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The time-dependent Hartree grid (TDHG) method is extended into an ab initio algorithm for
obtaining exact quantum wave packet dynamics. The new algorithm employs a superposition
of orthogonal zeroth order time-dependent basis functions generated from a single TDHG
wave packet trajectory. The superposition coefficients are themselves time-dependent, and are
responsible for mixing the basis functions in such a way as to represent exact solutions of the
time-dependent Schrodinger equation. Evolution of the superposition coefficients is governed
by a set of first-order linearly coupled ordinary differential equations. The couplings between
coefficients are given by matrix elements of a naturally identified interaction potential taken
between members of the zeroth order basis. In numerical tests involving computation of S-
matrix elements for collinear inelastic atom—Morse oscillator scattering the method proves
accurate, flexible and efficient, and appears to be easily extendable to more complicated

systems.

I. INTRODUCTION

It is curious that, historically, most computational tech-
niques for extracting detailed quantum mechanical transi-
tion rates associated with molecular collisions, light scatter-
ing, etc. have focused on solving the time independent
Schrodinger equation."” Information about the temporal
evolution of an initially prepared system can then be extract-
ed from the appropriate set of Schrodinger eigenfunctions
and eigenvalues via standard recipes. Although in many
cases it is intuitively useful to explicitly follow the spatio-
temporal evolution of the initial wave packet state, technical
difficulties associated with direct solution of the time-depen-
dent many-body Schrodinger equation were long considered
prohibitive. In the last fifteen years the outlook for directly
propagating time-dependent wave packets has brightened
considerably. A seminal step in this direction was provided
by Heller and coworkers,” who developed techniques for
propagating multidimensional Gaussian wave packets,
showed how to extract state-to-state quantum mechanical
transition probabilities (S-matrix elements for scattering
processes, photodissociation cross sections, Raman scatter-
ing cross sections, etc.) from such wave packet trajectories,
and successfully applied their formalisms to a number of
experimentally relevant systems. Nevertheless, the wave
packet evolution predicted by simple Gaussian wave packet
dynamical techniques is in general approximate, and, in-
deed, situations often arise where an initially Gaussian does
not remain Gaussian over a time interval long enough to
extract the desired state-to-state transition probabilities.*
Thus, it would be desirable to have a way to correct the
deficiencies of simple Gaussian wave packet propagation al-
gorithms which retains as fully as possible their physical
transparency and algorithmic simplicity.

One approach along these lines involves construction of
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a complete set of time-dependent Hermite—Gaussian basis
functions “on top of ” a central Gaussian wave packet.>*
The superposition coefficients which specify the amplitude
of each basis function are also taken to be time dependent,
and their evolution is governed by a simply specified set of
linearly coupled first-order ordinary differential equations.
The success of any such scheme depends on the rapidity of its
convergence as the size of the basis set is increased. Initial
applications of Gaussian wave packet-based traveling basis
sets were modestly successful,>** but displayed numerical
instability when pressed to treat situations where the simple
Gaussian wave packet method is qualitatively inapplicable.
This suggests inadequacy of the zeroth order basis set, and
forces us to seek a more flexible one. We have recently identi-
fied such a basis set,® and the purpose of the present paper is
to discuss the details of its construction and demonstrate its
potential utility for a variety of problems in quantum molec-
ular dynamics.

The starting point of our present efforts is the time-de-
pendent Hartree-grid (TDHG) method. This is an imple-
mentation of the well-known Hartree approximation’ in
which the overall system wave packet is forced to factorize
into a product of single-degree of freedom wave packets. The
McLachlan variational principle’ then prescribes “optimal”
evolution of each single degree-of-freedom wave packet. Be-
cause the wave packet is not constrained to be Gaussian in
each degree of freedom, a TDHG trial function is more flexi-
ble than its Gaussian analog, and can accurately represent
many of the non-Gaussian distortions typically encountered
on potential surfaces associated with molecular scattering
and spectroscopic problems. To correct for the neglect of
“direction correlation” in factorized Hartree wave packets,
we expand the exact wave function as a superposition of Har-
tree-type basis wave packets: The superposition coefficients
are allowed to vary with time, and in analogy to the Her-
mite—Gaussian basis originally employed,*“>* evolve ac-
cording to simply prescribed linearly coupled first-order dif-
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ferential equations. The details of this algorithm are
presented in Sec. IL. Section III presents the results of an
application of the proposed methodology to collinear scat-
tering of an atom with a Morse oscillator, a problem which
has recently been studied within the TDHG approxima-
tion.® We find here that the inclusion of configuration inter-
action dramatically improves our control over the quality of
the resuits. In particular, it becomes easy to propagate ex-
tended non-Gaussian initial wave packets which arise in
wave packet theory of transition probabilities for systems
possessing initial vibrational excitation. Section IV then
summarizes the strengths and weaknesses of our algorithm,
compares it with a very recently proposed and related meth-
od of Meyer et al.,® and suggests further extensions and ap-
plications of the ideas developed here.

Il. THEORETICAL BACKGROUND

For a diatomic molecule colliding with an atom in a
collinear fashion the total Hamiltonian can be written as!’

H=T +v,(x)+T,+v,(y) + Vi (xp), 2.1

where T, and T, correspond to the kinetic parts of a single
degree of freedom for x and y coordinates, e.g. [with #i=1
throughout] 7, = ( — 1/2m,)3d%. v, (x) is the “single par-
ticle”, or more properly, the single degree of freedom poten-
tial associated with coordinate x; v, is defined analogously.
It is important to appreciate that v, and v, can effortlessly
assume any functional form in the propagation scheme to be
outlined in this section. However, to be specific let us label
the free particle coordinate by y, so that v, (y) = 0. x is then
the diatom vibrational coordinate with v, (x) the potential
governing the oscillations of the free (precollision and post-
collision) diatom; it is taken to be of Morse form in the nu-
merical application discussed in Sec. III. Finally,V,(x,y)
provides the coupling potential which links the motion of
coordinates x and y. Physically, it is responsible for the vi-
brational energy transfer induced by the collision; math-
ematically, it prevents the overall system wave packet
¥(x,p) from factorizing into x and y pieces.

It will prove useful to briefly review the TDHG pre-
scription for computing coilisional transition probabilities,
since it inspires the extension of the method to include “con-
figuration interaction”. In a wave packet formulation the jth
column of the S-matrix, which contains the transition ampli-
tudes from initial internal (here, vibrational) state i to any
final internal state f, can be obtained by propagating an ap-
propriate two-dimensional wave packet ¥(x,y,t) into and
then out of the scattering region (defined as the region of y
coordinate space where ¥, is nonzero). Specifically, one
chooses ¥(x,p,0) to be incident upon the scattering center,
and to factorize as y, (x)G(y), where y; is the vibrational
eigenfunction associated with the initial vibrational state,
and G'is an incoming translational wave packet. The precise
form of G is actually arbitrary, in the sense that exact propa-
gation should yield the same S-matrix elements for any
G(y), but in practice it is prudent to choose a packet which
focuses into the interaction region in order to minimize spa-
tial extension in this region.>® From the asymptotic exiting

wave packet ¥(x,y,7) [ where 7 denotes any asymptotically
long time], one extracts>®

1S4 (E)|* = |B/(E)/4,(E))?,
with

(2.2a)

B/(E) = [k (E)] “/ZJ dx dy exp[ — ik, (E)y]
Xxr(X)P(x.y,7) (2.2b)
and

A(E) = [k (E)] ' f dy exp{ik,‘(E)y}G(y).'
(2.2¢)

[Integrals are over all space unless otherwise indicated.] In
these expressions &, and k, are pre- and post-collision wave
vectors determined from conservation of total energy E ac-
cordingtok }/2m, + €, = k}/2m, + €, wheree, ;isthe en-
ergy eigenvalue associated with vibrational eigenstate y, -

It is natural in this context to consider a TDH ansatz, in
which the system wave packet is approximated as

P(xpt) = expliS(0) lo, (x.0)p, (1,1,

with S(¢) a position independent phase angle [not to be con-
fused with S-matrix element S (E)] explicitly isolated in
order to simplify the equations of motion for the wave pack-
ets @, and @,. Specifically, appeal to the McLachlan vari-
ational yields well-known mean field equations in which ¢,
obeys a single degree of freedom Schrodinger equation with
the effect of the y motion “felt” through a time-dependent
effective potential:’

i0,@,(x,t) = {Tx + v, (x) + fdyl% LIRS (x,y)]

K@ (x1). (2.3a)

An analogous equation governs the evolution of ¢, and S(7)
depends on the average interaction potential according to
S(ty = side’{V,(¢t")), where

V() = f dx dy|lp, (x,0)p, (1,0 |*V; (x,p). (2.3b)

This prescription has several appealing features. First and
foremost, it greatly simplifies the complexity of the partial
differential equations which must be integrated numericaliy.
In the present problem, one two-dimensional Schrodinger
equation has been replaced by two one-dimensional Schro-
dinger equations (which must be integrated in tandem due
to their mean-field type influence on each other). In general,
to solve a D-dimensional Schrodinger equation requires rep-
resentation on a D-dimensional spatial grid consisting of ¥ 7
points, where N is the number of points needed to span each
dimension (typically,we find in numerical applications that
N = 100-300). In contrast, to solve a D-dimensional Schro-
dinger equation with the TDH approximation requires ND
points. Thus the computational effort required to implement
the TDH approximation scales roughly linearly with dimen-
sionality, whereas the corresponding effort needed to inte-
grate the Schrodinger equation exactly scales exponentially
with dimensionality. A second useful feature of the TDHG
algorithm is that all relevant integrals arising in the extrac-
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tion of asymptotic state projections [cf. Eq. (2.2)] factor
into products of one dimensional integrals.

Of course, these advantages are moot if the TDHG
method does not provide a reasonable approximation to the
solution of the appropriate time-dependent Schrodinger
equation. Precisely how good is ““good enough” depends on
the application at hand. For monitoring coarse-grained
properties such as the average energy in a particular vibra-
tional mode, the TDH approximation has been shown to be
reasonable in several cases.” Extraction of individual state-
to-state transition probabilities is a more delicate task. Re-
cent applications indicate the essential promise of the meth-
0d,*'° but there is clearly room for improved control over
the quality of the results. A natural extension would allow us
to build upon the qualitative sensibility of TDHG results in
order to obtain quantitative accuracy in extracted observa-
bles. One obvious class of candidates would be a superposi-
tion of linearly independent TDH-type wave packets with
coefficients that can be varied to enable “interaction”
between basis wave packets or, in the language of electronic
structure theory, “configurations.” We develop a particular-
1y streamlined version of this idea in the next paragraphs.

For concreteness, let us assume the initial wave packet is
Gaussian-like, for example ¥(x,»,0) = y, (x)G(y), where
G(y) is a Gaussian wave packet incident upon the scattering
center and y, the Morse oscillator vibrational eigenfunction.
Notice that it is not necessary that the wave packets be strict-
ly Gaussian. It will become clear as the development unfolds
that they do not have to be nodeless, either, but for simplicity
we consider this case first. It is easy to construct a complete
orthonormal set of initial “excited state” basis functions
@ (x,0)9 Y (,0), where g (x,0) = x;, and @ (¥ (1,0)
is the &k th member of an orthonormal traveling Hermite—
Gaussian basis set. To be specific about ¢ |*> we use Heller’s
notation for a general Gaussian wave packet,'® i.e., take

G() =explilac (0 — ) + P — o) + ¥ 1}
where y, is the position-space center of the Gaussian, p, its
momentum expectation value, @, contains spread and “con-
traction” information (a fuller explanation of this point is
provided in Sec. III), and ¥, ensures unit normalization (its
real part also provides an overall phase factor, which we can
eliminate with no loss of generality by choosing Re ¥, = 0).
Then the desired initial orthonormal Hermite—Gaussian ba-
sis functions are given by’

@ (1,0) = ¢ H, [ (2Imay) (¥ — ¥5) |G,

with H, the k th Hermite polynomial and ¢, = [2*k!] ~ '/~

The most obvious configuration interaction scheme
would utilize basis functions which have been subjected one
by one to the TDHG approximation. However, a problem
arises, because each basis wave packet evolves under its own
variationally optimized separable effective potential [cf. Eq.
(2.3) ]; hence they do not remain orthonormal. This severely
encumbers the equations of motion for the basis coefficients
which must be determined in order to determine the “config-
uration interaction.” Fortunately, a simple remedy exists,
namely to propagate e/l basis under the same separable, ef-
fective potential. Several possibilities are immediately sug-
gested, the most obvious being the TDH effective potential

associated with the initial ground state basis function
@ 2 (x,0)¢ {V(5,0) = x, (x)G(y). We adopt this choice in
the discussion which follows.

Anticipating the central role of the ground state basis
wave packet, let us denote it as @, (x,t)@, (y,¢). The simplest
way to obtain this packet is to subject the initial packet
Yo (x)G(p) to the mean field Egs. (2.3a). We then compute
and store the time-dependent one-dimensional effective po-
tentials generated thereby, namely

Vi (x,t) = v, (x) + f ayl@, 1PV (xy) (2.4)
and analogously for V;“( »,t). Again, we emphasize that @,
is obtained by propagating ¢ (¥ (x,0) according to the po-
tential in Eq. (2.4) self-consistently with its @, counterpart.
All the other x basis wave packets ¢ ¥ (x,t),k >0, are then
obtained by propagating ¢ *(x,0) according to ¥ <" (x,) in
Eq. (2.4), and likewise for the other y basis wave packets.
Now, we consider a superposition of basis functions genera-
ted in this way

Yxpt) =Y a; (00, (xp,0), (2.52)
Bk
where
Gy (xp,n)=expliS(D 1 P (x,D@ F(p,1), (2.5b)

and S(¢) is the phase angle S(¢) = f{dt"(V,(¢')) based on
the average interaction potential

V() = J. dx dy|p, (x,))e(»,1) |’V (x,p).  (2.5¢)

In Eq. (2.5) aj, are time-dependent coefficients whose equa-
tions of motion are greatly simplified by two important (and
related) features of the adopted basis set. First, the basis
functions remain orthonormal for all times, i.e.

(G (x84 (x.3,))
={pP(xp P eV (xDe F(10)
=6j]6kk" (2'6)

This property follows in essence from the second useful fea-
ture of these basis functions, namely that all correspond to
evolution under the same time-dependent Hermitian Hamil-
tonian. Specifically,

0,0y (xy,t) = [T, + T, + VI (x,t) + V(3,1

- <V](t)>]6;k(x:y;t); (2'7)

with

V(1)) =A@, (D@, D |V (x,9) @, (x:,1)P, (1) ).
Now, when the trial function in Eq. (2.5) is substituted into
the full time-dependent Schrodinger equation, properties
(2.6, 2.7) can be utilized to show that the trial function

solves the Schrodinger equation if the coefficients a;, evolve
according to

ia,(t) = Zda/(t)jkjk'ajk'(t), (2.8a)
fE

where the coupling coefficients J7°(¢) i correct for the

error in using an approximate separable potential to propa-

gate the basis wave packets. Specifically,
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%(t)jk,jk’ = <¢;(cj)(x)t)¢);k)(y’t)IAVl(x)y,t)

Xl (x9S (nn), (2.8b)
with
AV, =V, (x,p) — [I dy|l@, 0.0 |2V, (x,p)
+del<79x (X, 2V,(xp) — <V1(t)>]- (2.8¢)

The content of Egs. (2.8) may be summarized in matrix
notationas ia(?) = #°(t)a(t), in which it is understood that
the coefficients a; (¢) are arranged into an array in some
convenient manner and #7°(¢) contains the matrix elements
7 (1) jx; «+ appropriately organized.

If the superposition amplitudes of basis components is
determined in the manner just described, ¥ (x,y,t) becomes
formally exact as the number of basis functions is increased
ad infinitum. Of course, it remains to be shown that conver-
gence can be obtained with a modest number of basis func-
tions (say, 3—10 per degree of freedom, although this num-
ber may vary considerably from application to application).
Section III below illustrates the ease with which the method
handles one nontrivial example. Before proceeding with spe-
cific numerical results, we summarize some of the expected
advantages of the formulation we have developed here.

First, the prescription is physically motivated in that it
builds directly upon the TDH-level approximation, which
should be qualitatively reasonable in many situations. The
only aspect of the dynamics which is improperly described
then is the “direct correlation” of the motion in various de-
grees of freedom, or more precisely, the nonfactorizability of
the exact multidimensional wave packet. This manifests it-
self geometrically as a twisting of the wave packet away from
the x-y axes (cf. Sec. III). It is precisely this effect which the
“configuration interaction” (CI) is designed to handle (by
superimposing several linearly independent factorized basis
functions). As long as the central Hartree basis wave packet
locates the important region of configuration space (or, more
properly, phase space, since the “momentum wiggles” in the
wave function must be accounted for, too), we have a rea-
sonable expectation of pinning down the details of its spatial
behavior via CI corrections.

Technically, the CI method introduced here has a num-
ber of attractive features. First, the effective potential used to
propagate the basis functions needs to be determined only
once from a simple TDHG integration which itself scales
essentially linearly with the spatial dimensionality of the sys-
tem. Subsequent to this, each basis function is evolved in a
known one-dimensional potential. Thus its integration is
completely uncoupled from the integration of the other basis
functions. As a result, the computational effort needed to
determine the time-dependent basis functions is expected to
scale in a strictly linear fashion with spatial dimensionality.

Another advantage of the prescription is that it is an
interaction picture formulation in which the zeroth order
Hamiltonian corresponds to motion on the effective separa-
ble potential specified above. In particular, if the potential
experienced by the moving wave packet becomes separable

4743

after some period of time, A¥V; —0 and the basis coefficients
reach asymptotic values. In practice, this should prove very
useful in direct scattering and photodissociation applica-
tions, where configuration interaction has to be performed
only for the short time that the wave packet is in the interac-
tion region.

A third virtue of our scheme is the opportunity afforded
for factorization of various required integrations into one
dimensional components. Clearly, projections upon asymp-
totic eigenfunctions are easily performed, since the TDH-
type basis functions naturally factor in the asymptotic co-
ordinates x and y. Furthermore, it should usually be possible
to express the interaction potential ¥, as the sum of a small
number of functions which also factorize. In this case all the
matrix elements needed to compute the CI coupling matrix
¥ (t) factor into products of one dimensional integrals.

lil. APPLICATION TO COLLINEAR ATOM-MORSE
OSCILLATOR SCATTERING

In order to demonstrate the practical aspects of our CI
formalism, we adopt a model for collinear He plus Morse
oscillator H, scattering which was recently used to study the
applicability of the TDHG method for inelastic molecular
scattering processes.® The potential involved is of modified
Secrest—Johnson (SJ)-type,'' i.e., in the notation of the pre-
vious section

V.(x) =D[1 —exp( —Bx)]%

Vi(xy) =expl —a(y —x)]. (3.1

As in the SJ potential, we choose the inverse length scale of
the exponentially repulsive interaction potential to have the
value of @ = 0.3. We then replace the unit force constant
harmonic potential studied by SJ with a strongly anhar-
monic Morse potential having the same curvature at its equi-
librium point, but containing only 40 bound states. This is
done by choosing D = 20.0 and £ = 0.158.(Remember that
#i=1.) With the choice of masses (following SJ)
m, = 1,m, = 2/3, the scattering problem is completely
specified. Complete solution of this collision problem (for all
initial vibrational states i and all energies E) by simple ap-
proximate wave packet dynamical techniques (e.g., Gaus-
sian*®>*(©> and TDHG?®) has proven elusive. Consequent-
ly, the ease with which it yields to our TDHG-CI formalism
will serve to establish the method’s potential.

All of our calculations begin with the isolation of an
appropriate *“‘ground state” TDHG wave packet trajectory
to be used as the central trajectory for determining S-matrix
elements over a modest range of energies. Typically, by ad-
justing the focus of the incident translational wave packet
[essentially, by varying Re a, in G(y)] it was straightfor-
ward to find a Hartree trajectory which gave reasonably sta-
ble probabilities for transitions out of the i/ = 0 incident vi-
brational state over the range of energies contained in the
incident packet. (Stability is reckoned by computing
3850 (E) |?, where the sum is over all energetically open
final state channels, and should in principle be one for all
energies. Typically, it is not hard to find a Hartree trajectory
which satisfies this unitarity check to within a few percent
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over 5 or more units of energy.) Once an acceptable central
Hartree trajectory has been identified, CI corrections can be
implemented in the manner detailed in the previous section.

The Hartree approximation is known to work well for
extracting0— f transition probabilities in inelastic scattering
problems of this type.® Hartree-based results for energies
E = 10,12, and 14 are indicated by the open circles in Figs. 1
(a, b, and c¢), respectively. All were obtained from the same
TDHG wave packet trajectory. By employing the CI scheme
described in Sec. II with a basis that consists of all products
of functions having j,k = 0 — 4, these results are modified
slightly, as indicated by the open squares in Fig. 1. (For alt
calculations presented in this section, we have employed the
same number of basis functions M in both coordinates, e.g.,
M = 5 for the CI results displayed in Fig. 1. However, there
is no reason in general why basis functions cannot be concen-
trated more heavily on the “difficult” degrees of freedom.)
Exact results, obtained by discretizing the wave packet on a
two dimensional grid and propagating it according to a stan-
dard FFT split-operator algorithm,'*® are indistinguish-
able from the M = 5 CI results on the scale of this figure. [In
addition, the results reported in this paper (except for
E =22, below) were checked via a standard time-indepen-
dent coupled channel scattering code.’>®™ ] Through this
agreement, we gain confidence in the CI formalism devel-
oped in Sec. II.

In subsequent paragraphs we continue to explore the
accuracy and flexibility of our CI algorithm, but first we
pause briefly to examine the wave packet trajectory which
gives rise to the transition probabilities indicated in Fig. 1.
Figure 2 shows snapshots of the probability density of the
exact (fully coupled) wave packet. Note that the exact wave
packet does not twist, i.e., it remains oriented along the x-y
axes at all times. This means that a TDHG wave packet has
the flexibility to follow the exact motion in this case. Indeed,
comparison of the TDHG trajectory used to obtain the re-
sults shown in Fig. 1 and the exact wave packet density re-
veals that the two are indistinguishable on the scale of resolu-
tion of Fig. 2. This observation is consistent with the high
accuracy of S-matrix information extracted from the TDHG
wave packet trajectory.

We now consider systems initially prepared in an excit-
ed oscillator state /> 0. As was observed in Ref. 6, direct
application of the TDHG method fails for these more ex-
tended states. The problem was partially circumvented in
Ref. 6 by decomposing the excited oscillator wave packet
into several localized Gaussian pieces. Each of these was
propagated independently under the TDHG approxima-
tion, and then the resulting wave packet trajectories added
coherently to produce an approximation to the exact excited
state wave packet trajectory. S-matrix results obtained by
this procedure were qualitatively satisfactory, although the
quantitative agreement with the exact results was not so
good as in the / = O case. Here we find that utilization of our
ClI correction algorithm enables us to completely avoid these
difficulties and obtain accurate .S-matrix elements with the
same level of effort needed to obtain i/ = 0 results.

The scheme proceeds in the same way as for the i =0
case. One chooses a reasonable Gaussian-type TDHG tra-
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FIG. 1. Panels (a), (b), and (¢) show 0— f vibrational transition probabi-
lities at energies E = 10, 12, and 14, respectively, for the inelastic scattering
model adopted in the text. TDHG results are indicated by open circles,
M = 5 basis and exact 2-D grid integrator results by open squares.

jectory to “anchor” the traveling basis set. [ Essentially, the
center of momentum p, in the incident Gaussian G(y) is
chosen such that p}/2m, + €, =E, where i is the initial vi-
brational state for which S-matrix elements are desired, and
E is a typical energy at which the S-matrix is to be comput-

55

39

> 23

-~
1

P

FIG. 2. Contour plots of exact wave packet probability density for i =(
scattering wave packet at indicated times.
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FIG. 3. Panels (a), {b), and {(c¢) show 1 —f vibrational transition probabi-
lities at energies £ == 10, 12, and 14, respectively, for the inelastic scattering
model adopted in the text. TDHG results are indicated by open circles,
M = 5 basis and exact 2-D grid integrator results by open squares.

ed. ] For the configuration interaction phase of the computa-
tion [cf. Eq. (2.8) ], the appropriate initial condition in gen-
eral is a5 (0) = 1, and all the other a; (0) = 0. Results for
energies £ = 10, 12, and 14 are shown in panels (a), (b),
and (c) of Fig. 3 for the case /i = | and Fig. 4 for the case
i = 2. For i = 1, a CI basis characterized by M = 5 is suffi-
cient to obtain results which are in quantitative agreement
with the exact answers. For { = 2, it is necessary to go to a
slightly larger basis size, namely M = 8, to get complete
agreement with the exact results, but for the most part the
errors are minor even when M = 5. These CI results for ini-
tial wave packet states associated with i = 1 and 2 represent
a significant improvement over those obtained at the simple
TDHG level (i.e., propagation of y,G(y) directly via the
TDHG approximation). The simple TDHG results are
shown via open circles in each panel of Figs. 3 and 4, and are
seen to be of rather poor quality.

Itis interesting to compare the evolving probability den-
sities associated with TDHG, CI and exact wave packet tra-
jectories for a system of initially prepared in an extended
wave packet state. As an example, we show in Fig. 5(a) the
TDHG resuilt associated with / = 2, while Fig. 5(b) contains
the behavior of the corresponding exact wave packet. The
exact wave packet probability distorts appreciably when it
impacts the repulsive barrier of the potential energy surface.
In particular, it {wists noticeably (e.g., at times ¢ = 6 and
12). This effect cannot be accommodated by a single TDHG

Val.
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FIG. 4. Panels (a), (b), and (c) show 2 —f vibrational transition probabi-
lities at energies £ = 10, 12, and 14, respectively, for the inelastic scattering
model adopted in the text. TDHG results are indicated by open circles,
M =5 basis results by open squares, and M = 8 basis and exact 2-D grid
integrator results by open triangles.

wave packet. As is clear from Fig. 5(a), a TDHG packet
must always remain rigidly oriented parallel to the x-y axes.
These pictures clearly illustrate the concept of “direct corre-
lation” is much more substantial for spatiality extended
wave packets such as those which arise in the study of colli-
sions involving vibrationally excited initial states. A simple
argument for the degradation of the TDHG approximation
with the spatial extent of the propagating wave packet runs
as follows: In a sufficiently local region about some point
{x,,y,) the interaction potential separates according to

Vl(x!y)E Vl(xnyt) + ax Vl(xnyt)(x - xr)

-+ ay Vl(xvy:)(y'_yz}'

[ A separable potential closer to the spirit of the TDHG ap-
proximation can be constructed, as discussed in the next sec-
tion, but the decomposition just indicated suffices for pres-
ent purposes.] An initially factorized wave packet will
remain factorized until this approximation breaks down.
Obviously, the more spatially localized the packet, the long-
er factorization is expected to persist, so the behavior of the
exact wave packet when i = 0 (Fig.2) vsi =2 [Fig. 5(b) ] is
not surprising. (The presence of nodes in the evolving wave
function may also contribute to the breakdown in accuracy
of the TDHG method, but we have not explored this possi-
bility in any detail.) An important point here is that for
M2 5 our Cl scheme produces snapshots which are virtually
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FIG. 5. Contour plots of wave packet probability density for i = 2 scatter-
ing wave packet at indicated times. Panel (a) shows the TDHG approxi-
mant, while panel (b) shows the M > 5 basis and exact 2-D grid integrator
results.

indistinguishable from the exact i =2 wave packet [Fig.
5¢b)]. This is another indication that the method can natu-
rally and efficiently account for correlation effects. It is ab
initio, and provided its computational feasibility scales fa-
vorably with spatial dimension, may prove useful in a variety
of applications.

As a final demonstration of the utility of our method we
employ it to extract S-matrix elements for the energy
E =122, This energy is above the dissociation threshold of
the Morse oscillator. A continuum of unbound Morse oscil-
lator eigenfunctions is now energetically accessible, and the
need to include these functions in any straightforward time-
independent basis expansion requires substantial modifica-
tion of standard coupled channel codes. Time-dependent
wave packet methods are considerably less sensitive to the

opening of “reactive channels.” Indeed, for the collinear
H,—He scattering application under study here (in which
the “reactive channel” involves dissociation of the H, mole-
cule), both the TDHG method and the CI scheme built
upon it are impervious to such complications in the energy
range examined (i.e., relatively near the dissociation thresh-
old).

Implementation of these procedures proceeds exactly as
in the low-energy (i.e., predissociation) cases considered
above. First, a suitable TDHG trajectory must be isolated.
We used the one associated with Fig. 1 of Ref. 6, which
produces the 0— f transition probabilities indicated by the
open circles in Fig. 6(a). CI corrections to these results were
then computed using the algorithm introduced in Sec. III.
Converged O—f transition probabilities (obtained with
M = 3) are shown via the open squares in Fig. 6(a). The
same basis wave packets were used in a CI computation of
1 - fand 2 f transition probabilities, with results shown in
Figs. 6(b) and 6(c), respectively. For i = 1, converged re-
sults were obtained with M = 5. This size basis produced
nearly converged 2 f basis probabilities as well. By in-
creasing the basis set size slightly, the M = 8, the completely
converged results indicated by the open triangles in Fig.
6(c) were obtained. For the sake of comparison, TDHG
trajectories were also computed for i = 1 and i = 2 [i.e., the
TDHG approximation was employed for the initial wave
packets y,G(p), with the translational Gaussian G(y) cho-

0.3r (a) i=0
o---TDH
P==0 o0— Basis,M=5
0.2 °7u~u\\\ A—-—Basis,M=8

B 2}

N
= y \
S ol S N

FIG. 6. i f transition probabilities at energy E = 22 for the inelastic scat-
tering model adopted in the text. Results for / = 0, 1, and 2 are shown in
panels (a}, (b}, and (c), respectively. TDHG results are indicated by open
dots, M = 5 basis results by open squares, and M = 8 basis results by open
triangles.
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sen approximately for energy £ = 22]. Transition probabili-
ties extracted from these trajectories are shown with open
circles in Figs. 6(b) and 6(c), respectively. The overall
trends are seen to be in agreement with the findings of Ref. 6.
For i = 0, the TDHG-based transition probabilities are rea-
sonably accurate, but this accuracy erodes significantly for
the extended initial wave packet states i = 1 and § = 2.

We conclude this section with brief comments on the
efficiency of the various exact solution techniques which can
be utilized in the collision problem under study. Two dimen-
sional grid integrators such as the split-operator FFT meth-
0d'?® used here are flexible and reliable for problems in-
volving two spatial dimensions, and so they are routinely
used on currently available supercomputers. However, ex-
tensions to three and higher dimensions are much more de-
manding computationally (the growth of computational ef-
fort with spatial dimensionality is exponential for this class
of methods). Three dimensions is perhaps barely within
reach, but four dimensions is currently out of the question.
The other class of traditional methods which are commonly
used for quantum collision problems are time independent
coupled-channel algorithms.'*® These also slow down ex-
ponentially as the spatial dimensionality of the problem in-
creases [and, in addition, require substantial modification as
new arrangement channels become energetically accessible
(a problem to which time-dependent wave packet methods
are much less sensitive}]. It is hoped that computational
labor associated with the TDHG-CI method introduced in
Sec. IT and demonstrated in the present section will scale in a
milder way with spatial dimensionality. Already in two di-
mensions we find a factor of 5 increase in speed relative to
our 2-D grid integration codes. More importantly, parts of
the TDHG-CI algorithm grow linearly with spatial dimen-
sionality, while other parts, whose growth must formally be
classified as “exponential”, in practice have simplifying fea-
tures {extreme sparseness of critical matrices and/or vec-
tors, flexibility with respect to distribution of basis functions
on various degrees of freedom, etc. ) as discussed in the next
section.

IV. DISCUSSION

Localized wave packet dynamics has been recognized
for some time as an appealing way to compute quantum ob-
servables. It brings a manifestly dynamical point of view to
the subject of quantum dynamics, which is intuitively valu-
able. It also has computational advantages over traditional
time independent approaches for certain classes of problems,
for example dissociation or rearrangement events in which
multiple continua are energetically accessible. Above all,
from a computational point of view, simple localized wave
packet methods such as Gaussian wave packet dynamics and
the TDHG method are easily extendable to high-dimension-
al systems. However, these types of methods have been pla-
gued by questionable reliability in many cases.*® What is
needed is a way to monitor their accuracy and correct for
their errors. The algorithm developed in this work, a natural
scheme for incorporating coupling between different
members of a TDHG level basis, addresses this need direct-
ly. It has a number of commendable features, and can be
extended and applied in several interesting ways which merit
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comment here. First we review some of its technical assets:

(i) The construction of the traveling basis functions is
exceptionally easy, and scales strictly linearly with spatial
dimensionality.

(ii) Since the basis functions are naturally orthonormal
at all times, the linearly coupled evolution equations for the
time-dependent superposition coefficients have a very sim-
ple structure. The coupling matrix #” is also very easy to
determine because the basis functions factorize. Provided
also that the interaction potential can be broken into a sum of
product functions, 77 can be constructed as a direct product
of 1-D matrices, each of which involve matrix elements of a
particular coordinate.

(iit) Asymptotic overlaps factor into products of 1-D
integrals as do time-correlation functions typically encoun-
tered in electronic absorption and Raman scattering prob-
lems.*(®

There are several other intriguing features of the algo-
rithm which have yet to be explored. For example, we find
that the coefficient vector a(z) is usually quite sparse, i.e.,
only a few of the coefficients are substantially nonzero at any
time. To evolve over a small interval, it should be sufficient
to examine the coeflicient list at the beginning of the interval
and compute only those columns of #° which are associated
with the nonzero coefficients. In this way it is hoped that the
amount of computational labor involved in evolving the su-
percoefficients a(#) can be substantially reduced.

One also has a great deal of flexibility in choosing the
guiding trajectory upon which the traveling orthonormal ba-
sis set it built. We have focused here on a simple possibility,
namely utilization of the time-dependent effective separable
potential generated for a Gaussian-like / = O initial wave
packet according to the TDHG approximation. To make
this notion more precise, let us consider the prototypical case
that ¥,(x,p) = f{x)g(y). Then the effective separable

interaction  potential  generated by  yo(x)G(y)
=9 P (x,00p 7 (»,0) is
Vi(xp) =(g(1))af(x) + {f(x))og(»)
— (S(x))e 800, (4.1)

where (g(y) ), means average g over |@ (* (y,1)|? etc. There
is no reason why we cannot use the effective potential asso-
ciated with the TDHG trajectory appropriate to
@ P (x,0)@ ¥ (,0) with j,k #0. In fact we have also imple-
mented our CI algorithm for initially vibrationally excited
systems (i.e., i = 1,2) by using the TDHG trajectory for the
relevant (extended) initial state to generate the global effec-
tive potential which determines our basis set. We find that
there is no substantial advantage to this variation: both im-
plementations yield the same S-matrix elements with about
the same basis size. We conclude that one can only do “so
well” in choosing an effective separable potential. In essence
any TDHG approximation gives V,=V,(xy,)
+ V,(x,,y) — V,(x,,p,), where (x,,p,) is the coordinate
space center of the packet. Different excited state trajectories
give slight variants of this result depending on the dispersion
of the wave packet’s probability density, but our experience
has been that all effective potentials generated in this manner
are qualitatively consistent with the form just quoted. Nev-
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ertheless, this exploration suggests other possibilities, which
may in fact yield substantial improvement.

In particular, an orthonormal basis set can be built upon
anonlinear variational trial function which already has some
correlation built into it. For example, as discussed recently
by Kucar et al., '* one can consider variational trial func-
tions of the form exp{68,L, }@, (x,0)@, (»,1), where L, is the
z-component of angular momentum and 8, a real parameter.
This leads to norm-conserving Hartree-type Schrodinger
equations for @, and @, plus an equation of motion for §,.
Use of such angular momentum generator allows this trial
wave packet to “twist”, so it may be capable of building in
some correlation in a simple “Hartree-esque” way. It is then
simple to construct an orthonormal basis of excited-state
wave packets “on top of  such a guiding wave packet, and
subsequently carry out configuration interaction in order to
completely capture the distortions exhibited by the exact
wave packet.

There are two other important classes of problems for
which our CI method appears reasonably well suited, name-
ly (1) curve crossing problems and (2) rotational motion.
Curve crossing, which entails coupling between wave pack-
ets on different potential surfaces, is ubiquitous in reduced
descriptions of molecular many-body problems (involving
electronuclear coupling, multidimensional tunneling, etc.).
It is also much more difficult to treat by simple “classically
inspired” localized wave packet methods, since passage of a
wave packet through a crossing seam in the multidimen-
sional potential surface is an intrinsically nonclassical event
(which leads, for example, to leakage of part of the initial
wave packet amplitude). It is plausible that a two-surface
TDHG approximation (of the type recently investigated by
Kotler et al.'*) can be used to anchor an orthornormal
spinor-type basis set (i.e., in which each basis function con-
sists of a Hartree-type coordinate space function times an
electronic, spin or tunneling base state vector). Again, once
this construction has been accomplished, computation of
configuration interaction corrections should be straightfor-
ward, albeit somewhat more complicated than for a single-
surface motion.

Let us also briefly consider the incorporation of rota-
tional motion into the procedure. The TDH approximation
can be applied in a straightforward manner to rotational or
other curvilinear coordinates, and there is no reason why the
Hartree-based CI scheme set forth in this paper cannot be
directly applied in order to correct for errors in the simple
Hartree level of description. To take a simple example, con-
sider scattering of a rigid-rotor diatom from a surface, or its
photodissociation analog, desorption of a rigid-rotor diatom
from a surface by direct excitation to a repulsive excited
state. In these problems the center of mass molecular motion
is naturally treated via Cartesian wave packets, whereas the
orientation of the diatom can be described through a time-
dependent superposition of spherical harmonics.'> At the
Hartree level of description the motion of the angular co-
ordinates is given by a simple matrix differential equation of
the canonical form i b = & ()b, where b(¢) is the vector of
spherical harmonic coefficients, and % (¢) the appropriate
Hermitian matrix.'> Since it is Hermitian it can be used to
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propagate a variety of initial coefficient vectors, and if the
latter are chosen to be orthonormal at ¢ = 0, they will remain
so for all subsequent times. It only remains to decide upon a
“natural” set of orthonormal angular basis function. This
choice will depend on the application. For example, in the
case of molecule-surface scattering from initial angular mo-
mentum state j =0, the basis vectors would by simply
b= (1,0,...),(0,1,...), etc.; that is, they should be the set of
spherical harmonics themselves. In the case of photodesorp-
tion from an initial librational state, whose probability den-
sity might be envisioned as a polar icecap on the unit sphere,
one would represent this density as a superposition of spheri-
cal harmonics, and then construct excited states with in-
creasing nodal structure, for example, by Gram-Schmidt
orthogonalization.'® This procedure only has to be carried
out once, after which the basis functions remain orthonor-
mal naturally.

Before concluding, we wish to point to interesting recent
work by Meyer et al.® which appeared as we were preparing
the present report. These authors appeal to the so-called La-
grangian time-dependent variational principle,'” and derive
equations of motion for a time-dependent superposition of
Hartree-type basis functions. In a broad sense the strategies
employed in the two works are similar, but they differ con-
siderably in detail. Meyer ef al. appeal to their variational
principle in a much stronger way than we do to ours. We use
the McLachlan principle only to help us pick a reasonable
separable, global effective potential to guide all of our travel-
ing basis functions. Indeed, in light of the observed practical
equivalence of a number of variations on the (nonvaria-
tional) theme suggested in Eq. (4.1), it does not appear es-
sential to use the McLachlan formalism for this purpose (al-
though it is certainly comforting to have it available when
one is approaching a novel problem). Once the basis set has
been constructed, there is also no need to invoke the notion
of variational optimization. We can regard the configuration
interaction phase of our algorithm simply as an expansion of
the exact wave packet in a complete basis set which happens
to travel around the coordinate space.

Meyer et al. use the Lagrangian variational principle to
couple all basis wave packets and all coefficients together in
a complicated way. The evolution of each basis packet in
each coordinate, e.g. ¢ {”(x) for all j, is individually opti-
mized, and, moreover, the optimization is done self~consis-
tently with the evolution of optimized superposition coeffi-
cients. The advantage of this scheme is that the basis set is
more accommodating than ours, since the basis functions in
each coordinate are not restricted to be propagated under the
same effective one dimensional interaction potential. There
is also an explicit feedback mechanism not present in the
method outlined in this work. Such a mechanism might cor-
rect errant Hartree-level wave packets before they have
strayed too far from the course of the exact wave packet. The
disadvantage of their scheme is that the equations of motion
associated with it are much more complicated than ours:
every basis function is linearly coupled to every other basis
function in an intimate way. Thus, for a system with D de-
grees of freedom, one has to evolve roughly I17_ | M, coupled
one-dimensional wave packets (where M; is the number of
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basis functions used to span the jth coordinate) in tandem
with each other and with an equal number of basis coeffi-
cients. Consequently, their method does not appear to scale
with the spatial dimensionality of the molecular system in as
favorable way as ours.

In concluding we stress that from a global perspective
the important point is that it is possible to add configuration
interaction to Hartree-level wave packet dynamics. The al-
gorithm presented in this work provides one promising way
for obtaining precise information about the dynamics of
many-body quantum systems, and judicious appeal to time-
dependent variational principles should enable refinement
and specialization of the basic ideas case by case.
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