Oriented
Software Development, Bonn, Germany, pp. 63 - 74, 2006.

[13] G. Kiczales, E. Hilsdale, et. al., An Overview of AspectJ, in
Proc. of the Europe Conference on Object-Oriented Program-
ming, Budapest, Hungary, LNCS 2072, pp. 327 - 353, 2001.

[14] S. Pelagatti, Structured Development of Parallel Programs.
Taylor and Francis, 1998.

[15] C. Pérez, T. Priol, A. Ribes, PaCO++: A Parallel Object
Model for High-Performance Distributed Systems, in Proc. of
the 37th Hawaii International Conference on System Sciences,
Hawaii, USA, pp. 274, 2004.

[16] J.L. Sobral, Incrementally Developing Parallel Applications
with AspectJ, in Proc. of the 20th International Parallel and
Distributed Processing Symposium, Rodhes, Greece, pp. 10,
2006.

[17] D. Suvée, B. Fraine, W. Vanderperren, A Symmetric and
Unified Approach Towards Combining Aspect-Oriented and
Component-Based Software Development, in Proc. of the
9th International SIGSOFT Symposium on Component-based
Software Engineering, Stockholm, Sweeden, LNCS 4063, pp.
114 - 122, 2006.

[18] M. Vanneschi, The Programming Model of ASSIST, an En-
vironment for Parallel and Distributed Portable Applications,
Parallel Computing, 28 (12), pp. 1709 - 1732, 2002.

