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Summary 
Constructions are shown for cellular developmental models with continuous parameters~ 

such as concentration of nutrients or inhibitors~ size and age of cells or compart- 

ments. It ~S proposed that we can make use of some of the L-system results for these 

continuous component models. 

Introduction 

Developmental descriptions with the help of L-systems are based on discrete symbols 

which stand for discrete states of cells. In accordance with our present-day under- 

s..tanding of cellular processes~ the "state of a cell" at any time is assumed to 

consist of the "state of the genome" and of the "state of the cytoplasm" at that 

time. By the "state of the genome" we mean the configuration of active and inactive 

genes at that time. The genes being discrete entities which are either repressed or 

not at any one timej the combination of active genes forms a naturally discrete 

"genomic state". Nevertheless~ if the number of genes n involved in developmental 

regulation were large~ then the number of possible combinations of active ones~ E 

could be unmanageable. This~ however~ does not seem to be the case in the develop- 

mental processes investigated so far~ not more than a handful of genes being at 

most implicated in each case. 

But the "cytoplasmic states" are an entirely different matter. The cytoplasm con- 

sists of thousands of different proteins~ nucleic acids~ metabolites~ and other com- 

pounds~ each at continuously varying concentrations. Most of these materials are ne- 

cessary for the normal functioning of the cell and are not involved in developmental 

regulations. Again~ the number of those £ompounds which are developmentally impor- 
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tant, such as growth hormones~ inducers~ cell division regulators and the like, is 

probably small. Neverth~less~ their diffusion and reaction rates must be taken into 

account~ as well as their concentrations~ in order to compute their effect on va- 

rious cells. Ever since the constructions of A.M. Turing's diffusion-reaction model 

i 
for morphogenesis, a considerable number of developmental models have been published 

with computer instructions and partly based on the production~ diffusion~ and decom- 

position of morphogenetically active compounds (morphogens~. Among these we may 

mention the models of D. Cohen2for branching structures~ of D.A. Ede and J.T. Law 3 

for the early development of chick limbs~ of C.P. Raven and J.J. Bezem4tfor the de- 

velopment of snail embryos, of A.H. Veen and A. LindenmayerSfor leaf position deter- 

mination on shoot apices~ and of Baker and Herman 6 for heterocyst initiation in 

blue-green algae. Only the last of these models has to do with simple (unbranched) 

filaments of cells, so we chose it as the first example to introduce our ideas. 

What we propose to show is how developmental models with both discrete genomic and 

continuous cytoplasmic states can be expressed as counterparts of L-systems~ and 

that in fact these new systems represent a useful extension of the original concept% 

with the hope that the results and insights gained on L-systems will carry over to 

them. 

The correspondence between "dynamic" systems (described by differential equations) 

and discrete algorithmic systems, with reference to diffusion-reaction mechamisms~ 

has recently been con~nented upon by H.M. Martinez and R.M. Baer~: "discreteness can 

Since the references are mostly to biological papers, we deviate from the 

format of this volume and list the references at the end of the article. 
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also be dynamic. It can correspond to the steady states of a physical system main- 

tained far from thermodynamic equilibrium (a dissipative structure). One is accor- 

dingly tempted to view this dynamic discreteness as the essential ingredient of any 

biological process at the cellular level having a programmed nature". 

For a more detailed biological justification of L-systems see my review j and 

my chapter in the book of Herman and Rozenberg @ . For formal definitions and re- 

/o 
suits see Salomaa's chapter on Lindenmayer-systems! and the rest of the above 

mentioned book. 

Heterocyst initiatio n in growing algal filaments 0fAnabaen @ 

In order to account for the differentiation of heterocysts at more or less regular 

intervals (every I0 cells or so) in growing filaments of the blue-green alga 

6 
Anabaena~ Baker and Herman made the following assumptions (which are widely ac- 

cepted by biologists). 

The heterocysts produce an inhibitor which diffuses along the filament~ and into the 

surrounding medium as well. A cell in which the inhibitor concentration falls below 

a certain ~hreshold value tur~s into a heterocyst~ and s~arts producing the inhibi- 

tor. Cells which are inhibited from turning into a heteroeyst (vegetative cells) 

can divide upon reaching a certain age. 

Diffusion of the inhibitor is governed by the equation 

~C 

~t 
= k (~ - c) + k (r - c) + k (e - c) 

where c is the concentration of inhibitor in the cell under consideration~ ~ ~ and 

e are concentrations of inhibitor in the left and right neighbour cells~ and in the 

environment. From this equation we get 

Z~c = k.At.(~ + r + e - 3c), 
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Assuming for the present that e = o~ and choosing (footnote i) ~ as the value of 

k.~t~ we have then the formula 

which was used in the simulation of Baker and Herman ~ . The fact that e = o means 

that each cell of the filament continually looses inhibitor to the environment. This 

is why the inhibitor concentration does not keep increasing in the filament as 

would be expected since the heterocysts keep producing the inhibitor. 
and He~man andLiu ~- 

The simulation was carried out by the program CELIA which Baker and Herman ;~ Acon- 

structed for generating cellular one-dimensional growing arrayS. In the program the 

state of each cell consists of a certain number of attributes. The next state of 

the cell~ or - if it divides - of its daughter cells~ is determined by its present 

state~ and possibly also by the states of its left and right neighbour cells. This 

means that each attribute has to be computed at each time step for each cell. The 

instructions used by Baker and Herma# in their first simulation in the paper 

can be given as follows (in a somewhat modified form)~ 

Let w = (< -~ x~ ->~ <a~ y~ u >~ < -~ z~ - >)be a cell-triple. Then 

(I) if y > t and u > 0 then w--~< a, f (x, y, z)~ (u - i)>, 

(Z) if y J t and u ~ 0 then w--~< b, h~ 0>, 

(~) if y > t and u = 0 then w--~ < a, f (x, y, z), Sl°~° >-I < a, f (x, y, z), Sl°°/°>. 
~000 6000 

Finally~let 

(A) < b, h~ 0 > --~ < b~ h~ 0 >. 

The attributes of each cell are shown between sharp brackets. The first attribute 

Footnote i. The diffusion rate constant k is taken here to be the same between cells 
along the filament~ and between cells and the environment. This obviously is a gross 
simplification= The choice of the value I for k.At has the consequence that if the 
length of the time step ~t can be estimated from other data then k can also be esti- 
mated. Baker and Herman considered ~t ~ i0 sec. a valid estimate from life cycle 
data~ which gives then k = 0.025 sec -I as the estimate for the diffusion rate con- 
stantj a rather high rate. 
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of a cell has only two values~ a or b~ standing for vegetative cells and heterocysts~ 

respectively. The second attribute is the concentration of the inhibitor~ and the 

third attribute is the age of the cell. The first instruction states that the center 

cell in state < a~ y~ u >~ with its left neighbour having an inhibitor concentration 

x~ its right neighbour an inhibitor concentration z~ if y is greater than threshold 

t and u > O~must go into a cell in state < a~ f (x~ y~ x)~ (u - i) >. The function 

f in this case comes from diffusion considerations and is assumed to be 

f (x, y, z) = y +! (x + z - 3y) 

by using the formula derived previously. The age of the cell is computed by sub- 

tracting I from u at each step. Thus~ as long as the inhibitor concentration remains 

in a cell above the threshold concentration t (chosen as t = 3 in this simulation)~ 

the cell remains in the vegetative state ~ its inhibitor concentration changes ac- 

cording to the diffusion law~ and its (reverse) age decreases by one. 

The second instruction specifies that if y ~ t and u ~ 0 then the center cell turns 

into a heterocyst (b), its inhibitor concentration goes to a constant value of h~ 

and its age to O. According to the fourth instruction~ cells of this type remain 

from then on in the same state. 

The third instruction specifies a division of the cell < a~ y~ u > into two new cel~ 

each in the state <a~ f (x~ y, z)~ Sl°°/°>.~ The term S IO°/O ~ stands for a stochasti- 
6 0 0 0  6 0 0 0  

cally chosen value of age from an integer set with average 6000 and standard devia- 

tion of i0°/o. This transformation takes place if y > t and u = O~ in other words~ 

when an inhibited vegetative cell reaches age O. 

The genomic states in this developmental system are clearly the states of the first 

attribute of each cell~ a and b~ standing for its vegetative and heterocyst condi- 

tion. The switch from one genomic state to another ( a-~b)~ and the decision for a 

cell to divide (a--~aa) or not to divide (a--~a)~ are controlled by the two cyto- 

plasmic attributes (inhibitor concentration and age) with respect to the two 

threshold values (3 and O). Once a cell is in state b~ it remains so (b-->b)~ 

The simulation of Baker and Herman was successful in generating acceptable hetero- 

cyst distributions along growing filaments~ For practical reasons they allowed the 
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inhibitor concentration in any cell to assume integer values only 3 those between 0 

and 999 (in the heteroeysts the concentration was at the constant value h = 999). 

The use of integer values did present some difficulties when the inhibitor eoncentr~ 

tion in the environment had~to be varied (e > 0). As we have seen~ the instructions 

of this developmental system were~ however~ formulated with the help of the conti- 

nuous function f ( x~ y~ z ) and its computations could be carried out to any de- 

sired degree of accuracy. 

The point we wish to make concerning this developmental system is that it could de- 

monstrably be formulated in a manner analogous to an L-system with tw~sided inputs 

(called a "2L-system" or "< i~i >L-system") in spite of having continuous and 

stochastic functions as components. Furthermore~ the analogy of this model with L- 

systems goes much deeper than just a common form of expression. For all practical 

purposes the computation of the function f ( x~ y~ z ) would be carried out only to 

some finite accuracy~ which would mean that the concentration parameter would in 

fact be discretized (just as Baker and Herman have done it). Any discretized para- 

meter within finite bounds could be regarded as a finite set of states. Thus~ al- 

though we define the developmental system by a continuous function~ we would in rea- 

lity be working with a discrete state system~ in other words~ an L-system. The 

stochastic aspect of the above instructions could also~ for most purposes~ be re- 

placed by non-deterministic ones. 

Once we recognize that certain developmental systems with continuous and / or 

stochastic components are fundamentally related to certain types of L-systems~ the 

results available for the latter become dir~dtly or at least by analogy applicable 

to the former. 

Unfortunately the theory of L-systems with interactions is not sufficiently strong 

yet to provide many useable results concerning the behaviour or equivalence proper- 

ties of such systems. The only theorems we might mention are those of Rozenberg ~ 

concerning the normal forms of L-systems with ~ left and ~ right neighbours with in- 

puts. He showed that for any k and ~ the class of < k~ > L-languages is identical 

with the class of < k+~-l~l > L-languages~ or with the class of < l~k+~-i > L-langua- 

ges. Furthermore he proved the existence of a hierarchy of < k~ > L-systems, in the 
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sense that for every k and ~ one can find a language which cannot be generated by a 

< k~ >L-system~ but can be generated by a < k+l~ >L-system. In a simulation~ the 

sizes of k and ~ correspond to the rates at which active substances can travel along 

a filament in one or another direction. Thus these results may have a bearing on 

the simulation parameters chosen in a particular biological model. 

The results on growth functions of L systems with interactions |~J IF" may also 

be eventually useful in answering questions concerning growth rates of filaments 

when growth is regulated by a process involving interactions among the cells~ such 

as (possibly oriented) diffusion of hormones. 

As more properties of L systems with interactions become known~ more insights will 

hopefully be gained of development governed by diffusion-reaction mechanisms~ such 

as the one concerning heterocyst differentiation discussed here. 

Branching_gr0wt h of barley roots 

The situation concerning useable L-system results is quite different when we c o n -  

sider developmental processes in which no interaction takes place among the units~ 

as illustrated in the following. 

We take as basis of this example the mathematical description by C~ackett and D. 

A. Rose16of the development of the seminal root of barley. The ~sential features of 

their description are: each root member grows at its apex by a constant rate~ and 

produces subapically branches at constant distances from each other. According to 

their observations~ "The development of the root system of barley . . . proceeds in 

such a manner that relations between the total number~ length~ surface area and 

volume of root members remain approximately constant during the vegetative stage of 

growth. The existence of this property of root development implies that the plasti- 

city of root form so evident to the eye is achieved within a fra~ork of some re- 

markably constant principles." 
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In a simplified form, the description of Hackett and Rose consists of giving apical 

growth rates Vo~Vl,Ve~ ... and branching densities qo,ql,q2 , ... for zero~ first, 

second~ etc., order branches. Growth rates v i are given in terms of mm per day~ and 

branching densities qi are in terms of branches per mm. They derive approximations 

of the total numbers and total lengths of first~ second and third order branches as 

functions of time, and attempt to show how these formulas can be fitted to observa- 

tions by suitable choice of parameters (the v i and qi values). 

Our purpose is to show that this developmental model can be expressed in a formalism 

analogous to OL-systems, and that, in spite of the continuous parameters employed~ 

recurrence formulas can be found for the developmental sequence it generates (cf.171 

Let us assume the following interactionless production rules for all i > O: 

(i) if X <~ then < ai, x > -'-~ < ai, x + v i > ) 
ql 

1 
(2) if x 2~ then < al, x > --~ < b, --i > ai+1,0 <al, x + v i - -- > 

qi qi qi ) 

(3) < b,x > ---~ < b~x > for all x ~ 0 . 

Each cell in this case represents a root segment, either an apical segment (above 

the highest branch), or an internodial segment (between two branches), or a basal 

segment (below the lowest branch and the branching point). The square brackets in- 

dicate branches, as in previous articles. The state of each segment consists of two 

attributes. The first attribute has the value a;and b~ standing for apical segments 

and for internodial or basal segments~ respectively. The second attribute indicates 

the length of the segment. 

The first instruction determines that as long as the length of an apical segment on 

an _ith order branch is below the required distance between branches _I ~ the segment 
ql 

should grow by an amount v i. 

The second instruction states that once an apical segment on an ith branch exceeds 

1 
the required distance -- it should produce a new branch of order ( i + 1 ) with 

zero length at a point -I distance above the last branch. An internodial segment is 

ql 1 
cut off this way in state < b~ qi >' and a new apical segment is formed which re- 

ceives the left over length of the original segment (which has been extended by vl). 
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The third instruction shows that internodial segments do not grow or branch any 

further. 

For the sake of this simple example let us assume that for all i > O~ v~ = v and 

ql = q" Consequently we also have a i = a. Let us designate ~ as r. The constants v q -- 

and ~ may take any positive real value. The term L x] designates the lower integer 

bound of x. The series of integers k1~ km~ ks~ •..~ k~ . . o are defined as~$]~ 

The following developmental sequence can then he obtained from the axiom < a~ 0>. 

S = < ajO > 

S I = < a~v> 

S~ = < a~2v > 

S k = < a~klv > 
1 

Skl+l = < b~r > [< a~O >] < a, (k1+ I) v - r > 

Skl+2 = < h~r > [Skl_~l+l] < a~ (k I + 2) v - r > 

S k 2 

S 
k~+ 1 

Sk+2 

= < b~r > [Ske_kl_l] <a~ kev-r > 

= < b~r > [Ske_k1~ < b, r> [< a~O >] 

= < b~r > [Ske_kl+l] < b~r > [Ske_k~+1] 

< a, (k2+ i) v - 2r > 

< a~ (k2+ 2) v - Zr > 

S k 

Sk +I 
s 

SkS+2 

< b,r > [Sksok1~1 ] < b~r > [Sks_ke_l] < a, ksv - 2r > 

< b~r > [Sks_k I ] < b~r > [Ske_~e ~ < b,r > [< a~O >] <a~ (k s + I ) v - 3r> 

< b~r > [Sks_kZ+1] < b~r > [Sks_k2+1] < b,r > [Sks_k;+1] <a~(ks+ 2)v- 3r> 

It is not difficult to see that the following formulas can be obtained~ for all in- 

tegers ~ and m such that i > I and 0 < m < (ki+ I - ki). 

Sk = ( < b,r > [Sk. k. ]) < a, kiv - (i - i) r> i 1 j = l  ~- J- 

Ski+m = ~ ( < b~r > [Ski_kj_l+ m ]) < a, (k~+ m)v - ir > 

The ~operator in these formulas indicates concatenation of strings. 
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The length x of the apical segment (the right-most segment in each string) is always 

such that 0 < x < r. This we can prove by recognizing that 

for any r and X- Thus we also have 

kiv- ( i- i) r < r 

and (k i + m) v - ir < r 

The above general formulas apply to strings produced at every step n such that 

n >~]jbut they are actually not recurrence formulas, because the difference-terms 

(~+I - ki ) andthe length-terms of the apical segments may keep changing in an ir- 

regular fashion as i increases without bound. However~ since in all practical 

examples ~ is a finite fraction~ both the difference-terms and the apical length- 
v 

terms must follow a cyclically repeating sequence. Thus~ if for some ~ and X values 

the cycles of terms are determined~ we can also obtain true recurrence formulas for 

these systems. 

The availability of recurrence formulas for such continuous component systems is 

clearly of great advantage. Among others~ formulas for total numbers and lengths of 

different orders of branches are then obtainable. 

It is of some interest to ask in general what requirements must a developmental 

system with continuous components fulfill in order to yield recurrence formulas° One 

requirement is obviously that no interactions should take place among the units. 

Another one seems to be that the numerical values which appear in the formulas should 

remain between certain bounds. 

!nfloreseenqe development in Aster 

Our third example of a developmental system with continuous components is that con- 

structed by D. Frijters and A. Lindenmayer (in these Proceedings) for the growth and 

flowering of Aster novae-anglia_ee. This developmental process combines certain as- 

pects of both of our previous examples~ branching filamentous growth (as in the root) 

as well as differentiating structures (like the heterocysts) are involved in it. A 

new aspect of this process is that an environmentally triggered major change occurs 
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in the course of development: a change from vegetative to flowering condition takes 

place when the lengths of days under which the plants are growing get shorter than 

a certain critical value. Asters are namely "short-day" plants~ they are induced to 

flower only when day-length falls below about IO hours, in late August at our lati- 

tude. This major change in developmental program is presented in the form of two 

tables of instructions, one for vegetative and one for floral development. 

Four attributes are used for each segment of the plant. The first attribute (again 

the controlling genomic attribute) has three values in this case: ~ for apical seg- 
or flowers 

ment~ ~ for internodial segments~ and ~ for ~at~a~ b~ds or if6r ~ 

basal segments ). The second attribute is a biological age parameter (called here 

"number of plastochrones"j rel~ted to the plastochrone index of R.O. 

Erickson and F.~. Michelini ~. The third attribute is segment length~ just as in 

the case of root segments. The fourth attribute is "bulk", interpreted as "assimi- 

late intake-eapacity"~ and having a role similar to the inhibitor concentration in 

the blue-green algal model. 

In addition to these four "local" or "cellular" attributes, two other aZributes~ 

and K~ are also computed for each segment. A is computed as the sum of the lengths 

of the segments from the nearest branching point to the internodial segment under 

consideration. K is a variable standing for an inhibition value controlled by the 

"bulk" value of the first internode on a branch. The value of K thus represents an 

inhibitory effect imposed on a whole branch depending on the position of the branch. 

Sets of instructions are given for both vegetative and floral conditions. Some of 

the instructions take into account not only the attributes of the segment itself 

which is being computed~ but also those of its nearest left neighbour segment. These 

two properties of the model, having two "tables" of instructions, and taking the 
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left neighbours into accoun% would make it a T iL-system with continuous components, 

were it not for the fact that the variables A and K are not locally comput~ • This 

feature of the model is, however, not essential~ A and K values could be carried 

along as two additional attributes for each segment. This would make the computation 

less efficien% however. 

Assuming that we are dealing here with a continuous counterpart of a T IL-system~ we 

can make use of the recent results concerning those systems (cf. Lee and 

RozenbergN~ 

L-systems with continuous components 

We have discussed three examples of developmental descriptions with continuous para- 

meters, the first one a counterpart of a non-deterministic 2L-system~ the second one 

of a deterministic 0L-system~ and the third one of a deterministic TiL-system (all 

of them were propagating systems~ i.e.~ without cell death). We might ask what pro- 

perties~ in general~ would be required~ from a biological point of view~ of L-systems 

with continuous components. 

First~ let us consider interactionless L-systems (0L-and TOL-systems) with continu- 

ous components. We could formulate deterministic production rules in the following 

completely general form: 

<al, a , ...~ a n >--~< fl (al~ "''' a= ), fa (al~ "''' a), ..., fn (al' "''~ a ) >, 

if no division takes place~ or 

<al, aa, ..o, an >--~< d I (fl(al, ..., an))~ ..., dn(f n (al, ..., a=)) > ~ m- 

< d I (fl(al~ ...~ a ))~ ...~ dn(f n (al~ ...~ a ))> ... ktimes 

) 
... < d I (fl(al, .~ an)), , dn(f n (a I, ., an))>, 

if division takes place. We let here each cell have n attributes; we allow each 

attribute to influence the values of all the attributes at each computation step by 

specifying the functions f1~ fe~ " " "~ fn"; and~ finally~ when a cell divides into 

new cells~ we introduce distribution functions dij d2~ • . .± d a to distribute the 

new values of the attributes over the newly produced cells. 

We are thus proposing here a next-state function F = (fl~ fe' " " "~ f=) and a dis- 

tribution function D = (dl~ da~ . • .~ d ) such that for each i~ i < i < n, ft is a 
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mapping from A n into A~ and d i is a mapping from A into A m ~ where A is the set of 

values over which the functions range. We have thus 

F : A n x A n --~ A n 

D | A%-~A m x A n 

The functions f1~ . " " ~ fn may be of very simple form. For genomic attributes they 

usually consist of simple step-functions~ such as represented in the root example by 

the first-attribute rules for all i > 0 that : if x < i__ -- qi then ai-~ai~ 

>i then ai-~b [ai+i]a i. if x qi 

Similar step-functions with externally determined (constant) thresholds are built 

into the other two examples discussed. One should in fact, require on biological 

grounds that in each L-system with continuous components there must be one genomic 

attribute~ and the next-state function for this attribute must be a step-function 

with one or at most two previously specified thresholds (the thresholds may not be 

computed). The reason for this requirement is the well-known Jacob-Monod model for 

gene activation and repression. For the same reason~ the genomic attribute should 

always be a discrete one. 

The next-state functions for the other attributes may be freely chosen as long as 

their values remain non-negative and between finite bounds. In no biological situa- 

tion would one expect to find a parameter which increases without bound or which be- 

comes negative. 

The distribution functions d1~ . . ., d n are in most realistic systems rather 

simple. In our first example the distribution function is the identity function for 

both new cells as far as the second attribute is concerned (both new cells receive 

the same inhibitor concentration f (x~ y~ z 9' In our second example the distribu- 

tion function for the second attribute is such that the new length x + v of an api- 

cal segment ( where x + v exceeds the threshold value) is divided into three portions 

of lengths r, O; and x + v - r~ respectively~ which together add up to x + v~ Dis- 

tribution functions are mostly of one of the above two types~ most biological para- 

meters being such that either they appear at the same value in both daughter cells 

(concentration~ temperature~ etc.) or they are subdivided among the daughter cells 

(length~ mass~ etc.). Occasionally there is also need for an unequal and non-addi- 



66 

rive distribution function~ such as the age assignment (the third attribute) in 

Baker and Herman's model. 

The construction of non-deterministic L-systems with continuous components presents 

no particular problems. One simply has to specify the set of new cells or strings of 

cells from which one can choose the next-state of a cell. Similarly, continuous com- 

ponent table L-systems can be easily constructed, as shown by Frijters and 

Lindenmayer (in these Proceedings). 

An additional remark: in a sense the principal effects exerted by next-state func- 

tions in interactionless L-systems are timing effects. Certain parameters increase 

or decrease to a point where they exceed a threshold value, when a new genomic state 

comes into operation~ but no spatial effects can be exerted by them. The fact that 

OL-systems are composed of timing sequences and cycles was recognized and further 

~0 
elaborated by D. Wood 

In systems with interactions we have~ in addition to timing sequences~ the possibi- 

lity of sending and extinguishing signals~ and setting up oscillations (standing or 

propagating waves). In continuous component L-systems with interactions the next 

value of each attribute may~ in general, be a function of not only all the attri- 

butes of the same cell but also of all the attributes of the neighbouring cells. As 

shown by the models of Baker and Herman and of Frijters and Lindenmayer~ the next- 

state function of one attribute may depend only on the same attribute in neighbouring 

cells~ or on several attributes. The genomie attribute is usually involved in the 

functions of all other attributes. 
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